Сообщение треугольник паскаля. Связь с биномом Ньютона. Свойства треугольника Паскаля и их применение в решении задач

Биномиальные коэффициенты коэффициенты в разложении (1 + x)n по степеням x (т. н. бином Ньютона): Иначе говоря, (1 + x)n является производящей функцией для биномиальных коэффициентов. Значение биномиального коэффициента определено для всех целых… … Википедия

В Викисловаре есть статья «треугольник» Треугольник в широком смысле объект треугольной формы, либо тройка объектов, попарно связ … Википедия

Таблица чисел, являющихся биномиальными коэффициентами. В этой таблице по боковым сторонам равнобедренного треугольника стоят единицы, а каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа: В строке с номером n+1… … Математическая энциклопедия

Треугольник Серпинского фрактал, один из двумерных аналогов множества Кантора, предложенный польским математиком Серпински … Википедия

Построение треугольника Рёло Треугольник Рёло[* 1] предста … Википедия

Треугольная числовая таблица для составления биномиальных коэффициентов (см. Ньютона бином). П. т. предложен Б. Паскалем (См. Паскаль). См. Арифметический треугольник …

Треугольник Паскаля, треугольная числовая таблица для составления биномиальных коэффициентов (см. Ньютона бином). По бокам А. т. стоят единицы, внутри суммы двух верхних чисел. В (n + 1) й строке А. т. биномиальные коэффициенты… … Большая советская энциклопедия

То же, что Паскаля треугольник … Математическая энциклопедия

В математике биномиальные коэффициенты это коэффициенты в разложении бинома Ньютона по степеням x. Коэффициент при обозначается или и читается «биномиальный коэффициент из n по k» (или «це из n по k»): В … Википедия

Коэффициенты в разложении (1 + x)n по степеням x (т. н. бином Ньютона): Иначе говоря, (1 + x)n является производящей функцией для биномиальных коэффициентов. Значение биномиального коэффициента определено для всех целых чисел n и k. Явные формулы … Википедия

Книги

  • Треугольник Паскаля. Книга 102 , В. А. Успенский. В настоящей лекции рассматривается одна важная числовая таблица (которая и называется треугольником Паскаля), полезная при решении ряда вычислительных задач. Попутно с решением таких задач…
  • Треугольник Паскаля. Книга № 102 , Успенский В.А.. В настоящей лекции рассматривается одна важная числовая таблица (которая и называется треугольником Паскаля), полезная при решении ряда вычислительных задач. Попутно с решением таких задач…



История треугольника. Первое упоминание треугольной последовательности биномиальных коэффициентов под названием meru-prastaara встречается в комментарии индийского математика X века Халаюдхи к трудам другого математика, Пингалы. Треугольник исследуется также Омаром Хайямом около 1100 года, поэтому в Иране эту схему называют треугольником Хайяма. В 1303 году была выпущена книга «Яшмовое зеркало четырёх элементов» китайского математика Чжу Шицзе, в которой был изображен треугольник Паскаля на одной из иллюстраций; считается, что изобрёл его другой китайский математик, Ян Хуэй (поэтому китайцы называют его треугольником Яна Хуэя). На титульном листе учебника арифметики, написанном в 1529 году Петром Апианом, астрономом из Ингольтштадского университета, также изображён треугольник Паскаля. А в 1653 году (в других источниках в 1655 году) вышла книга Блеза Паскаля «Трактат об арифметическом треугольнике».


Свойства треугольника Паскаля. Если очертить треугольник Паскаля, то получится равнобедренный треугольник. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Продолжать треугольник можно бесконечно. Строки треугольника симметричны относительно вертикальной оси. Имеет применение в теории вероятностей обладает занимательными свойствами.


Свойства треугольника Паскаля. Числа треугольника симметричны(равны) относительно вертикальной оси. первое и последнее числа равны 1. второе и предпоследнее числа равны n. третье число равно треугольному числу, что также равно сумме номеров предшествующих строк. четвёртое число является тетраэдрическим. Сумма чисел восходящей диагонали, начинающейся с первого элемента (n-1)-й строки, есть n-е число Фибоначчи. Если вычесть из центрального числа в строке с чётным номером соседнее число из той же строки, то получится число Каталана. Сумма чисел n-й строки треугольника Паскаля равна 2n. Простые делители чисел треугольника Паскаля образуют симметричные самоподобные структуры. Если в треугольнике Паскаля все нечётные числа окрасить в чёрный цвет, а чётные в белый, то образуется треугольник Серпинского. Все числа в n-й строке, кроме единиц, делятся на число n, если и только если n является простым числом. Если в строке с нечётным номером сложить все числа с порядковыми номерами вида 3n, 3n+1, 3n+2, то первые две суммы будут равны, а третья на 1 меньше. Каждое число в треугольнике равно количеству способов добраться до него из вершины, перемещаясь либо вправо-вниз, либо влево-вниз.




Знаменитый американский учёный Мартин Гарднер сказал: «треугольник Паскаля так прост, что выписать его может и десятилетний ребёнок. В то же время он таит в себе неисчерпаемые сокровища и связывает воедино различные аспекты математики, не имеющие на первый взгляд между собой ничего общего. Столь необычные свойства позволяют считать треугольник Паскаля одной из наиболее изящных схем во всей математике».



Вариации на тему "Треугольник Паскаля"

История

Треугольник Паскаля является, пожалуй, одной из наиболее известных и изящных числовых схем во всей математике.

Блез Паскаль, французский математик и философ, посвятил ей специальный "Трактат об арифметическом треугольнике".

Впрочем, эта треугольная таблица была известна задолго до 1665 года - даты выхода в свет трактата.

Так, в 1529 году треугольник Паскаля был воспроизведен на титульном листе учебника арифметики, написанного астрономом Петром Апианом.

Изображен треугольник и на иллюстрации книги "Яшмовое зеркало четырех элементов" китайского математика Чжу Шицзе, выпущенной в 1303 году.

Омар Хайям, бывший не только философом и поэтом, но и математиком, знал о существовании треугольника в 1110 году, в свою очередь заимствовав его из более ранних китайских или индийских источников.

Построение треугольника Паскаля

Треугольник Паскаля - это просто бесконечная числовая таблица "треугольной формы", в которой на вершине и по боковым сторонам стоят единицы, каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа в предшествующей строке. Таблица обладает симметрией относительно оси, проходящей через его вершину.

Свойства треугольника Паскаля

Свойства строк

    Сумма чисел n-й строки Паскаля равна 2 n (потому что при переходе от каждой строки к следующей сумма членов удваивается, а для нулевой строки она равна 20=1) Все строки Паскаля симметричны (потому что при переходе от каждой строки к следующей свойство симметричности сохраняется, а нулевая строка симметрична) Каждый член строки Паскаля с номером n тогда и только тогда делится на т, когда т - простое число, а n - степень этого простого числа

Треугольные числа
Вдоль диагоналей, параллельных сторонам треугольника, выстроены треугольные, тетраэдрические и другие числа. Треугольные числа указывают количество шаров или других предметов, уложенных в виде треугольника (эти числа образуют следующую последовательность: 1,3,6,10,15,21,..., в которой 1- первое треугольное число, 3- второе треугольное число, 6-третье и т. д. до m-ro, которое показывает, сколько членов треугольника Паскаля содержится в первых m его строках - от нулевой до (m-1)-й).

Тетраэдрические числа
Члены последовательности 1,4, 10, 20, 36, 56,... называются пирамидальными, или, более точно, тетраэдрическими числами: 1- первое тетраэдрическое число, 4- второе, 10- третье и т. д. до m-ro. Эти числа показывают, сколько шаров может быть уложено в виде треугольной пирамиды (тетраэдра).

Числа Фибоначчи
В 1228 году выдающийся итальянский математик Леонардо из Пизы, более известный сейчас под именем Фибоначчи, написал свою знаменитую "Книгу об абаке". Одна из задач этой книги - задача о размножении кроликов - приводила к последовательности чисел 1,1,2,3,5,8,13,21..., в которой каждый член, начиная с третьего, представляет собой сумму двух предыдущих членов. Эта последовательность носит название ряда Фибоначчи, члены ряда Фибоначчи называют числами Фибоначчи. Обозначая n-е число Фибоначчи через

Между рядом Фибоначчи и треугольником Паскаля существует любопытная связь. Образуем для каждой восходящей диагонали треугольника Паскаля сумму всех стоящих на этой диагонали чисел. Получим для первой диагонали 1, для второй 1, для третьей 2, для четвертой 3, для пятой 5. Мы получили не что иное, как пять начальных чисел Фибоначчи. Оказывается, что всегда сумма чисел n-й диагонали есть n-е число Фибоначчи. Для доказательства интересующего нас предложения достаточно показать, что сумма всех чисел, составляющих n-ю и (n+1) диоганали треугольника Паскаля равна сумме чисел, составляющих его т+2-ю диагональ.

Биномиальные коэффициенты
Числа, стоящие по горизонтальным строкам, являются биномиальными коэффициентами. Строка с номером n состоит из коэффициентов разложения бинома (1+n)n. Покажем это при помощи операции Паскаля. Но сначала представим, как биномиальные коэффициенты определяются.

Возьмем бином 1+х и начнем возводить его в степени 0, 1, 2, 3 и т. д., располагая получающиеся при этом многочлены по возрастающим степеням буквы х. Мы получим

1.(1+х)0=1,
2.(1+х)1=1+х,
3. (1 +х)2=(1 +х)(1 +х)= 1 +2х+х2,
4.(1+х)3=1+Зх+Зх2+хЗ
и т. д.

Вообще, для любого целого неотрицательного числа n
(1+x)n=a0+a1x+a2x2+...+apxp,
где a0,a1,...,ap

Последнее соотношение можно переписать в виде а из соотношений 1-4 получаем

Образовался треугольник Паскаля, каждый элемент которого

Именно это фундаментальное свойство треугольника Паскаля связывает его не только с комбинаторикой и теорией вероятностей, но и с другими областями математики и ее приложений.

Решение задач с применением треугольника Паскаля

Старинные задачи о случайном
Еще в глубокой древности появились различные азартные игры. В Древней Греции и Риме широкое распространение получили игры в астрагалы, когда игроки бросали кости животных. Также пользовались популярностью игральные кости - кубики с нанесенными на гранях точками. Позднее азартные игры распространились в средневековой Европе.

Эти игры подарили математикам массу интересных задач, которые потом легли в основу теории вероятностей. Очень популярны были задачи о дележе ставки. Ведь, как правило, игра велась на деньги: игроки делали ставки, а победитель забирал всю сумму. Однако игра иногда прерывалась раньше финала, и возникал вопрос: как разделить деньги.

Многие математики занимались решением этой проблемы, но до середины XVII века так и не нашли его. В 1654 году между французскими математиками Блезом Паскалем, уже хорошо известным нам, и Пьером Ферма возникла переписка по поводу ряда комбинаторных задач, в том числе и задач о дележе ставки. Оба ученых, хотя и несколько разными путями, пришли к верному решению, деля ставку пропорционально вероятности выигрыша всей суммы при продолжении игры.

Следует отметить, что до них никто из математиков вероятность событий не вычислял, в их переписке теория вероятностей и комбинаторика впервые были научно обоснованы, и поэтому Паскаль и Ферма считаются основателями теории вероятностей.

Рассмотрим одну из задач Ферма, решенную Паскалем с помощью своей числовой таблицы.

Пусть до выигрыша всей встречи игроку А недостает двух партий, а игроку В - трех партий. Как справедливо разделить ставку, если игра прервана?

Паскаль складывает количество партий, недостающих игрокам, и берет строку таблицы, в которой количество членов равно найденной сумме, т. е. 5. Тогда доля игрока А будет равна сумме трех (по количеству партий, недостающих игроку В) первых членов пятой строки, а доля игрока В - сумме оставшихся двух чисел. Выпишем эту строку: 1,4,6,4, 1. Доля игрока А равна 1+4+6=11, а доля В -1+4=5.

Другие арифметические треугольники

Рассмотрим треугольники, построение которых связано с известными однопараметрическими комбинаторными числами. Создание таких треугольников основано на принципе построения рассматриваемого выше треугольника Паскаля.

Треугольник Люка

Рассмотрим построенный арифметический треугольник. Данный треугольник носит название треугольника Люка, так как суммы чисел, стоящих на восходящих диагоналях, дают последовательность чисел Люка: 1, 3, 4, 7, 11, 18, / которые могут быть определены как

Ln=Ln-1+Ln-2, L0=2, L1=1

Каждый элемент треугольника определяется по правилу Паскаля Ln+1,k=Ln, k-1+Ln, k при начальных условиях L1,0=1, L1,1=2 и L0,k=0

т. е. n-я строка треугольника люка может быть получена сложением n-й и (n-1)-й строк треугольника Паскаля.

Треугольник Фибоначчи

Из чисел (fm, n), удовлетворяющих уравнениям
fm, n=fm-1,n+fm-2,n,
fm, n=fm-1,n-1+fm-2,n-2, где с начальными условиями f0,0=f1,0=f1,1=f2,1=1 строится следующий треугольник.

fm, n =fn fn-m, m Є n Є 0, где fn - n - е число Фибоначчи. Построенный треугольник назван треугольником Фибоначчи.

Треугольник Трибоначчи

Рассмотрим еще один треугольник, создание которого основано на методе построения треугольника Паскаля. Это треугольник Трибоначчи. Он назван так потому, что суммы элементов, стоящих на восходящих диагоналях, образуют последовательность чисел Трибоначчи: 1,1,2,4,7,13,24,44,..., которая может быть определена следующим рекуррентным соотношением: tn+3 = tn+2 + tn+1 + tn с начальными условиями t0 = 1, t1 = 1, t2 = 2

"Знаковый треугольник"

Построение "знакового треугольника"

Перед нами треугольник, составленный из одних знаков, плюсов и минусов, по принципу образования треугольника Паскаля. В отличие от последнего, он расположен основанием вверх.

Сначала задается первая строка, состоящая из произвольного количества знаков и их расположения. Каждый знак следующей строки получается путем перемножения двух вышестоящих знаков.

Одной из наших задач является установить, при каком количестве знаков первой строки число минусов и плюсов будет одинаковым. Общее количество знаков в таблице можно определить формулой

где n - число знаков в первой строке.

Образуется последовательность чисел, при которых количество минусов и плюсов может быть равным: 3, 4, 7, 8, 11, 12, 15, 16,..., каждое из которых показывает количество знаков в первой строке. Однако не установлено, при каком расположении знаков число минусов и плюсов будет однозначно одинаковым.

Второй нашей задачей, касающейся треугольника произведения знаков, является установление наименьшего количества плюсов, которое может иметь "знаковый треугольник".

Существует интересная последовательность знаков первой строки: +, -, -, +, -, -, ... (или -, -, + ,- ,- ,+ , ...), при которой число плюсов, как до сих пор считается, будет наименьшим и равным 1/3 от общего числа знаков, т. е. равным

Важно заметить, что если постепенно обходить треугольник, то последовательность знаков +, -, -, ... сохранится.

Обратим внимание на тот факт, что наименьшее количество плюсов, равное 1/3 от общего числа знаков, можно увидеть и в треугольнике при n = 2.

Отдел образования, спорта и туризма Борисовского райисполкома

Государственное учреждение образования

«Средняя школа № 16 г. Борисова»

Треугольник Паскаля

учащаяся 7 «А» класса

Абоян Елизавета Александровна,

домашний адрес: г. Борисов,

ул Смолевичская, д. 8, 76-51-80

Руководитель:

Ищук Ольга Эдуардовна, учитель математики

Борисов, 2016

Оглавление

Введение

В этом учебном году мы начали изучать новый предмет «геометрия».

Одна из глав курса геометрии называется «Треугольники». Меня очень заинтересовала данная тема. Я всегда хотела узнать много нового о треугольниках, об их происхождении и значении в нашей жизни. Ведь мир треугольников очень загадочен и интересен.

Треугольник - первая геометрическая фигура, встречающаяся в древних орнаментах. Изучая литературу, я узнала, что в Египте он символизировал триаду духовной воли, любви, интуиции и высшего разума человека, то есть его личность или душу.

Ацтеки использовали изображение треугольника с вершиной наверху, соединенного с перевернутым треугольником, в качестве символа временного цикла. Треугольник в сочетании с крестом образует алхимический знак Серы.

Равносторонний треугольник, символизирующий, по древнееврейской традиции, совершенство, у христиан означает Троицу - Отца, Сына и Святого Духа.

Существует множество видов треугольников, но больше всего меня заинтересовал треугольник Паскаля.

Проблема исследования:

Проблема моего исследования состоит в том, что я попыталась выявить и показать то, насколько широко треугольники используются в практической жизни.

Практическая значимость исследования:

Данная исследовательская работа может быть использован как дополнительный материал к урокам геометрии, для внеклассной работы по математике.

Цель исследования:

Ознакомиться с треугольником Паскаля и его применением как разновидностью треугольников;

Гипотеза:

Если числа треугольника Паскаля обладают особыми свойствами, то его можно считать уникальным для решения различных задач

Задачи:

Определить применение свойств чисел треугольника Паскаля;

Изучить литературу по теме «Треугольник Паскаля»;

Выявить свойства чисел, входящих в состав треугольника Паскаля;

Сформулировать вывод и итоги исследования;

Объект исследования: треугольник как геометрическая фигура

Предмет исследования: свойства треугольника Паскаля

Методы исследования:

Аналитико-статистическая работа со справочной, научно-познавательной и специальной литературой;

Поиск информации в интернет - ресурсах.

Направления работы:

Выбор проблемы, источников литературы, составление плана;

Работа с литературой и другими источниками;

Обработка полученных данных;

Анализ результатов, формулирование вывода;

Мультимедийная подготовка.

Основные этапы исследования: подготовительный; деятельностный;

Ход исследования: рефлексивный; аналитический; презентационный.

Теоретическая часть работы

Знакомство с треугольником Паскаля

Моё первое знакомство с треугольником Паскаля произошло во время изучения темы «Возведение двучлена в степень» на уроке алгебры. Мне уже известны формулы квадрата суммы и квадрата разности, куба суммы и куба разности. Я заметила, что получить формулы для возведения двучлена в четвёртую, пятую и т.д. степень возможно, учитывая некоторую закономерность в коэффициентах и степенях каждого слагаемого.

Коэффициенты всех строк можно расположить в виде треугольника:

Таким образом я познакомилась с треугольником Паскаля и решила продолжить изучение арифметического треугольника.

Блез Паскаль – французский математик

Блез Паскаль (19 июня 1623, Клермон-Ферран, - 19 августа 1662, Париж) - французский математик, физик, литератор и философ.

Паскаль был первоклассным математиком. Он помог создать два крупных новых направления математических исследований. В возрасте шестнадцати лет написал замечательный трактат о предмете проективной геометрии и в 1654 году переписывался с Пьером де Ферма по теории вероятностей, что впоследствии оказало принципиальное влияние на развитие современной экономики.

Треугольник Паскаля как разновидность треугольника

Изучая разновидности треугольников, я выяснила, что треугольник Паскаля - арифметический треугольник, образованный биномиальными коэффициентами. Назван в честь Блеза Паскаля. В действительности, треугольник Паскаля был известен задолго до 1653 года - даты выхода "Трактата об арифметическом треугольнике". Так, этот треугольник воспроизведен на титульном листе учебника арифметики, написанном в начале XVI Петром Апианом, астрономом из Ингольтштадского университета. Изображен треугольник и на иллюстрации в книге одного китайского математика, выпущенной в 1303 году. Омар Хайям, бывший не только философом и поэтом, но и математиком, знал о существовании треугольника уже около 1100 года, в свою очередь, заимствовав его из более ранних китайских или индийских источников.

Ещё я узнала из книги "Математические новеллы" (М., Мир, 1974) Мартина Гарднера, что "Треугольник Паскаля так прост, что выписать его сможет даже десятилетний ребенок. В тоже время он таит в себе неисчерпаемые сокровища и связывает воедино различные аспекты математики, не имеющие на первый взгляд между собой ничего общего. Столь необычные свойства позволяют считать треугольник Паскаля одной из наиболее изящных схем во всей математике".

Я рассмотрела схему построения треугольника, предложенную Гуго Штейнгаузом в его классическом «Математическом калейдоскопе»: предположим, что вы входите в город как показано на схеме синей стрелкой, и можете двигаться только вперед, точнее, все время выбирая, вперед налево, или вперед направо. Узлы, в которые можно попасть только единственным образом, отмечены зелеными смайликами, точка, в которую можно попасть двумя способами, показана красным смайликом, а тремя, соответственно - розовыми. Это один из вариантов построения треугольника.

(Рисунок 1)

Изучая специальную литературу, я узнала, что еще проще объясняют устройство треугольника Паскаля слова : каждое число равно сумме двух расположенных над ним чисел .

Все элементарно, но сколько в этом таится чудес. Если очертить треугольник Паскаля, то получится равнобедренный треугольник. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Треугольник можно продолжать неограниченно. Он обладает симметрией относительно вертикальной оси, проходящей через его вершину. Вдоль диагоналей (насколько у треугольника могут быть диагонали, но не будем придираться, такая терминология встречается в публикациях), параллельных сторонам треугольника (на рисунке отмечены зелеными линиями) выстроены треугольные числа и их обобщения на случай пространств всех размерностей. Треугольные числа в самом обычном и привычном нам виде показывают, сколько касающихся кружков можно расположить в виде треугольника - как классический пример начальная расстановка шаров в бильярде. К одной монетке можно прислонить еще две - итого три - к двум можно приладить еще три - итого шесть.

Получили треугольные числа на рисунке: 3; 6; 10; 15.

Продолжая наращивать ряды с сохранением формы треугольника получим ряд 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66..., что и показывает вторая зеленая линия. Этот замечательный ряд, каждый член которого равен сумме натурального ряда чисел (55=1+2+3+4+5+6+7+8+9+10), содержит также множество знакомцев, хорошо известных любителям математики: 6 и 28 - совершенные числа, 36 - квадратное число, 8 и 21 - числа Фибоначчи.

Следующая зеленая линия покажет нам тетраэдральные числа - один шар мы можем положить на три - итого четыре, под три подложим шесть - итого десять, и так далее.

Чтобы найти сумму чисел, стоящих на любой диагонали от начала до интересующего нас места, достаточно взглянуть на число, расположенное снизу и слева от последнего слагаемого, (слева для правой диагонали, для левой диагонали будет справа, а вообще - ближе к середине треугольника). Пусть, например, мы хотим вычислить сумму чисел натурального ряда от 1 до 9. "Спустившись" по диагонали до числа 9, мы увидим слева снизу от него число 45. Оно то и дает искомую сумму. Чему равна сумма первых восьми треугольных чисел? Отыскиваем восьмое число на второй диагонали и сдвигаемся вниз и влево. Ответ: 120.

(Рисунок 2)

Треугольник Паскаля имеет применение в теории вероятностей и обладает замечательными свойствами.

Свойства треугольника Паскаля и их применение в решении задач

Паскаль подробно исследовал свойства и применения своего "треугольника". Приведу для примера лишь 3 свойства "треугольника", найденные самим Паскалем; при этом буду исходить из того расположения "треугольника" на плоскости, какое было указанно Паскалем, и говорить о горизонтальных и вертикальных рядах.

Свойство 1: Каждое число А в таблице равно сумме чисел предшествующего горизонтального ряда, начиная с самого левого вплоть до стоящего непосредственно над числом А (в котором клетки, содержащие слагаемые, дающие в сумме А, заштрихованы). (Рисунок 4)

(Рисунок 4) (Рисунок 5) (Рисунок 6)

Свойство 2: Каждое число А в таблице равно сумме чисел предшествующего вертикального ряда, начиная с самого верхнего вплоть до стоящего непосредственно левее числа А. (Рисунок 5)

Свойство 3: Каждое число в таблице, будучи уменьшенным на единицу, равно сумме всех чисел, заполняющих прямоугольник, ограниченный теми вертикальными и горизонтальными рядами, на пересечении которых стоит число А (сами эти ряды в рассматриваемый прямоугольник не включаются). (Рисунок 6)

Треугольник Паскаля и теория вероятности.

Блез Паскаль и другой великий француз, Пьер Ферма, стали основателями теории вероятностей, когда Паскаль и Ферма независимо друг от друга дали правильное объяснение так называемого парадокса раздела ставки. Два игрока играют в "безобидную" игру (т.е. шансы победить у обоих одинаковы), договорившись, что тот, кто первым выигрывает шесть партий, получит весь приз. Предположим, что игра остановилась до того, как один из них выиграл приз (например, первый игрок выиграл пять партий, а второй - три). Как справедливо разделить приз? Так, согласно одному решению следовало разделить приз в отношении 5: 3, т.е. пропорционально выигранным партиям, согласно другому - в отношении 2: 1 (здесь рассуждения велись, по всей видимости, следующим образом: поскольку первый игрок выиграл на две партии больше, что составляет третью часть от необходимых для победы шести партий, то он должен получить одну треть от приза, а оставшуюся часть нужно разделить пополам).

А между тем делить надо в отношении 7:1. И Паскаль, и Ферма рассматривали парадокс раздела ставки как задачу о вероятностях, установив, что справедливым является раздел, пропорциональный шансам первого игрока выиграть приз. Предположим, первому игроку осталось выиграть только одну партию, а второму для победы необходимо выиграть еще три партии, причем игроки продолжают игру и играют все три партии, даже если некоторые из них окажутся лишними для определения победителя. Для такого продолжения все 2 3 = 8 возможных исходов будут равновероятными. Так как второй игрок получает приз только при одном исходе (если он выиграл все три партии), а в остальных случаях побеждает первый игрок, справедливым является отношение 7: 1.

В науке и практике часто встречаются задачи, решая которые приходится составлять различные комбинации из конечного числа элементов и подсчитывать число комбинаций. Такие задачи получили название комбинаторных задач .

Рассмотрим основные формулы комбинаторики:


Это любое упорядоченное подмножество m из элементов множества n .

.

В треугольнике Паскаля число, показывающее, сколькими способами можно выбрать k элементов из множества, содержащего n различных элементов, стоит на пересечении k -ой диагонали и n -ой строки. Чтобы вычислить сочетание , н айду диагональ седьмую сверху и отсчитываю три числа по горизонтали. Получу число 35.

Можно использовать треугольник Паскаля и для вычисления размещений.

.Если нам нужно посчитать , то зная что , а 3!=6, получим значение данного размещения 210.

Я пришла к выводу, что рассмотренные свойства треугольника Паскаля подтверждают слова Мартина Гарднера о том, что треугольник Паскаля одна из наиболее изящных схем во всей математике.

Актуальность исследования обусловлена ежегодным усложнением заданий ЦТ, что требует углубленных знаний не только в алгебре, но и в геометрии.

Практическая часть работы

В своей практической работе я подобрала ряд задач по теме «Треугольник Паскаля»

Задача 1. В магазине «Филателия» продается 8 различных наборов марок, посвященных спортивной тематике. Сколькими способами можно выбрать из них 3 набора?

Решение:

В треугольнике Паскаля число, показывающее, сколькими способами можно выбрать k элементов из множества, содержащего n различных элементов, стоит на пересечении k-ой диагонали и n-ой строки.

Найду диагональ восьмую сверху и отсчитываю три числа по горизонтали. Получу число 56. (Рисунок 8)

Задача 2.Из шести врачей поликлиники двух необходимо отправить на курсы повышения квалификации. Сколькими способами это можно сделать?

Решение:

Найду диагональ шестую сверху и отсчитываю два числа по горизонтали. Получу число 15.

(Р(Рисунок 9)

Задача3. В пачке находятся одинаковые по размеру 7 тетрадей в линейку и 5 в клетку. Из пачки наугад берут 3 тетради. Какова вероятность того, что все три тетради окажутся в клетку?

Решение. Сначала найдём общее число возможных исходов, т.е. сколькими способами мы можем выбрать 3 тетради из 12 тетрадей

Задача4. На плоскости даны 10 прямых, причём среди них нет параллельных и через каждую точку их пересечения проходят ровно две прямые. Сколько у них точек пересечения?

Решение: ответ находится на пересечении -45 точек!

Задача 5. В сумке 10 мячей, пронумерованных от 1 до 10. Наугад вынимают 2 мяча. Какова вероятность того, что это будут мячи с номерами 7 и 3?

Вынуть 2 мяча из 10 имеющихся можно 45 способами. Вероятность нашего события 2 из 45. (Рисунок 11)

В ходе проведения практического исследования я пришла к следующим выводам: при решении комбинаторных задач и задач по теории вероятностей можно пользоваться не только формулами комбинаторики, но и использовать свойства треугольника Паскаля

Заключение

Работа по выбранной теме осуществлялась в полном соответствии с планом исследования, а именно: объект и предмет исследования, поставлены цели и задачи, а также определены ожидаемые результаты. Были указаны используемые методы исследования, определена проблема.

В данной работе была дана общая характеристика треугольника как геометрической фигуры, был детально рассмотрен треугольник Паскаля, его свойства.

Я пришла к выводу, что одной из наиболее известных и изящных численных схем во всей математике является треугольник Паскаля. Треугольник Паскаля - понятие значительно шире, чем мне представлялось. Он обладает не только удивительными свойствами, но и применялся в архитектуре средних веков для построения схем пропорциональности и для построения прямых углов землемерами и архитекторами. Используя треугольник Паскаля, можно решить задачи из теории вероятности и комбинаторики. С комбинаторными задачами я встречалась на уроках математики в 6 классе и при решении олимпиадных задач

Практическая значимость данной работы заключается в следующем: я, изучив много литературы по данному вопросу, получила дополнительные знания в области математики, укрепила свой интерес к этой науке.

Я узнала, что треугольник Паскаля применяется:

    В курсе алгебры

    При решении комбинаторных задач

    Для решения различных задач в области физики

    С появлением вычислительных машин построение треугольника Паскаля стало излюбленной задачкой для начинающих при изучении основ программирования.

Работа по данной теме оказалась интересной и полезной.

Список использованных источников и литературы

1. Абачиев С. К., Радужная фрактальность треугольника Паскаля / С. К. Абачиев, -- Минск, 1999.-168с.

2. Галкин Е.В. Нестандартные задачи по математике. Задачи логического характера. Книга для учащихся 5-11кл.Москва, «Просвещение», 1996г. – 194 с.

3. Мартин Гарднер. Глава 17. Неисчерпаемое очарование треугольника Паскаля / Математические новеллы. - Минск: Мир, 1974.- 456 с.

4. Треугольник Паскаля. В. А. Успенский. - 2 - е изд. – Москва: Наука, 1979. – 48с.

5. Фукс Д., Фукс М., Арифметика биномиальных коэффициентов / Квант. - 1970. - № 6. - С.17-25.

6. Энциклопедия для детей. Т 11. Математика / Глав. ред. М. Аксенова; метод. и отв. ред. В. Володин. – М.: Аванта+,2004. – 688с.

7.

8. http :// davaiknam . ru / text / volshebnij - treugolenik .