Солнечный парус скорость. Исследовательская работа на тему "солнечный парус". Рождение Солнечного паруса

Идея о том, что свет может оказывать давление, приписывается Иоганну Кеплеру – на такую мысль его навели в 1619 году развевающиеся хвосты комет при движении по околосолнечной орбите. В 1873 году Джеймс Максвелл, исходя из своей электромагнитной теории света, теоретически оценил величину этого давления, а в 1900 году наш соотечественник – знаменитый физик Петр Лебедев – сумел экспериментально обнаружить и измерить силу светового давления. Первыми решили использовать солнечную тягу россияне – о солнечном парусе еще в 1913 году написал фантаст Борис Красногорский. В его романе «По волнам эфира» корабль «Победитель пространства» передвигался в космосе, используя солнечный свет и кольцевое зеркало из тончайших листов отполированного металла. А в середине 1920-х, тоже в России, за эту идею взялся ученый и изобретатель Фридрих Цандер, один из основоположников теории космических полетов и реактивных двигателей. В 1924 году он подал в Комитет по изобретениям авторскую заявку на космический самолет, который для передвижения в межпланетном пространстве использовал бы огромные и очень тонкие зеркала.


Тогда эту идею никто не воспринял всерьез – подходящих материалов и технологий просто не существовало. Но в 1960-х годах к солнечным парусам вновь вернулись фантасты (известный пример – рассказ Артура Кларка «Солнечный ветер»), а затем и инженеры. В 1970-х солнечный парус вполне серьезно рассматривался NASA как один из вариантов двигателя для зонда, отправляющегося на рандеву с кометой Галлея. От этой идеи по разным причинам отказались, но ее не забыли.
В 2000 году в НПО им. Лавочкина и Институте космических исследований (ИКИ) РАН начались работы по программе КАСП (Космический аппарат «Солнечный парус»). Спонсировали проект Планетарное общество США, учрежденное в 1980-м тремя учеными – профессором Калтеха Брюсом Мюрреем, сотрудником JPL Луисом Фридманом и астрономом и писателем Карлом Саганом, и общественная организация Cosmos Studios, руководит которой Энн Друян – вдова Карла Сагана. Солнечный парус – это тонкая, 5 микрон толщиной, полиэфирная пленка, с «солнечной» стороны покрытая субмикронным слоем алюминия (коэффициент отражения 0,85). «Такая пленка достаточно прочна, но стоит ее повредить, например, микрометеоритом – и разрыв сразу же ползет по всей поверхности, – рассказал «Популярной механике» российский руководитель проекта Виктор Кудряшов. – Чтобы пленка не рвалась, ее армируют. В нашем случае полотно паруса было усилено узкими полосками специальной ленты, которая останавливает разрывы, не позволяя им ‘ползти’ через весь парус».
Среди возможных конструкций паруса в НПО им. Лавочкина остановились на 8-лепестковом «цветке». Каждый треугольный лепесток площадью 75 квадратных метров должен был разворачиваться и поддерживаться специальным пневмокаркасом, который приобретает жесткость после наполнения азотом. В сложенном виде лепесток помещается в контейнер размером с кирпич – сначала его вакуумируют, удаляя оставшийся воздух, а затем многократно сворачивают по специально разработанной схеме укладки. В раскрытом состоянии космический парусник представляет собой небольшую (1 м длиной) платформу, из которой «растут» 8 треугольных лепестков. «Для космического аппарата с солнечным парусом полет по околоземной орбите имеет свои особенности. В различные моменты времени он может быть освещен Солнцем или находиться в тени Земли. Для организации управления аппаратом планировалось, в частности, поворачивать лепестки паруса вокруг оси каждого из них», – говорит Виктор Кудряшов.
Зачем нужны солнечные паруса? Ведь их тяга очень мала (давление солнечного света на уровне земной орбиты на идеально отражающее зеркало площадью 1000 м 2 составляет всего 10 мН) и несравнима с мощными реактивными двигателями. Впрочем, двигатели на химическом горючем могут работать сотни секунд, плазменные двигатели – тысячи часов, и те и другие ограничены запасом рабочего тела. А вот паруса могут давать тягу, пока их поверхность освещена Солнцем (по прогнозам астрономов, это будет продолжаться еще около 5 миллиардов лет), и при этом не расходуется ни энергия, ни рабочее тело. Поэтому перед солнечными парусами открываются блестящие перспективы. К сожалению, полет солнечного парусника с экипажем на борту – пока дело отдаленного будущего. Но автоматические станции, оснащенные таким двигателем, – реальность ближайшего времени. Парусные аппараты вполне серьезно рассматриваются как зонды для полета к внутренним планетам Солнечной системы, к Плутону, к некоторым астероидам и кометам. Для продвижения ближе к границам Солнечной системы, где интенсивность солнечного света существенно снижается, уже появляются фантастические проекты орбитальных лазеров, «подталкивающих» парус.


На сегодняшний день космический аппарат с солнечным парусом способен решать не только научные задачи. Одним из его реальных прикладных применений может стать проект НПО им. Лавочкина и ИКИ РАН «Солнечная погода». Речь идет о 30-килограммовой космической обсерватории для наблюдения за Солнцем и предсказания магнитных бурь, размещаемой на расстоянии, например, три миллиона километров на линии Земля–Солнце. Это в два раза ближе к Солнцу, чем точка либрации (то есть гравитационного равновесия), в которой висит европейско-американская солнечная обсерватория SOHO. Используя парус площадью в 1000 квадратных метров, «Солнечная погода» будет компенсировать увеличение притяжения Солнца – это даст возможность предупреждать о магнитной буре за большее время, чем сейчас.
Российскому солнечному парусу не повезло – на 83-й секунде полета в работе первой ступени «Волны» произошел сбой и ракета рухнула в море (такая же судьба постигла и прототип, тоже выводимый «Волной» – в 2001 году он должен был продемонстрировать возможность раскрытия двух «лепестков»). Однако директор проекта и исполнительный директор Планетарного общества США Луис Фридман не намерен бросать идею: «Случаются и неудачи. Но сразу после падения Cosmos-1 я начал получать сообщения от ученых, инженеров и просто энтузиастов, и все в один голос говорили: ‘Давайте сделаем еще один солнечный парус и запустим его!’. Это вполне совпадает с нашими собственными планами. Конечно, скорее всего, ракету-носитель придется сменить, и мы сейчас рассматриваем два возможных варианта – ‘Союз-Фрегат’ и ‘Космос-3М’. Остается только найти средства – весь проект будет стоить около $4 млн.». Но в настоящее время, по сообщениям официального сайта НПО им. Лавочкина, проект нового солнечного паруса, к сожалению, заморожен.

Конструкция "солнечного паруса" Космос-1


Космический аппарат с солнечным парусом (КАСП), на котором снаружи установлены специальным образом сложенные лепестки паруса, невелик - примерно 1 метр длиной и 100 кг весом, но это не мешает ему иметь в своем составе все необходимые для работы самого аппарата и паруса системы. Основой конструкции КАСП является приборная платформа, на которой крепится разгонная двигательная установка, 4 панели солнечных батарей, служебная аппаратура, фото- и телекамеры, антенны, и - самое главное- блок солнечных парусов. В сложенном виде каждый из 8 лепестков представляет собой небольшую упаковку 30 см х 20 см х 20см. Эти 8 упаковок расположены в двух плоскостях - по 4 в каждой. Развертывание лепестков происходит в два этапа: сначала раскрываются 4 лепестка, лежащие в одной плоскости, а затем - 4 лепестка, лежащие в другой. Каждый лепесток в развернутом виде представляет собой равнобедренный треугольник, расширяющийся от продольной оси аппарата к периферии. Эти 8 лепестков расположены таким образом, что после развертывания всех восьми, они образуют практически окружность диаметром около 30 м и площадью 600 квадратных метров.


Изготовлены лепестки солнечного паруса из полимерной пленки толщиной 5 мкм, которая с одной стороны (обращенной к Солнцу) металлизирована. По двум длинным сторонам каждого лепестка проложен пневмокаркас, который представляет собой полую трубку диаметром 15см и сделан также из полимерного материала, но толщиной не 5, а 20 мкм. Каркас необходим для организации процесса развертывания каждого лепестка (внутрь трубки по команде на раскрытие паруса подается сжатый азот и постепенно разворачивающиеся трубки и растягивают тонкие лепестки) и создания жесткости каждой из частей паруса. Каждый лепесток имеет возможность поворачиваться вокруг оси крепления на заданный угол. Тягу солнечному парусу обеспечивают фотоны. При поглощении или отражении от солнечного паруса они передают свой импульс (в первом случае одинарный, во втором – двойной) космическому аппарату. Именно свет, а не солнечный ветер (в отличие от парусных судов, движимых ветром) и толкает космический парус. Солнечный ветер – это поток плазмы, относительно медленных (300–700 км/с) заряженных частиц, в основном протонов и электронов (встречаются ядра гелия и даже ионы более тяжелых элементов), связанных собственным магнитным полем. Солнечный ветер берет свое начало в короне и «дует» к границам Солнечной системы. Взаимодействуя с магнитным полем Земли, он вызывает северное сияние, с кометами – приводит к образованию их плазменных или ионных хвостов. Хотя солнечный ветер нельзя «запрячь» в паруса космических аппаратов из-за его крайней разреженности (давление примерно в тысячу раз меньше светового), любопытно, что именно он подсказал такой способ передвижения в космосе: в XVII веке Иоганн Кеплер в результате наблюдений за хвостами комет предположил, что парусные корабли смогут передвигаться в небесах.

Так уж сложилось, что когда мы слышим о космических исследованиях, то представляем себе ракеты, межпланетные зонды, марсианские роверы NASA и советские луноходы. Но уже сейчас мы стоим на пороге нового этапа исследования космического пространства и небесных тел, когда к далеким мирам отправятся корабли на солнечных парусах, а в очень дальнее плавание по морям далеких планет отправятся автономные субмарины.

С чем подошли к этому этапу и что хотим получить, мы и рассмотрим в статье.

Космические парусники

На заре мореплавания, когда до создания пароходов и теплоходов оставалось ещё долгое время, люди использовали энергию ветра для путешествия по бескрайним морским просторам. Запрягая ветер в паруса можно было достичь дальних неизвестных берегов и вернуться с богатством и славой. В эпоху Великих географических открытий благодаря парусу, европейские путешественники достигли самых отдалённых уголков нашей планеты.

Мы только мечтаем о взрыволетах, двигателях на антиматерии, варп-двигателях и других фантастических решениях которые позволят нам путешествовать в космосе. А если так, то почему бы не воспользоваться проверенными решениями – использовать для передвижения в космосе паруса. Тем более что «ветры» которые можно оседлать в космосе есть, а паруса уже придуманы.

Солнечный парус

Ещё в 17 веке немецкий астроном, математик, механик и оптик Иоганн Кеплер, наблюдая развевающиеся хвосты комет при движении по околосолнечной орбите, высказал идею о том, что свет может оказывать давление. До конца прошлого века полёты на солнечных парусах были уделом мечтателей и фантастов. Но сейчас мы подошли вплотную к возможности практического использования этой идеи.

Технология солнечного паруса проста - фотон солнечного света отдаёт свой импульс парусу, тем самым оказывает на него давление и заставляет двигаться космический аппарат, на котором парус установлен.

Не стоит думать, что солнечный свет оказывает давление только на паруса. Любой космический аппарат, отправленный с Земли в дальнее путешествие, будет «сдуваться» со своего пути давлением солнечного света. Например, на маршруте Земля-Марс такое отклонение от маршрута составит несколько тысяч километров.

На сегодняшний день пока нет аппаратов отправившихся на исследование космоса под солнечными парусами. Пока изучают сами паруса и их возможности. Проведённые запуски спутников, на которых были установлены солнечные паруса: IKAROS (JAXA), NanoSail-D2 (NASA) и LightSail-1 (The Planetary Society) были совершены для отработки процессов разворачивания парусов и совершения манёвров.

Первое преимущество космических путешествий под парусом в том, что корабль, использующий солнечные паруса не требует топлива, так же как и парусники прошлого. Второе - солнечные парусники могут перемещаться в космическом пространстве куда быстрее, чем используемые сейчас космические аппараты.

Так, космический зонд весом в две тонны, оснащённый солнечным парусом, достигнет Марса всего за четыре месяца, а Юпитера за два года. Космические миссии станут быстрее и дешевле. Мы сможем более подробно исследовать Солнечную систему, и в частности астероиды, что имеет решающее значение для добычи полезных ископаемых в космосе.

Зонды, оснащённые солнечными парусами, конечно, могут совершить революцию в изучении Солнечной системы, но такой парус теряет свою эффективность по мере удаления от Солнца. Наибольшую эффективность он имеет при путешествиях в пределах Главного пояса астероидов. А как дальше? А дальше нам на помощь придёт электрический парус.

Электрический парус

Когда мы говорим о солнечном парусе, надо понимать что он движется не за счёт солнечного ветра, а именно за счёт солнечного света - фотонов. А вот солнечный ветер - поток мегаионизированных частиц, ловит электрический парус.

Такой парус не является парусом в прямом смысле этого слова. Концепт электрического паруса от NASA, Heliopause Electrostatic Rapid Transit System (HERTS) представляет собой массив из тонких заряженных алюминиевых тросов длиной около 20 километров. Центробежная сила, возникающая в результате вращения аппарата, позволяет раскрыть парус.

Растянувшиеся в пространстве положительно заряженные тросы будут отталкивать протоны солнечного ветра, получать импульс и в результате этого двигаться.

Первым аппаратом, на котором был установлен электрический парус, стал эстонский спутник ESTCube-1, запущенный 7 мая 2013 года с космодрома в Куру. Целью запуска было тестирование электрического паруса, но он так и не раскрылся на орбите. Что впрочем не останавливает его создателей.

Благодаря электрическому парусу за какие-то 5 лет мы сможем долететь до Плутона, а за 10 лет сможем достигнуть гелиопаузы – условной границы нашей Солнечной системы. Для сравнения, автоматической межпланетной станции Voyager 1 потребовалось почти 35 лет чтобы достигнуть этой границы.

Лазерный парус

Вы наверное уже слышали о проекте Стивена Хокинга и Юрия Мильнера Breakthrough Starshot. Известный предприниматель и знаменитый физик планируют создать целый флот космических парусников и отправить их к ближайшей к нам звезде Альфа Центавра.

Для того что бы выйти за пределы Солнечной системы и достигнуть ближайшей звезды, солнечные паруса надуют «лазерным ветром». Миниатюрные нанозонды размером всего в несколько сантиметров будут снабжены солнечными парусами размером 4 на 4 метра каждый.

Всего будет около 1000 таких микрокорабликов, ведь есть высокая вероятность, что не каждый из них долетит к цели. Разгоняться они будут наземными лазерами, мощностью до 100 гигаватт. Для ускорения каждого такого аппарата до необходимой скорости потребуется порядка 10 минут.

До звезды соседки кораблики долетят приблизительно за 20 лет, еще 4 года мы будем ждать от них фотографий самой звезды и её планет. В 2012 году европейские астрономы уже сообщали об обнаружении планеты на орбите вокруг Альфа Центавра-Б, одной из звёзд в системе Альфа Центавра. Миссию планируется спланировать так, чтобы удалось получить максимально возможное количество информации о звезде и её планетах, вплоть до изображения рельефа планет.

Если эта миссия будет удачной, то наверняка мы полетим и к другим ближайшим звёздам. На расстоянии 12 световых лет от нас находятся 24 звёзды. А это значит, что при желании, в течение примерно 100 лет мы сможем все их изучить. И даже дать найденным планетам около этих звёзд имена, если конечно мы не встретим там братьев по разуму, которые уже назвали планеты по-своему.

Дирижабли на Венере

Меньше чем даже сто лет назад небо на нашей планете бороздили дирижабли. Имеющие небольшой удельный расход топлива и способные находиться в воздухе продолжительное время они и сейчас иногда находят применение на Земле. Будучи легче воздуха они поднимаются в атмосферу за счёт выталкивающей (подъёмной) силы, если средняя плотность газа, которым наполнена оболочка дирижабля, равна или меньше плотности атмосферы.

В такой ситуации, почему бы не использовать дирижабли на тех планетах, где есть достаточно плотная атмосфера. Правда, в Солнечной системе такая планета одна – Венера. Если вспомним, её атмосферу наблюдал ещё Михайло Ломоносов.

Вот об этом и задумались исследователи из NASA, предложив в результате концепцию исследовательской миссии к Венере, которая получила название High Altitude Venus Operational Concept (HAVOC).

Идея основывается на том, что в верхних слоях венерианской атмосферы условия подобны земным. На высоте 50 километров атмосферное давление составляет всего 1 земную атмосферу, а температура составляет 75 градусов Цельсия, что по сравнению с другими местами на этой горячей планете совсем не много. Радиационный фон так же сравним с земным. В этом отношении Венера куда более предпочтительнее для освоения, чем Марс.

Миссия предполагает доставку к Венере вначале небольшого (длинной 31 метр) роботизированного дирижабля, а затем уже и большого пилотируемого дирижабля длина которого составит 129 метров, а высота 34 метра. По сравнению с земными аналогами, эпохи небесных гигантов, пилотируемый венерианский дирижабль меньше, чем печально известный Гинденбург, длина которого составляла 245 метров и последний из гигантов Граф Цеппелин (236,6 м), и примерно равен первым цеппелинам, длина которых составляла 128 – 148 метров.

В атмосферу планеты дирижабль планируют доставить в специальной капсуле. В нужный момент она раскроется, освободив гондолу с экипажем и сам аэростат, который сразу же начнет наполняться газом. После чего дирижабль начнет своё «плавание» по венерианской атмосфере.

Поверхность дирижабля будет покрыта солнечными батареями, и учитывая, что Венера получает солнечного света гораздо больше чем Земля, дефицита энергии астронавты испытывать не будут.

В космос на воздушном шаре

Стоит сразу сказать, что в космос на воздушном шаре не улетишь. Но это формальности. Компания World View Enterprises позиционирует себя именно как космический туроператор. Незабываемые впечатления от околокосмического путешествия должна подарить туристам капсула поднимаемая воздушным шаром на высоту 32 километра. В капсуле поместятся шесть пассажиров и два пилота.

Полет будет продолжаться около двух часов, невесомости пассажиры не почувствуют, но зато смогут насладиться, поистине завораживающим видом. На борту капсулы можно будет совершенно свободно перемещаться, пассажиры смогут воспользоваться баром и загрузить сделанные на борту фотографии в социальные сети.

Отметим, что самолеты не поднимаются на высоту более 20 километров, а Линия Кармана (ударение на первый слог) являющаяся условной границей между атмосферой планеты и космосом проходит на высоте 100 километров над уровнем моря.

Марсианский дрон-разведчик

Как вы наверное помните на Марсе тоже есть атмосфера. Пусть не такая плотная, как на Земле и тем более на Венере, но использовать парашюты для мягкой посадки она позволяет. А если атмосфера есть, то почему бы в ней и не полетать.

Такой целью задались специалисты Лаборатории реактивного движения NASA. Да и практическая потребность в этом уже назрела.

Снимки с поверхности Красной планеты мы получаем в основном благодаря камерам установленным на борту марсоходов. Но «глаза» которыми оснащены роверы не дают нам необходимого обзора. Вот для такой цели в NASA и разрабатывают марсианский дрон–разведчик.

Небольшой винтокрылый робот, летящий на малых высотах, будет сопровождать марсоход в пути. С его помощью можно будет выбрать оптимальный маршрут движения, а так же интересные цели для исследований. Для самого ровера, аппарат может выступать также и в качестве селфи-дрона. Ведь с его помощью можно будет осмотреть марсоход в случае неисправности. Да и фотографии ровера на фоне марсианских пейзажей обещают быть весьма эффектными.

Вес дрона составит один килограмм, а длина лопастей чуть более метра. Энергией его будут снабжать солнечные батареи. А помимо фотосъемки он сможет переносить и небольшие грузы.

В NASA не исключают, что на Марс дрон-разведчик отправиться вместе с новым марсоходом уже в 2020 году.

Подводная лодка для Титана

Как правило, моря и океаны на небесных объектах в Солнечной системе ассоциируются с чем-то пустынным и абсолютно сухим. Например, американские астронавты, высадившиеся в лунном Море Спокойствия, не то, что не утонули, даже ноги не замочили. Но даже в нашей системе так не везде.

Море Кракена, находящееся на Титане, спутнике Сатурна, вполне себе «мокрое» и жидкое. Причём этот водоём, получивший название по имени мифического морского чудовища, не единственный водоём на этой луне Сатурна.

Моря, озера, проливы и каналы на этой маленькой планетке заполнены жидкими углеводородами, в основном метаном и этаном, так что, наверное, даже правильнее их называть не водоёмами, а углеводоёмами. Кроме этого, учёные предполагают, что возможно на Титане есть подповерхностный океан, содержащий жидкую воду со значительным содержанием аммиака и экстремально высокой солёностью.

При таких условиях идея поплавать в морях Титана выглядит весьма заманчиво. Вот об этом и задумались в NASA.

Внешне субмарина будет напоминать подводные лодки используемые в земных морях и океанах, единственное существенное отличие большая фазированная антенна напоминающая спинной плавник.

Вес аппарата должен составить одну тонну, и это позволит ему поместиться в грузовом отсеке автоматического челнока, прообразом которого выступит Boeing Х-37. К спутнику Сатурна субмарину с челноком доставит космический корабль. Челнок обеспечит бережный спуск и точное «приводнение» в нужном месте, а сам после этого утонет в метановом море.

Обеспечивать энергией лодку будет 1-киловаттный термогенератор Стирлинга, который также и убережет расположенную на борту электронику от замерзания. Двигаясь с небольшой скоростью, около 1 метра в секунду (3,6 км/ч), субмарина за 90 дней плавания должна преодолеть расстояние в 2000 километров по периметру моря Кракена.

Примечательно, что для передачи на Землю собранных данных не планируется оставлять на орбите Титана спутник-ретранслятор. Данные будут передаваться напрямую на Землю. Но это накладывает временные ограничения на реализацию миссии. Земля поднимется над горизонтом в северных широтах Титана, где и расположено море Кракена, только к 2040 году, на это время и запланирована исследовательская миссия.

На смену романтики путешествий морских пришла романтика путешествий космических. Но, как ни странно, парусам – неизменному атрибуту и символу первооткрывателей, найдётся место и в космосе. Сегодня мы поговорим о космическом парусе.

Начиная с середины 18го века учёные всего мира (Эйлер, Френель, Бессель и др.) пытались измерить силу давления света. Впервые осуществить такие измерения удалось П. Лебедеву в 1899 году. Всем сразу стало ясно, что и солнечный свет давит на космические тела. Вскоре советскому учёному Ф. Цандеру пришла в голову идея солнечного паруса.

Солнечный парус – это приспособление, использующее давление света Солнца для перемещения в космическом пространстве.

История изучения природы света и светового давления. Старый, но очень понятный фильм.

Если поместить в космосе зеркальную металлическую пластинку, то поток света от Солнца будет «давить» на её поверхность. Подуйте с силой на свою ладонь - чувствуете, как воздух давит на кожу? Давление солнечного света будет действовать на металлическую пластинку в миллиард раз слабее того, что вы чувствуете. Вам кажется этого мало? Вовсе нет. Ведь в космосе нет силы сопротивления воздуха, какая есть на Земле.

Как работает солнечный парус

Если на орбите Земли поместить квадрат из фольги размерами всего лишь 100 на 100 метров, то каждые 10 секунд такой «парус» будет увеличивать свою скорость на сантиметр в секунду! Всего за 40 дней такой парус разгонится от первой до второй космической скорости, за полгода – до третьей космической скорости – скорости, достаточной для того, чтобы навсегда покинуть Солнечную систему. Но главное, что это произойдёт без расхода топлива двигателей, то есть даром. Воистину это бесценный подарок природы!


Макет космического аппарата «Икар» - типичный вид космического корабля с солнечным парусом

Почему это важно? Приведём только один пример. В разгонном блоке марсохода «Сuriosity» вес топлива составлял 21 тонну, что строго ограничивало массу самого марсохода – не более 900 килограмм. Вес научного оборудования на марсоходе вообще смешная цифра: 80 килограмм. А больше взять было нельзя: не хватит топлива долететь до Марса. Использование солнечного паруса наравне с обычными двигателями позволит взять чуть меньше топлива, а значит – увеличить вес приборов на марсоходе. Каждый сэкономленный килограмм в космосе – это ещё один научный прибор, ещё одна крупица бесценной информации об окружающем нас мире, ещё один шаг на пути прогресса. Подобных примеров множество.

Какие космические аппараты использовали солнечный парус?
На сегодняшний день было проведено всего лишь несколько успешных испытаний солнечного паруса. Первое в 1993м году в России. Тогда солнечный парус (20 метров в диаметре) прикрепили к космическому грузовику «Прогресс», отстыковавшемуся от станции «Мир». В эксперименте исследовалась способность освещения темной стороны Земли с помощью этого зеркала.


1993 г. - первый в истории человечества опыт создания солнечного паруса. Эксперимент “Знамя-2”

Затем в 2010м году американский аппарат NanoSail-D успешно раскрыл солнечный парус, находясь на околоземной орбите. Задача солнечного паруса была в том, чтобы столкнуть с орбиты спутник и «похоронить» его в плотных слоях атмосферы. Таки образом проверялась возможность самоликвидации отработавших свой ресурс спутников, чтобы они не болтались бесполезным космическим мусором вокруг Земли.

Видео: как раскрывался парус NanoSail-D

Третьим космическим аппаратом, бороздившим космос под парусами, стал запущенный в 2010м году японский «Икар» (ikaros). Мечтательно прикрывая глаза, учёные скромно надеялись, что аппарат хотя бы сможет раскрыть парус (в который были вшиты солнечные рули и солнечные батареи) без накладок. Зонд не только успешно расправил в космосе крылья 200 квадратных метров сверхтонкого космического паруса, но и отлично справился с регулировкой своей скорости и направления полёта. В январе 2012го года «Икар» отключился из-за недостатка энергии, проработав дольше любых ожиданий учёных.

Кадры движения японского "Икара"

Заключение или планы на будущее

Сделать реально работающий, успешно выполняющий конкретные задачи космический аппарат, использующий солнечный парус, – значит решить множество технических проблем, продумать и воплотить в жизнь новые инженерные решения и идеи. Задача это непростая, как и любая работа, связанная с созданием космических кораблей. Но успешные испытания космических парусников говорят о том, что если хорошенько за это взяться, то всё получится.

Как знать, быть может именно вы, стоя в центре управления полётами, однажды скомандуете: «Поднять паруса!» - и упрямый солнечный ветер погонит космический корабль на встречу неизведанному.

Дорогие друзья! Если вам понравился этот рассказ, и вы хотите быть в курсе новых публикаций о космонавтике и астрономии для детей, то подписывайтесь на новости наших сообществ

Солнечный парус представляет собой способ передвижения космического корабля с использованием давления световых и высокоскоростных газов (также называемого давлением солнечного света), излучаемого звездой. Рассмотрим подробнее его устройство.

Использование паруса предполагает недорогие космические путешествия в сочетании с увеличенным сроком использования. Из-за отсутствия множества движущихся частей, а также необходимости использовать пропеллент, потенциально становится возможным многоразовое использование такого корабля для доставки полезных грузов. Также иногда используются названия световой или фотонный парус.

История концепции

Йоханес Кеплер как-то заметил, что хвост кометы смотрит по направлению от Солнца, и предположил, что именно звезда производит такой эффект. В письме Галилею в 1610 году он писал: "Обеспечьте корабль парусом, приспособленным к солнечному бризу, и найдутся те, кто отважится исследовать и эту пустоту". Возможно, при этих словах он ссылался именно на феномен "хвоста кометы", хотя публикации на эту тему появились несколько лет спустя.

Джеймс К. Максвелл в 60-х годах XIX века опубликовал теорию электромагнитного поля и излучений, в которой показал, что свет имеет импульс и таким образом может оказывать давление на объекты. Уравнения Максвелла дают теоретическую основу для передвижения при помощи светового давления. Поэтому уже в 1864 году в сообществе физиков и вне его было известно, что солнечный свет несет импульс, оказывающий давление на объекты.

Сначала Петр Лебедев в 1899 году экспериментально продемонстрировал а затем Эрнест Николс и Гордон Халл провели аналогичный независимый эксперимент в 1901 году с использованием радиометра Николса.

Альберт Эйнштейн представил другую формулировку, признав эквивалентность массы и энергии. Теперь мы можем написать просто p = E/c как соотношение между импульсом, энергией и скоростью света.

Предсказал в 1908 году возможность давления солнечной радиации, переносящей живые споры на межзвездные расстояния, и, как следствие, понятие панспермии. Он был первым ученым, заявившим, что свет может перемещать объекты между звездами.

Первые официальные проекты по разработке этой технологии начались в 1976 году в Лаборатории реактивного движения для предлагаемой миссии по «рандеву» с кометой Галлея.

Принцип работы солнечного паруса

Свет оказывает влияние на все аппараты на орбите планеты или в К примеру, обычный космический корабль, следующий на Марс, будет смещен более чем на 1000 км по направлению от Солнца. Эти эффекты учитываются при планировании траектории космического путешествия со времен самого первого межпланетного космического корабля 1960-х годов. Излучение также влияет на позицию аппарата, и этот фактор должен учитываться в проекте судна. Сила, воздействующая на солнечный парус, составляет 1 ньютон и меньше.

Использование этой технологии удобно на межзвездных орбитах, где любые действия выполняются низкими темпами. Вектор силы светового паруса ориентирован вдоль солнечной линии, что увеличивает энергию орбиты и момент импульса, в результате чего корабль движется дальше от Солнца. Для изменения наклона орбиты вектор силы оказывается вне плоскости вектора скорости.

Контроль позиции

Система управления ориентацией (ACS) космического корабля необходима для достижения и изменения желаемой позиции при путешествии по Вселенной. Заданное положение аппарата меняется очень медленно, часто меньше одного градуса в день на межпланетном пространстве. Этот процесс происходит гораздо быстрее на орбитах планет. Система управления аппаратом, использующим солнечный парус, должна удовлетворять всем требованиям к ориентации.

Контроль достигается путем относительного сдвига между центром давления судна и его центром масс. Этого можно достичь с помощью управляющих лопаток, движения отдельных парусов, перемещения контрольной массы или изменения отражательной способности.

Неизменная позиция требует, чтобы ACS поддерживал чистый крутящий момент на нуле. Момент силы паруса не постоянен вдоль траектории. Изменения с расстоянием от Солнца и углом, который корректирует вал паруса и отклоняет некоторые элементы опорной конструкции, что приводит к изменениям силы и крутящего момента.

Ограничения

Солнечный парус не сможет работать на высоте ниже, чем 800 км от Земли, так как до этого расстояния сила сопротивления воздуха превышает силу светового давления. То есть влияние солнечного давления слабо ощутимо, и он просто не будет работать. Скорость поворота должна быть совместима с орбитой, что обычно является проблемой только для конфигурации вращающихся дисков.

Рабочая температура зависит от солнечного расстояния, угла, отражательной способности, а также передних и задних излучателей. Парус можно использовать только там, где температура поддерживается в его материальных пределах. Как правило, он может использоваться довольно близко к солнцу, около 0,25 астрономических единиц, если корабль тщательно спроектирован для этих условий.

Конфигурация

Эрик Дрекслер изготовил прототип солнечного паруса из специального материала. Он представляет собой каркас с панелью из тонкой алюминиевой пленки толщиной от 30 до 100 нанометров. Парус вращается и должен постоянно находиться под давлением. Конструкция такого типа обладает высокой площадью на единицу массы и, следовательно, получает ускорение «в пятьдесят раз выше», чем основанные на развертываемых пластиковых пленках. Она представляет собой квадратные паруса с мачтами и парными линиями на темной стороне паруса. Четыре пересекающиеся мачты и одна - перпендикулярно центру, чтобы удерживать провода.

Электронная конструкция

Пекка Янхунен изобрел электрический парус. Механически он имеет мало общего с традиционным дизайном светового. Паруса заменяются выпрямленными проводящими тросами (проводами), расположенными радиально вокруг корабля. Они создают электрическое поле. Оно простирается на несколько десятков метров в плазму окружающего солнечного ветра. Солнечные электроны отражаются электрическим полем (как фотоны на традиционном солнечном парусе). Корабль может управляться путем регулирования электрического заряда проводов. Электрический парус имеет 50-100 выпрямленных проводов длиной около 20 км.

Из чего изготовлен?

Материал, разработанный для солнечного паруса Дрекслера, представляет собой тонкую алюминиевую пленку толщиной 0,1 микрометра. Как и ожидалось, она продемонстрировала достаточную прочность и надежность для использования в космосе, но не для складывания, запуска и развертывания.

Наиболее распространенным материалом в современных конструкциях является алюминиевая пленка "Каптон" размером 2 мкм. Она сопротивляется высоким температурам рядом с Солнцем и достаточно крепкая.

Были некоторые теоретические предположения о применении методов молекулярного производства для создания продвинутого, сильного, сверхлегкого паруса, основанного на тканевых сетках из нанотрубок, где плетеные «промежутки» меньше половины длины волны света. Такой материал был создан только в лабораторных условиях, а средства для изготовления в промышленном масштабе пока недоступны.

Световой парус открывает огромные перспективы для межзвездных передвижений. Конечно, есть еще много вопросов и проблем, с которыми придется столкнуться, прежде чем путешествие по Вселенной при помощи такой конструкции космического корабля станет привычным делом для человечества.

Вечером 20 мая с космодрома на мысе Канаверал успешно стартовал первый в истории частный спутник на солнечном парусе - «LightSail-1». Разработан и построен он был на деньги некоммерческого Планетарного общества США, объединяющего энтузиастов исследования дальнего космоса. Для зондов, отправляющихся к другим планетам, солнечный парус может стать идеальной заменой обычного ракетного двигателя. Но до сих пор почти все попытки реализации технологии «светоплавания» сталкивались с досадными техническими неудачами.

То, что свет может оказывать давление на предмет, впервые было показано Джеймсом Максвеллом в 1873 году. Давление возникает из-за того, что фотоны, хотя и не имеют массы покоя, все же обладают импульсом. Сталкиваясь с объектами, они передают этот импульс им - что и лежит в основе работы солнечного паруса.

Художественное представление о передвижении на солнечных парусах. Иллюстрация: газета «Пять углов» (Мурманск, Россия)

Долгое время этот эффект трудно было зафиксировать в прямом эксперименте. Существует классический опыт, в котором свет вызывает вращение лепестков, укрепленных на легком стержне. Но наблюдаемое при этом вращение - это не проявление давления света, а всего лишь результат нагревания воздуха (и возникновения конвективных потоков) вблизи от лепестков. Впервые измерить «настоящее» давление света удалось Петру Николаевичу Лебедеву в 1899 году. Он использовал вакуумированный сосуд, в котором разместил подвешенные на серебряных нитях крутильные весы. Кроме того, ученый попеременно освещал разные стороны лепестков весов, чтобы избежать их неравномерного нагрева, которое тоже может привести к искажению результатов опыта.

Измеренная величина оказалась очень небольшой и, конечно же, зависящей от интенсивности света. К примеру, давление солнечного света вблизи земной орбиты составляет всего 4,54 микроньютона на квадратный метр - это в 22 миллиарда раз меньше нормального атмосферного давления (которого, разумеется, в открытом космосе нет). Важно отметить, что эта величина справедлива для ситуации, когда все кванты излучения поглощаются. Если свет будет падать на идеальную отражающую поверхность, то сила давления увеличится в два раза и достигнет 9,08 микроньютона на квадратный метр.

На Земле такие величины незаметны, но в условиях невесомости и космических расстояний оказываются весьма значительными. Например, даже обычный спутник, летящий с Земли на Марс, смещается под действием давления света на расстояния порядка нескольких тысяч километров. Устройство, использующее солнечный парус - пленку очень большой площади - не нуждается в большом количестве топлива для набора скорости, а значит обладает меньшей массой.С другой стороны, величина давления уменьшается по мере удаления от Солнца. К примеру, возле орбиты Марса оно становится в уже 2,25 раза меньше. Но, несмотря на это, спутник на «солнечной тяге» может развить скорость вплоть до десятой доли световой при достаточном размере паруса.

Идея путешествий на солнечном парусе появилась на страницах фантастических повестей еще в конце XIX века – первой ласточкой стала книга французского драматурга Жоржа Ле Фора и талантливого инженера Анри де Графиньи «Необычные приключения одного русского ученого» (1889 г.). В ней герои летели на Венеру, используя огромное параболическое зеркало, отражавшее свет Солнца.

Извольте, я выскажусь яснее. Свет есть ничто иное, как колебание эфира. Так? Прекрасно. Теперь предположим, что значительное количество таких колебаний отражено при помощи огромного зеркала, прямо по направлению к Венере, что тогда выйдет? Конечно, световые волны со страшной скоростью понесутся в пространстве и достигнут Венеры. Обитатели Луны пользуются этим, чтобы передавать звуки своего голоса, а мы воспользуемся, чтобы перенестись самим.

Первым, кто предложил реальную конструкцию аппарата на солнечном парусе, был советский инженер Фридрих Артурович Цандер. В 1924 году он подал в Комитет по изобретениям заявку на космический самолет на основе аэроплана - аппарат должен был подниматься сквозь плотные слои атмосферы сначала с помощью двигателя высокого давления, затем, в более разреженной среде, с помощью жидкостного ракетного двигателя, который использовал «ненужные части» в качестве топлива. В результате на орбиту выводилось сравнительно небольшое крылатое устройство, передвигающееся с помощью солнечного паруса и способное к возврату на Землю. Однако Комитет посчитал проект слишком фантастическим, так что проект так и остался проектом.


Фотография: National Air and Space Museum / Smithsonian Institution

«Эхо-1» и команда инженеров NASA. Фотография: NASA

Фотография: NASA

В практическом плане в историю космонавтики давление солнечного света вошло в связи с историей падения аппарата «Эхо-1 ». Это был зеркальный баллон диаметром около 60 метров, наполненный газообразным ацетальдегидом. В 1960 году, когда «Эхо-1» был выведен на орбиту, инженеры NASA использовали его для пассивного отражения радиосигнала и создания межконтинентальной линии теле- и радиосвязи. Однако расчетное время на орбите аппарат не смог продержаться - как раз из-за давления солнечного ветра, которое не учли инженеры. Из-за него, а также под действием флуктуаций плотности в верхних слоях атмосферы Земли спутник постепенно тормозился и снижал высоту, что привело к его разрушению спустя восемь лет после запуска.

Обуздать силу солнечного давления удалось уже в 1974 году, при запуске аппарата «Маринер-10 ». Хотя сам он не был разработан непосредственно для «светоплавания», в роли паруса выступили его солнечные батареи, развернутые инженерами под определенным углом к Солнцу. Это было сделано для того, чтобы скорректировать расположение аппарата в пространстве в тот момент, когда маневровый газ уже подошел к концу. Это стало первым примером использования давления света для управления космическим аппаратом.

Парус, развернутый в рамках эксперимента «Знамя-2»

Впервые настоящий солнечный парус появился в космосе в рамках российского проекта «Знамя-2 ». Вообще говоря, его целью был вовсе не полет к дальним планетам, а, как ни странно, создание искусственного источника света, - возможно, самого необычного, из тех, что существовали до настоящего времени. В случае успешной реализации проекта появилась бы возможность прямо из космоса освещать места стихийных бедствий, а также крупные города во время полярной ночи - по крайней мере именно такими идеями вдохновлялись авторы проекта. В 1993 году в рамках эксперимента «Знамя-2» удалось развернуть солнечный парус, установленный на корабле «Прогресс М-15». Диаметр зеркала составил 20 метров, а интенсивность отраженного им света была сопоставима со светом полной Луны (из-за облачности наблюдать его так и не удалось). Следующим шагом должен был стать существенно больший отражатель «Знамя-2.5». Он был способен создавать на поверхности семикилометровый «солнечный зайчик», внутри которого светимость составляла 5-10 полных Лун. Как это могло бы выглядеть с Земли мы, к сожалению, так и не узнаем - при разворачивании металлизированная пленка зацепилась за антенну и не раскрылась. Проект космического освещения закрыли.

В 1999 году НПО имени Лавочкина приняло заказ «Планетарного общества » США на проектирование солнечного парусника «Космос-1 ». Он должен был использовать для ускорения 30-метровую зеркальную пленку, состоящую из восьми отдельных сегментов. В качестве материала для паруса инженеры взяли покрытый тонким слоем алюминия полиэтилентерефталат (используемый, в частности, в пластиковых бутылках). Суммарная площадь паруса составила более 600 квадратных метров. В качестве платформы для пуска была выбрана атомная подводная лодка «Борисоглебск», носителем спутника выступила ракета-носитель «Волна», созданная на базе боевой ракеты РСМ-50.

«Планетарное общество» - это частная некоммерческая организация, которая реализует различные проекты в области астрономии и исследования космоса. Она была основана в 1980 году Карлом Саганом , Луисом Фридманом и Брюсом Мюррейем . Одним из таких проектов было исследование возможности выживания микроорганизмов в космосе. Первая его часть проводилась во время последнего полета «Индевора » в 2011 году, а заключительная была включена в программу «Фобос-Грунт», но не состоялась в связи с его падением. C 2010 года должность генерального директора организации занимает Билл Най .


Луис Фридман, основатель «Планетарного общества», осматривает аппарат «Космос-1», собранный НПО имени Лавочкина

Фотография: Lavochkin Association / The Planetary Society

Первый пуск тестового аппарата (с двумя лепестками паруса) состоялся в 2001 году, однако его постигла неудача. На протяжении года инженеры пытались определить, в чем была проблема с ракетой. Следующий запуск, уже с готовым спутником, был запланирован на июнь 2005 года. К сожалению, и он провалился: после 83 секунд полета первая ступень неожиданно прекратила работу, в результате чего ракета не набрала необходимую скорость. Спутник затонул в океане.



Изображение: JAXA

Проблемы с запуском аппаратов мешали развитию солнечных парусов и в США. Так, в 2008 году компания SpaceX должна была с помощью ракеты «Falcon 1 » запустить на орбиту аппарат «NanoSail-D ». Его парус был изготовлен из металлизированного полимера и имел площадь около 10 квадратных метров. К сожалению, и эта попытка провалилась: во время запуска Falcon’a не произошло отделения первой ступени.

Аппарат «IKAROS», фотографии сделаны отделившейся от него камерой. Фотографии: JAXA

Фотографии: JAXA

Первым действительно успешным экспериментом с солнечным парусом стал старт японского спутника «IKAROS ». Еще в 2004 году японцам удалось раскрыть на высоте 122 и 169 километров два небольших экспериментальных тонкопленочных паруса. А 21 мая 2010 года на орбиту из космического цетра Танегасима на борту ракеты-носителя «HII-A » отправился сам «IKAROS». В качестве отражающей поверхности он использует квадратную полиимидную пленку (каптон , производства DuPont), состоящую из четырех трапециевидных фрагментов. Толщина паруса составляет всего 7,5 микрон, но в нее дополнительно вшиты тонкопленочные солнечные батареи, предназначенные для генерации электричества. В результате вращения аппарата грузики, к которым привязана пленка, растягиваются центробежной силой и тем самым раскрывают парус в квадрат со стороной 14 метров. Сам процесс раскрытия занял 7 дней, после чего «IKAROS» отправился к Венере.

Интересно, что инженерам удалось встроить в аппарат возможность заснять себя со стороны. Для этого аппарат выбросил в определенный момент цилиндр с находящейся в нем камерой. Она успела сделать ряд фотографий, которые передала обратно на спутники. Возврат камеры предусмотрен не был. 8 декабря спутник пролетел в 80 тысячах километрах от Венеры и получил ее изображения. Последний раз сигналы со спутника были получены 22 мая 2014 года, с тех пор он находится в режиме гибернации из-за нехватки энергии.


Фотография: Wikimedia Commons

Вслед за IKAROS’ом дела с солнечными парусами стали выправляться и в NASA. Спустя всего полгода после запуска японского спутника, 19 ноября 2010 года, ракета «Минотавр-4 » вывела экспериментальный спутник «FASTSAT » на орбиту высотой 653 километра. Дублер предыдущего проекта, аппарат «NanoSail-D2 » сыграл роль полезной нагрузки для «FASTSAT». Он должен был отделиться от него сразу после выхода на орбиту, однако этого не произошло ни в ноябре, ни в декабре. Лишь 19 января 2011 года операторы получили сигнал о сработке механизма отделения аппарата. Спустя три дня «NanoSail-D2» раскрыл парус - в отличие от японского спутника на сам процесс разворачивания пленки у него ушло всего несколько секунд. Оно проводилось с помощью металлических полосок, которые выдвигаются из аппарата наподобие измерительной рулетки.

«NanoSail-D2» обладал очень большой площадью отражающей поверхности, поэтому за те 8 месяцев, что он провел на орбите, его неоднократно наблюдали с Земли как яркую точку, двигающуюся по ночному небу. Точно так же, благодаря отражению света от солнечных батарей, у нас есть возможность наблюдать пролеты спутников Iridium и МКС . Яркость этих объектов на звездном небе порой сравнивается с ярчайшими планетами и даже превышает их.


Пролет спутника «NanoSail-D2» над Рауталампи, Финляндия

Фотография: Vesa Vauhkonen

Основой «NanoSail-D2» является наноспутник CubeSat . Это модуль, из которого как из конструктора можно собирать большие по размерам устройства. Например, в данном случае, использовались три CubeSat, объединенные в единый прибор, включающий в себя механизмы распускания парусов, передачи радиосигнала на Землю а также солнечные батареи.

Следующим должен был состояться запуск спутника «Sunjammer », - аппарата, названного в честь одноименного рассказа Артура Кларка, посвященного гонкам на солнечных парусах. Пуск был запланирован еще на январь этого года, но из-за недостатка доверия к ракете «Falcon 9 » пока так и не состоялся. «Sunjammer» обладает самым большим парусом из всех, что были построены до сих пор. Его площадь составляет свыше 1200 квадратных метров, при этом масса спутника не превышает 32 килограммов. Устройство выполнено в виде квадрата со стороной 38 метров и состоит из металлизированной каптоновой (не путать с капроновой) пленки толщиной в 5 микрон.