Алгебраические выражения. Анализ диагностической работы. Примеры числовых выражений

I. Выражения, в которых наряду с буквами могут быть использованы числа, знаки арифметических действий и скобки, называются алгебраическими выражениями.

Примеры алгебраических выражений:

2m -n; 3· (2a + b); 0,24x; 0,3a -b · (4a + 2b); a 2 – 2ab;

Так как букву в алгебраическом выражении можно заменить какими то различными числами, то букву называют переменной, а само алгебраическое выражение — выражением с переменной.

II. Если в алгебраическом выражении буквы (переменные) заменить их значениями и выполнить указанные действия, то полученное в результате число называется значением алгебраического выражения.

Примеры. Найти значение выражения:

1) a + 2b -c при a = -2; b = 10; c = -3,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6.

Решение .

1) a + 2b -c при a = -2; b = 10; c = -3,5. Вместо переменных подставим их значения. Получим:

— 2+ 2 · 10- (-3,5) = -2 + 20 +3,5 = 18 + 3,5 = 21,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6. Подставляем указанные значения. Помним, что модуль отрицательного числа равен противоположному ему числу, а модуль положительного числа равен самому этому числу. Получаем:

|-8| + |-5| -|6| = 8 + 5 -6 = 7.

III. Значения буквы (переменной), при которых алгебраическое выражение имеет смысл, называют допустимыми значениями буквы (переменной).

Примеры. При каких значениях переменной выражение не имеет смысла?

Решение. Мы знаем, что на нуль делить нельзя, поэтому, каждое из данных выражений не будет иметь смысла при том значении буквы (переменной), которая обращает знаменатель дроби в нуль!

В примере 1) это значение а = 0. Действительно, если вместо а подставить 0, то нужно будет число 6 делить на 0, а этого делать нельзя. Ответ: выражение 1) не имеет смысла при а = 0.

В примере 2) знаменатель х — 4 = 0 при х = 4, следовательно, это значение х = 4 и нельзя брать. Ответ: выражение 2) не имеет смысла при х = 4.

В примере 3) знаменатель х + 2 = 0 при х = -2. Ответ: выражение 3) не имеет смысла при х = -2.

В примере 4) знаменатель 5 -|x| = 0 при |x| = 5. А так как |5| = 5 и |-5| = 5, то нельзя брать х = 5 и х = -5. Ответ: выражение 4) не имеет смысла при х = -5 и при х = 5.
IV. Два выражения называются тождественно равными, если при любых допустимых значениях переменных соответственные значения этих выражений равны.

Пример: 5 (a – b) и 5a – 5b тожественно равны, так как равенство 5 (a – b) = 5a – 5b будет верным при любых значениях a и b. Равенство 5 (a – b) = 5a – 5b есть тождество.

Тождество – это равенство, справедливое при всех допустимых значениях входящих в него переменных. Примерами уже известных вам тождеств являются, например, свойства сложения и умножения, распределительное свойство.

Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения. Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Примеры.

a) преобразуйте выражение в тождественно равное, используя распределительное свойство умножения:

1) 10·(1,2х + 2,3у); 2) 1,5·(a -2b + 4c); 3) a·(6m -2n + k).

Решение . Вспомним распределительное свойство (закон) умножения:

(a+b)·c=a·c+b·c (распределительный закон умножения относительно сложения: чтобы сумму двух чисел умножить на третье число, можно каждое слагаемое умножить на это число и полученные результаты сложить).
(а-b)·c=a·с-b·c (распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно умножить на это число уменьшаемое и вычитаемое отдельно и из первого результата вычесть второй).

1) 10·(1,2х + 2,3у) = 10 · 1,2х + 10 · 2,3у = 12х + 23у.

2) 1,5·(a -2b + 4c) = 1,5а -3b + 6c.

3) a·(6m -2n + k) = 6am -2an +ak.

б) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) сложения:

4) х + 4,5 +2х + 6,5; 5) (3а + 2,1) + 7,8; 6) 5,4с -3 -2,5 -2,3с.

Решение. Применим законы (свойства) сложения:

a+b=b+a (переместительный: от перестановки слагаемых сумма не меняется).
(a+b)+c=a+(b+c) (сочетательный: чтобы к сумме двух слагаемых прибавить третье число, можно к первому числу прибавить сумму второго и третьего).

4) х + 4,5 +2х + 6,5 = (х + 2х) + (4,5 + 6,5) = 3х + 11.

5) (3а + 2,1) + 7,8 = 3а + (2,1 + 7,8) = 3а + 9,9.

6) 6) 5,4с -3 -2,5 -2,3с = (5,4с -2,3с) + (-3 -2,5) = 3,1с -5,5.

в) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) умножения:

7) 4 · х · (-2,5); 8) -3,5 · · (-1); 9) 3а · (-3) · 2с.

Решение. Применим законы (свойства) умножения:

a·b=b·a (переместительный: от перестановки множителей произведение не меняется).
(a·b)·c=a·(b·c) (сочетательный: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего).






















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  1. Повторить и углубить умение учащихся находить значения числовых выражений, составленных из рациональных чисел с помощью знаков сложения, вычитания, умножения и деления;
  2. Учащиеся должны знать, что выражение, содержащее действие деление на нуль, не имеет смысла.
  3. Развить познавательный интерес учащихся к изучению нового предмета.
  4. Развить мышление, память, речь, совершенствовать вычислительные навыки учащихся, умение работать в оптимальном темпе.

Оборудование: ПК, мультимедийная установка; карточки с домашнем заданием (Приложение 1)

Тип урока: урок повторения и обобщения знаний полученных в курсе математики 5-6 классов.

Формы работы: фронтальная, коллективная, самостоятельная работа.

Ход урока

1. Организационный момент (2-4 минуты)

Поздравить учащихся с началом нового учебного года.

***
И снова в позолоте тополя,
А школа – как корабль у причала,
Где ждут учеников учителя,
Чтоб новой жизни положить начало.

***
Пусть счастье в дверь твою стучит,
Открой ее скорей пошире.
Путь жизни тайною покрыт,
Но так прекрасно в этом мире!
И пусть всегда – в окошке свет,
Улыбка мамина – с порога.
Пусть будет много добрых лет
И в жизни легкая дорога!

***
Осенние мотивы
Эта шикарная женщина ОСЕНЬ
Себя подарила беспутному ветру,
И что он ни скажет, и что ни попросит,
Ему отдавала, не чувствуя меры.
Листвы разноцветной большие охапки
Бросала к ногам его брачным букетом,
И буйные краски, и солнца остатки,
И слезы дождей, и туман пред рассветом.
А ветер беспутный шаталец по свету,
Любя самого лишь себя, свою прихоть,
И даже шикарную женщину эту
Старался как можно больнее обидеть,
Сорвать с нее платье нахальным порывом,
Чтоб голая так до зимы простояла…
А ОСЕНЬ прощала, лишь с тихим надрывом
Уже обреченные слезы роняла.
В зимовьих объятьях она умирает,
И проседь теперь в волосах, а не просинь.
Под снежной накидкой никто не узнает
Эту шикарную женщину – ОСЕНЬ.
<Слайд 1 >

2. Что изучает алгебра?

У. : Какой предмет мы изучали в прошлом году?

Ученики: Математику.

Есть о математике молва,
Что она в порядок ум приводит.
Поэтому хорошие слова
Часто говорят о ней в народе.

У.: Чем мы занимались на уроках математики?

Ученики: Проводили вычисления с целыми и дробными числами, решали уравнения, задачи, строили фигуры в координатной плоскости.

<Слайд 2 >

У.: Все это составляло содержание предмета «Математика». Этот предмет подразделяется на огромное число самостоятельных дисциплин: алгебра, геометрию, теорию вероятностей, математический анализ, теорию игр и т. д. Мы приступаем к изучению алгебры. Вы уже дома познакомились с учебником. Чем он отличается, например, от учебника литературы?

<Слайд 3 >

Ученики: В нем много цифр и букв, причем букв латинских.

У.: Мы с вами помним, что буквы нам помогают записывать свойства действий над числами в удобной для запоминания форме. Говорят: «Высказанное утверждение записано на математическом языке». Например, переместительное свойство умножения: от перестановки множителей произведение не меняется (a · b = b · a ). Вспомните, как найти расстояние, зная время и скорость.

<Слайд 4 >

Ученики: Чтобы найти расстояние, надо время умножить на скорость.

У.: Записываем это короче: s = v · t . То есть буквы помогают записывать в виде формул правила для нахождения значений интересующих нас величин. Чем еще алгебра отличается, например, от арифметики? В арифметических задачах по известным правилам находят неизвестное число. В алгебре неизвестную величину обозначают буквой. Эта неизвестная величина и данные в условии задачи связываются между собой уравнением, из решения которого и находится неизвестная величина. Отдельные алгебраические понятия и приемы решения задач возникли несколько тысяч лет назад в древних государствах – Вавилоне и Египте. О состоянии математических знаний в те века можно судить по древним рукописям (папирусам), найденным на местах древних городов. <Слайд 5 >

Около 4000 лет назад в Вавилоне и в Египте ученые уже умели составлять линейные уравнения, с помощью которых они решали самые разнообразные задачи землемерия, строительного искусства и военного дела. Например, в Британском музее хранится задача из папируса Ринда (его называли также папирусом Ахмеса), относящегося к периоду 2000 – 1700 гг. до н. э.: «Найти число, если известно, что от прибавления к нему 2/3 его и вычитания от полученной суммы ее трети получается число 10». Решение этой задачи сводится к решению линейного уравнения:

<Слайд 6, 7 >

В VII в. до н. э. греки усвоили достижения египтян в математике. В начале IX в. (830 год) хорезмийский ученый Мухаммед-бен-Муса ал-Хорезми написал книгу «Хисаб аль джабр вал-Мукабала» («Метод восстановления и противопоставления») – это была первая книга по алгебре. Она имеет особое значение в истории математики как руководство, по которому долгое время обучалась вся Европа. В ней он впервые рассмотрел методы и приемы алгебры.

Ал-джебр
(перенос слагаемых)

При решении уравненья,
Если в части одной,
Безразлично какой,
Встретится член отрицательный,
Мы к обеим частям,
С этим членом сличив.
Равный член придадим,
Только с знаком другим,-
И найдем результат, нам желательный!

Вал-мукабала
(приведение подобных)

<Слайд 8 >

С момента написания этой книги алгебра становится самостоятельной наукой. Само слово «алгебра» произошло, вероятно, от слова «ал джебр», что означает «восстановление». Словом «алгебра» в арабском языке называлось искусство врача восстанавливать сломанную руку или ногу. Хирурга у арабов называли алгебраистом. Таким образом, математика позаимствовала это слово из медицины.

<Слайд 8 >

Дальнейшее развитие алгебры происходило в основном в Индии (до XII в.) и в Средней Азии (до XV в.). Алгебру до XVII в. условно называли риторической (словесной). Дело в том, что тогда не существовало единых условных знаков «+», «-», «а 2 » и многих других которые используем мы. Условие задачи, все действия и ответ записывали полностью словами. Для удобства запоминания иногда эта запись делалась в стихах. Математические символы вводились постепенно. Так знак равенства «=» введен английским ученым Р. Рикордом в 1557 г., знаки «:» и «*» - немецким математиком Лейбницем в конце XVII в. , скобки – XVI в. Математические символы дали возможность ученым разных стран понять друг друга. В формировании алгебры как науки большие заслуги принадлежат французским ученым Франсуа Виету и Рене Декарту. В течение XVIII-XX в. из алгебры выросли новые математические науки: алгебра многочленов, векторная алгебра. Науки эти изучаются в высшей школе.

В школьной алгебре задачи решают путем составления уравнений, изучают сами уравнения, связи между величинами (некоторые из этих связей называются функциями). При этом используются буквы, выражения с буквами подвергаются различным преобразованиям (тождественным преобразованиям). Но за всеми этими буквами чаще всего скрываются числа.

<Слайд 9 >

Иногда говорят: «Алгебра держится на четырех китах: на уравнении, числе, тождестве, функции».Алгебра, к изучению которой мы приступаем, дает человеку возможность не только выполнять различные вычисления, но и учит его делать это как можно быстрее, рациональнее.

<Слайд 10 >

3. Устные упражнения.

1. Найдите сумму чисел -3,7 и 6,7 (отв. 3); найдите произведение чисел найдите разность чисел Повторить правила выполнения арифметических действий с обыкновенными дробями и рациональными числами.

2. Я задумал три числа. Найдите первое, если известно, что число, противоположное ему, равно 6. Найдите второе, если число обратное ему равно 3. Найдите третье, если известно, что, умножив его на

3. Вычислите:

<Слайд 11, 12 >

4. Изучение новой темы.

При решении многих задач приходится над заданными числами производить арифметические действия: сложение, вычитание, умножение и деление. Но часто, прежде чем доводить до конца каждое из этих действий, удобно заранее указать порядок (план), следуя которому надо производить эти действия. Этот план сводится к тому, что по данным задачи с помощью чисел, знаков действий и скобок составляется числовое выражение.

Примеры:

Если в числовом выражении выполнить все указанные в нем действия, то в результате получим число, про которое говорят, что оно равно данному числовому выражению.

Так первое числовое выражение равно 2, второе равно тоже 2, третье же равно 0.

Определение 1: Запись, составленная из чисел с помощью арифметических действий (сложение, вычитание, умножение, деление, возведение в степень) называет числовым (арифметическим) выражением.

Числовое выражение может состоять из одного числа.

Определение 2: Значением числового выражения называется число, полученное в результате выполнения указанных в числовом выражении действий.

<Слайд 13 >

Примеры : Поезд двигался сначала 50 минут со скоростью шестьдесят километров в час, затем остановился на станции на десять минут, потом двигался еще один час со скоростью 40 км/ч. Найдите среднюю скорость движения поезда.

Решение : По определению средней скорости движения она равна отношению пройденного пути к затраченному на этот путь времени. Вычислим путь и время движения. Прежде всего учтем, что (перешли к одинаковым единицам измерения времени). В начале движения был пройден путь в конце – путь 40·1(км).

Общий пройденный путь описывается числовым выражением:

Время, затраченное на этот путь (включая время, затраченное на остановку), описывается числовым выражением: Тогда средняя скорость движения описывается выражением: Если вычислить это выражение, то получим: .

Определение 3: Два числовых выражения, соединенные знаком «=», образуют числовое равенство. Если значения левой и правой частей числового равенства совпадают, то равенство называют верным, в противном случае – неверным.

Примеры: - верное числовое равенство;

6 + 12 · 3 = (6 + 12) · 3 - неверное числовое равенство, так как 42 ≠54.

<Слайд 14 >

Скобки помогают установить порядок действий. При этом предполагается, что все действия возможно осуществить. Всегда возможно произвести сложение, вычитание и умножение любых чисел. А вот делить одно число на другое можно, только если делитель не равен нулю: на нуль делить нельзя. Если в данном выражении на некотором этапе вычислений требуется делить на нуль, то это выражение не имеет смысла.

Примеры: Эти выражения не имеют смысла.

<Слайд 15 >

Повторить порядок выполнения действий в числовом выражении. Повторить правила выполнения действий с дробями.

5. Закрепление изученного материала.

Пр. №1 Установите, какие из следующих выражений имеют смысл и какие не имеют. Для имеющих смысл найдите числа, которым они равны.

<Слайд 16 >

Пр. №2 Записать в виде равенства и проверить, верно ли оно:

а) 20% от числа 240 равны 62 (240 · 0,2 = 62 не верно);

б) число 18 составляет 3% от числа 600 (18 = 0,03 · 600 не верно);

в) произведение чисел и 5 составляет 11% от числа 700 верно;

г) четвертая часть числа 18 равна 5% от числа 90 верно;

д) число 111:3 равно 10% от числа 370 (111: 3 = 0,1 · 370, верно);

е) 650% от числа 12 равны 77 (6,5 · 12 = 77 78 ≠ 77, не верно).

<Слайд 17 >

Пр. №3 Вычислить:

<Слайд 18, 19 >

6. Домашнее задание: конспект, 10 (А)

<Слайд 20 >

7. Подведение итогов урока

<Слайд 21, 22 >

Литература:

  1. Математика № 12, 2004 год
  2. Алгебра: 7 класс. Контрольные, самостоятельные, рейтинговые работы/ В. А. Гольдич. – М.: Эксмо, 2008. – 144 с. – (Мастер-класс для учителя).
  3. Интернет ресурсы.

Какие-нибудь математические выражения мы можем записать разными способами. В зависимости от наших целей, того, хватает ли нам данных и т.д. Числовые и алгебраические выражения различаются тем, что первые мы записываем только числами, объединенными с помощью знаков арифметических действий (сложение, вычитание, умножение, деление) и скобок.

Если вместо чисел ввести в выражение латинские буквы (переменные), оно станет алгебраическим. В алгебраических выражениях используются буквы, числа, знаки сложения и вычитания, умножения и деления. А также может быть использован знак корня, степени, скобки.

В любом случае, числовое это выражение или алгебраическое, оно не может быть просто случайным набором знаков, чисел и букв – в нем должен быть смысл. Это значит, что буквы, числа, знаки должны быть связаны какими-то отношениями. Правильный пример:7х + 2: (у + 1). Плохой примеру) : + 7х - * 1.

Выше было упомянуто слово «переменная» - что оно значит? Это латинская буква, вместо которой можно подставить число. И если мы говорим о переменных, в этом случае алгебраические выражения можно назвать алгебраической функцией.

Переменная может принимать различные значения. И подставляя какое-то число на ее место, мы можем найти значение алгебраического выражения при этом конкретном значении переменной. Когда значение переменной другое, другим будет и значение выражения.

Как решать алгебраические выражения?

Для вычисления значений нужно делать преобразование алгебраических выражений . А для этого вам еще нужно учесть несколько правил.

Во-первых: областью определения алгебраических выражений являются все возможные значения переменной, при которых это выражение может иметь смысл. Что подразумевается? Например, нельзя подставлять такое значение переменной, при котором пришлось бы делить на нуль. В выражении1/(х – 2)из области определения надо исключить 2.

Во-вторых, запомните, как упрощать выражения: раскладывать на множители, выносить за скобки одинаковые переменные и т.п. Например: если поменять местами слагаемые, сумма от этого не изменится (у + х = х +у). Аналогично и произведение не изменится, если поменять местами множители (х*у = у*х).

А вообще для упрощения алгебраических выражений отлично служат формулы сокращенного умножения . Тем, кто их еще не выучил, обязательно надо это сделать – все равно пригодятся не раз:

    находим разность переменных, возведенных в квадрат: х 2 – у 2 = (х – у)(х + у);

    находим сумму, возведенную в квадрат: (х + у) 2 = х 2 + 2ху + у 2 ;

    вычисляем разность, возведенную в квадрат: (х – у) 2 = х 2 – 2ху + у 2 ;

    возводим сумму в куб: (х + у) 3 = х 3 + 3х 2 у + 3ху 2 + у 3 или (х + у) 3 = х 3 + у 3 + 3ху(х + у);

    возводим в куб разность: (х – у) 3 = х 3 – 3х 2 у + 3ху 2 – у 3 или (х – у) 3 = х 3 – у 3 – 3ху(х – у);

    находим сумму переменных, возведенных в куб: х 3 + у 3 = (х +у)(х 2 – ху + у 2);

    вычисляем разность переменных, возведенных в куб: х 3 – у 3 = (х – у)(х 2 + ху + у 2);

    используем корни: ха 2 + уа + z = х(а – а 1)(а – а 2), а 1 и а 2 – это корни выражения ха 2 + уа + z.

Еще вам стоит иметь представление о видах алгебраических выражений. Они бывают:

    рациональные, и те в свою очередь подразделяются на:

    целые(в них нет деления на переменные, нет извлечения корней из переменных и нет возведения в дробную степень): 3a 3 b + 4a 2 b * (a – b ).Область определения – все возможные значения переменных;

    дробные(кроме остальных математических операций, вроде сложения, вычитания, умножения, в этих выражениях делят на переменную и возводят в степень (с натуральным показателем): (2/b – 3/a + с/4) 2 . Область определения – все значения переменных, при которых выражение не равно нулю;

    иррациональные– чтобы алгебраическое выражение считалось таковым, в нем должно присутствовать возведение переменных в степень с дробным показателем и/или извлечение корней из переменных: √а + b 3/4 . Область определения – все значения переменных, исключая те, при которых выражение под корнем четной степени или под дробной степенью становится отрицательным числом.

Тождественные преобразования алгебраических выражений – еще один полезный прием для их решения.Тождество – такое выражение, которое будет верным при любых входящих в область определения переменных, которые в него подставят.

Выражение, которое зависит от некоторых переменных, может быть тождественно равно другому выражению, если то зависит от тех же переменных и если значения обоих выражений равны, какие бы значения переменных не были выбраны. Другими словами, если выражение можно выразить двумя разными способами (выражениями), значения которых одинаковые, эти выражения тождественно равны. Например: у + у = 2у, или х 7 = х 4 *х 3 , или x +y +z = z + x +y.

При выполнении заданий с алгебраическими выражениями тождественное преобразование служит для того, чтобы одно выражение можно было заменить на другое, тождественное ему. К примеру, заменить х 9 на произведение х 5 *х 4 .

Примеры решения

Чтобы было понятнее, разберем несколько примеров преобразования алгебраических выражений . Задания такого уровня могут попасться в КИМах на ЕГЭ.

Задание 1 : Найти значение выражения ((12х) 2 – 12х)/(12х 2 -1).

    Решение: ((12х) 2 – 12х)/(12х 2 – 1) = (12х (12х -1))/х*(12х – 1) = 12.

Задание 2: Найти значение выражения (4х 2 – 9)*(1/(2х – 3) – 1/(2х +3).

    Решение: (4х 2 – 9)*(1/(2х – 3) – 1/(2х +3) = (2х – 3)(2х + 3)(2х + 3 – 2х + 3)/(2х – 3)(2х + 3) = 6.

Заключение

При подготовке к школьным контрольным, экзаменам ЕГЭ и ГИА вы всегда можете использовать этот материал как подсказку. Держите в памяти, что алгебраическим выражением называется комбинация из чисел и переменных, выраженных латинскими буквами. А еще знаков арифметических операций (сложение, вычитание, умножение, деление), скобок, степеней, корней.

Используйте формулы сокращенного умножения и знания о тождественных равенствах, чтобы преобразовывать алгебраические выражения.

Пишите нам свои замечания и пожелания в комментариях – нам важно знать, что вы нас читаете.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

>>Математика: Числовые и алгебраические выражения

Числовые и алгебраические выражения

В младших классах вы учились проводить вычисления с целыми и дробными числами , решали уравнения, знакомились с геометрическими фигурами, с координатной плоскостью. Все это составляло содержание одного школьного предмета «Математика» . В действительности такая важная область науки, как математика, подразделяется на огромное число самостоятельных дисциплин: алгебру, геометрию, теорию вероятностей, математический анализ, математическую логику, математическую статистику, теорию игр и т.д. У каждой дисциплины - свои объекты изучения, свои методы познания реальной действительности.

Алгебра, к изучению которой мы приступаем, дает человеку возможность не только выполнять различные вычисления , но и учит его делать это как можно быстрее, рациональнее. Человек, владеющий алгебраическими методами, имеет преимущество перед теми, кто не владеет этими методами: он быстрее считает, успешнее ориентируется в жизненных ситуациях, четче принимает решения, лучше мыслит. Наша задача - помочь вам овладеть алгебраическими методами, ваша задача - не противиться обучению, с готовностью следовать за нами, преодолевая трудности.

На самом деле в младших классах вам уже приоткрыли окно в волшебный мир алгебры, ведь алгебра в первую очередь изучает числовые и алгебраические выражения.

Напомним, что числовым выражением называют всякую запись, составленную из чисел и знаков арифметических действий (составленную, разумеется, со смыслом: например, 3 + 57 - числовое выражение, тогда как 3 + : - не числовое выражение, а бессмысленный набор символов). По некоторым причинам (о них мы будем говорить в дальнейшем) часто вместо конкретных чисел употребляются буквы (преимущественно из латинского алфавита); тогда получается алгебраическое выражение. Эти выражения могут быть очень громоздкими. Алгебра учит упрощать их, используя разные правила, законы, свойства, алгоритмы, формулы, теоремы.

Пример 1 . Упростить числовое выражение:

Решение . Сейчас мы вместе с вами кое-что вспомним, и вы увидите, как много алгебраических фактов вы уже знаете. Прежде всего нужно выработать план осуществления вычислений. Для этого придется использовать принятые в математике соглашения о порядке действий. Порядок действий в данном примере будет таким:

1) найдем значение А выражения в первых скобках:
А = 2,73 + 4,81 + 3,27 - 2,81;

2) найдем значение В выражения во вторых скобках:

3) разделим А на Б - тогда будем знать, какое число С содержится в числителе (т. е. над горизонтальной чертой);

4) найдем значение D знаменателя (т. е. выражения, содержащегося под горизонтальной чертой):
D = 25 - 37- 0,4;

5) разделим С на D - это и будет искомый результат. Итак, план вычислений есть (а наличие плана - половина
успеха!), приступим к его реализации.

1) Найдем А = 2,73 + 4,81 + 3,27 - 2,81. Конечно, можно считать подряд или, как говорится, «в к лоб»: 2,73 + 4,81, затем к этому числу прибавить
3,27, затем вычесть 2,81. Но культурный человек так вычислять не будет. Он вспомнит переместительный и сочетательный законы сложения (впрочем, ему их и не надо вспоминать, они у него всегда в голове) и будет вычислять так:

(2,73 + 3,27) + 4,81 - 2,81) = 6 + 2 = 8.

А теперь еще раз вместе проанализируем, какие математические факты нам пришлось вспомнить в процессе решения примера (причем не просто вспомнить, но и использовать).

1. Порядок арифметических действий.

2. Переместительный закон сложения: а + b = b + а.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Запись, которая состоит из чисел, знаков и скобок, а также имеет смысл, называется числовым выражением.

Например, следующие записи:

  • (100-32)/17,
  • 2*4+7,
  • 4*0.7 -3/5,
  • 1/3 +5/7

будут являться числовыми выражениями. Следует понимать, что одно число тоже будет являться числовым выражением. В нашем примере, это число 13.

А, например, следующие записи

  • 100 - *9,
  • /32)343

не будут являться числовыми выражениями, так как они лишены смысла и являются просто набором чисел и знаков.

Значение числового выражения

Так как в качестве знаков в числовых выражениях входят знаки арифметических действий, то мы можем посчитать значение числового выражения. Для этого необходимо выполнить указанные действия.

Например,

(100-32)/17 = 4, то есть для выражения (100-32)/17 значением этого числового выражения будет являться число 4.

2*4+7=15, число 15 будет являться значением числового выражения 2*4+7.

Часто для краткости записи не пишут полностью значение числового выражения, а пишут просто "значение выражения", опуская при этом слово «числового».

Числовое равенство

Если два числовых выражения записаны через знак равно, то эти выражения образуют числовое равенство. Например, выражение 2*4+7=15 является числовым равенством.

Как уже отмечалось выше, в числовых выражениях могут использоваться скобки. Как уже известно скобки влияют на порядок действий.

Вообще, все действия разделены на несколько ступеней.

  • Действия первой ступени: сложение и вычитание.
  • Действия второй ступени: умножение и деление.
  • Действия третей ступени – возведение в квадрат и возведение в куб.

Правила при вычислении значений числовых выражений

При вычислении значений числовых выражений следуют руководствоваться следующими правилами.

  • 1. Если выражение не имеет скобок, то надо выполнять действия начиная с высших ступеней: третья ступень, вторая ступень и первая ступень. Если имеется несколько действий одной ступени, то их выполняют в порядке в котором они записаны, то есть слева на право.
  • 2. Если в выражении присутствуют скобки, то сначала выполняются действия в скобках, а лишь затем все стальные действия в обычном порядке. При выполнении действий в скобках, если их там несколько, следует пользоваться порядком описанным в пункте 1.
  • 3. Если выражение представляет собой дробь, то сначала вычисляются значении в числителе и знаменателе, а потом числитель делится на знаменатель.
  • 4. Если в выражении присутствуют вложенные скобки, то выполнять действия следует с внутренних скобок.