Условия протекания реакций ионного обмена в растворах. Реакции ионного обмена в растворах электролитов; способы их написания. Условия необратимого протекания таких реакций. Явление амфотерности. Амфотерные гидроксиды в рекциях ионного обмена. Условия их п

1. Окислительно-восстановительные реакции. Окислитель и восстановитель (на примере двух реакций).

Окислительно-восстановительные реакции протекают с изменением степени окисления. Широко распространенными реакциями этого типа являются реакции горения. Также сюда относятся реакции медленного окисления (коррозия металлов, гниение органических веществ).

Степень окисления элемента показывает число смещенных (притянутых или отданных) электронов. В простых веществах она равна нулю. В бинарных соединениях (состоящих из 2-х элементов) равна валентности, перед которой ставится знак (поэтому иногда ее называют «условным зарядом»).

В веществах, состоящих из 3-х и более элементов, степень окисления можно рассчитать с помощью уравнения, взяв неизвестную степень окисления за «икс», а общую сумму приравняв к нулю. Например, в азотной кислоте HNO 3 степень окисления водорода +1, кислорода −2, получаем уравнение: +1 + x −2 3 = 0

Элемент, присоединяющий электроны, называется окислителем . Элемент, являющийся донором электронов (отдающий электроны), называется восстановителем .

2 e − _ l ↓ Fe 0 + S 0 = Fe +2 S −2

При нагревании порошков железа и серы образуется сульфид железа. Железо является восстановителем (окисляется), сера - окислителем (восстанавливается).

S 0 + O 2 0 = S +4 O 2 −2

В этой реакции сера является восстановителем, кислород окислителем. Образуется оксид серы (IV)

Можно привести пример с участием сложного вещества:

Zn 0 + 2H +1 Cl = Zn +2 Cl 2 + H 2 0

цинк - восстановитель, водород соляной кислоты - окислитель.

Можно привести пример с участием сложного вещества и составить электронный баланс:

Cu 0 + 4HN +5 O 3 = Cu +2 (NO 3) 2 + 2H 2 O + 2N +4 O 2

Билет № 8

1. Реакции ионного обмена, условия их протекания до конца (на примере двух реакций). Отличие реакций ионного обмена от реакций окислительно-восстановительных.

Реакции обмена в растворах электролитов получили название реакций ионного обмена. Эти реакции протекают до конца в 3-х случаях:

1. Если в результате реакции выпадает осадок (образуется нерастворимое или малорастворимое вещество, что можно определить по таблице растворимости):CuSO 4 + BaCl 2 = BaSO 4 ↓ + CuCl 2

2. Если выделяется газ (образуется часто при разложении слабых кислот):Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2

3. Если образуется малодиссоциирующее вещество. Например, вода, уксусная кислота:HCl + NaOH = NaCl + H 2 O

Это связано со смещением химического равновесия вправо, что вызвано удалением одного из продуктов из зоны реакции.

Реакции ионного обмена не сопровождаются переходом электронов и изменением степени окисления элементов в отличие от окислительно-восстановительных реакций.

Если попросят написать уравнение в ионном виде, можно проверять правильность написания ионов по таблице растворимости. Не забывайте менять индексы на коэффициенты. Нерастворимые вещества, выделяющиеся газы, воду (и другие оксиды) на ионы не раскладываем.

Cu 2+ + SO 4 2− + Ba 2+ + 2Cl − = BaSO 4 ↓ + Cu 2+ + 2Cl − Вычеркиваем не изменившиеся ионы.

Огромное число реакций, протекающих между электролитами в водных растворах, относится к типу реакций обмена. Рассмотрим механизм этих реакций несколько подробнее, причем будем считать, что сильные электролиты полностью диссоциированы.

В общем виде реакция обмена может быть выражена уравнением

АВ + CD = AD + СВ

Предположим, что АВ и CD - сильные электролиты и, следовательно, растворы их содержат исключительно свободные ионы А , В’, С и D’. Тогда результат реакции будет всецело зависеть от растворимости и способности к диссоциации образующихся веществ AD и СВ. Здесь возможны два основных случая: 1) образующиеся тоже сильные электролиты, хорошо растворимые в воде, и 2) одно или оба образующихся нерастворимы или являются слабыми электролитами.

Посмотрим на конкретных примерах, что происходит в том и другом случае.

Смешаем растворы двух сильных электролитов хлористого натрия NaCl и азотнокислого калия KNO 3 . Взаимодействие между ними в молекулярной форме выразится уравнением,

NaCl + KNO 3 = NaNO 3 + КСl

Так как соли NaNO 3 и КСl хорошо растворимы в воде, раньше считали, что эта реакция не доходит до конца и приводит к состоянию равновесия между взятыми и образующимися солями. Теперь мы знаем, что все четыре соли, как сильные электролиты, полностью диссоциированы на ионы. Поэтому, переходя к ионному уравнению реакции, можно написать:

Na + Сl’ + K + NO3′ = Na + NO3′ + К + Сl’

Отсюда видно, что как до смешивания растворов, так и после него в растворе будут находиться только свободные ионы:

Na, K , Cl’ и NO3′

Таким образом, с точки зрения ионной теории в данном случае,?вообще не происходит никакой реак-ц и и. Этот вывод подтверждается и тем, что при смешивании растворов хлористого натрия и азотнокислого калия не наблюдается ни выделения, ни поглощения тепла, что указывает на отсутствие химического превращения.

Иначе обстоит дело, если одно из образующихся веществ является слабым электролитом. Рассмотрим, например, реакцию, происходящую при смешивании раствора уксуснокислого натрия NaCH 3 COO с раствором соляной кислоты:

NaCH 3 COO + НСl = СН 3 СООН + NaCl

До смешивания растворы содержали ионы Na , СН 3 СОО’, Н и Сl’, После смешивания ионы СН 3 СОО’, встречаясь в растворе с ионами Н будут соединяться с ними, образуя недиссоцииро-ванные молекулы слабого электролита - уксусной кислоты СН3СООН. Это будет происходить до тех пор, пока в растворе не останется лишь такое число ионов Н и СН 3 СОО’, которое соответствует степени диссоциации уксусной кислоты. В результате раствор будет содержать ионы Na , СГ, молекулы СН 3 СООН и незначительное число ионов Н и СН 3 СОO’. Пренебрегая последним, можно изобразить происходящую реакцию следующим ионным уравнением:

Н + Сl’ + Na + СН 3 СОО’ = Na + Сl’ + СН 3 СООН

или, исключив ионы, не участвующие в реакции:

H + CH 3 COO’ = CH 3 COOH

Следовательно, вся реакция сводится к образованию недиссоциированных молекул уксусной кислоты из ионов Н и СН 3 СОО’. Такую реакцию называют вытеснением слабой кислоты из ее соли сильной кислотой, потому что при этой реакции сильная кислота (соляная) заменяется в растворе слабой кислотой (уксусной).

Другим примером реакции, при которой происходит образование слабо диссоциирующего , является реакция нейтрализации сильных кислот сильными основаниями, например:

НСl + NaOH = NaCl + Н 2 O

Так как одно из образующихся при этой реакции веществ - - практически почти не диссоциирует на ионы, переходя к ионному уравнению, получаем:

H + Cl’ + Na +OH’ = Na +Cl’ + H 2 O

Н + ОН’ = Н2О

Последнее уравнение выражает процесс нейтрализации любой сильной кислоты любым сильным основанием на языке ионной теории. Следовательно, нейтрализация сводится к образованию молекул воды из ионов водорода (или гидроксония) и ионов гидроксила.

Если всякий процесс нейтрализации сильной кислоты сильным основанием состоит только в соединении водородных и гидроксильных ионов, и количество выделяющегося при нем тепла всегда должно быть одно и то же, независимо от природы кислоты или основания. Опыт действительно подтверждает этот вывод: при нейтрализации любой сильной кислоты любым сильным осно-

ванием на каждую граммолекулу образующейся воды выделяется около 13,8 ккал тепла:

HCl + NaOH = NaCl + Н 2 O + 13,75 ккал

HNO 3 + КОН = KNO 3 + Н 2 O + 13,77 ккал

НСl + КОН = КСl + Н 2 O + 13,75 ккал

Реакции, аналогичные реакциям, протекающим с образованием слабого электролита, происходят и в тех случаях, когда одно из образующихся веществ нерастворимо и выделяется из раствора в виде осадка или в виде газа. Примером могут служить уже разобранные раньше реакции взаимодействия солей серебра с солями соляной кислоты, которые сводятся к образованию нерастворимого хлористого серебра из ионов серебра и хлора:

Ag + Сl’ = AgCl

Правда, абсолютно нерастворимых веществ нет, поэтому при образовании хлористого серебра некоторое число ионов серебра и хлора, соответствующее произведению растворимости AgCl, остается в растворе. Поскольку это число ничтожно, мы при выражении реакции ионным уравнением им пренебрегаем. Так же точно мы поступаем и при составлении ионных уравнений других реакций, сопровождающихся образованием трудно растворимых веществ.

Разберем теперь, как будет протекать реакция, если одно из вступающих в реакцию веществ слабый электролит. Конечно, если вещества, которые могли бы образоваться в результате реакции, сильные электролиты, то никакой реакции не произойдет, как например, при смешивании растворов СН 3 СООН и KCl. Но если одно или оба образующиеся вещества еще более слабые электролиты, чем вступающий в реакцию электролит, то последний может почти целиком подвергнуться превращению. В качестве примера возьмем реакцию нейтрализации уксусной кислоты едким натром:

СН 3 СООН + NaOH = NaCH 3 COO + Н 2 O

Смешав растворы уксусной кислоты и едкого натра, мы получим раствор, который в первый момент будет содержать ионы Na и ОН’ и небольшое число ионов Н и СН 3 СОО’, находящихся в равновесии с недиссоциированными молекулами уксусной кислоты:

СН 3 СООН ⇄ Н + СН 3 СОО’

При встрече ионы Н и ОН’ будут соединяться, образуя молекулы практически недиссоциированной воды. По мере связыва-

ния ионов водорода равновесие между молекулами уксусной кислоты и ее ионами будет нарушаться и начнут диссоциировать новые молекулы. Этот процесс будет проходить до тех пор, пока почти все молекулы уксусной кислоты не распадутся на ионы.

Таким образом, в растворе будут одновременно протекать два процесса - диссоциация молекул уксусной кислоты и образование молекул воды из ионов водорода и гидроксила. Все происходящее можно представить в виде следующей схемы:

В данном, случае было бы неправильным изображать реакцию нейтрализации таким же ионным уравнением, как и реакцию нейтрализации сильных кислот сильными основаниями, т. е.

Н + OH’ = H 2 O

так как свободных ионов водорода во взятом нами растворе почти не было, - они образовывались постепенно, по мере течения реакции, из молекул уксусной кислоты. Следовательно, молекулы уксусной кислоты косвенно тоже участвовали в реакции, поставляя все новые и новые ионы водорода по мере связывания последних гидроксильными ионами.

Чтобы отразить это обстоятельство в ионном уравнении, уксусную кислоту изображают в виде молекул, т. е. в том виде, в каком она главным образом и находилась во взятом нами растворе:

СН3СООН + Na + ОН’ = Н 2 O + Na + СН 3 СОО’

Произведя приведение подобных членов, получаем:

СН 3 СООН + OH’ = Н 2 O + СН 3 СОО’

Это уравнение не только отмечает косвенное участие в реакции молекул уксусной кислоты, но и показывает, что в результате резекции, кроме молекул воды, образовалось также большое число ионов СН 3 СОО’, которых до реакции в растворе почти не было.

Так как реакция нейтрализации уксусной кислоты (в отличие от реакции нейтрализации сильных кислот сильными основаниями) складывается из двух процессов - диссоциации молекул уксусной кислоты и образования молекул воды, то и теплота нейтрализации уже не равна 13,8 ккал, а составляет 13,3 ккал. Очевидно, что при диссоциации 1 моля уксусной кислоты поглощается 0,5 ккал тепла. В других случаях поглощение тепла при диссоциации слабого электролита может быть еще значительнее.

Например, при нейтрализации 1 моля хлорноватистой кислоты НСlO едким натром выделяется всего 9,84ккал.

Из разобранных примеров ионных реакций можно сделать следующий общий вывод:

Обязательным условием течения реакций обмена между электролитами является уход из раствора тех или иных ионов вследствие образования слабо диссоциирующих веществ, или веществ, практически нерастворимых, выделяющихся из раствора в виде осадка или газа. Иначе говоря, реакции в растворах электролитов всегда идут в сторону образования наименее диссоциированных или наименее растворимых веществ. Если ни одного из таких веществ при реакции образоваться не может, то не происходит и самой реакции.

Особого рассмотрения требуют еще реакции, при которых не только не образуются нерастворимые вещества, но, наоборот, нерастворимое в воде вещество растворяется при действии того или иного реактива.

В качестве примера возьмем хотя бы растворение гидрата окиси меди в кислотах:

Сu (ОН) 2 + 2НСl = СuСl 2 + 2Н 2 O

С первого взгляда может показаться, что эта реакция противоречит сделанному выше обобщению. Однако никакого противоречия здесь нет, так как одно из условий, определяющих направление реакции, именно образование мало диссоциированного соединения (воды), налицо; оно-то и является причиной растворения гидрата окиси меди.

Чтобы разобраться в происходящем процессе с точки зрения ионной теории, нужно прежде всего учесть, что нерастворимость вещества никогда не бывает абсолютной. Поэтому всякая жидкость над осадком «нерастворимого» вещества представляет собой насыщенный раствор этого вещества. В данном случае трудно сказать, содержит ли этот раствор только ионы Сu и ОН’ или также и недиссоциированные молекулы Сu (ОН) 2 , так как условия ионизации гидратов окислов тяжелых металлов еще мало изучены. Более вероятно, что такие гидраты образуют молекулярные решетки и, следовательно, при их растворении в раствор переходят молекулы, которые уже в растворе в большей или меньшей степени диссоциируют на ионы, В таком случае в насыщенном растворе гидрата окиси меди Сu(ОН) 2 будут иметь место два связанных между собой равновесия: одно равновесие между осадком и перешедшими в раствор молекулами Сu(ОН)2, другое - между теми же молекулами и образовавшимися из них ионами:

Когда мы действуем на гидрат окиси меди кислотой, гидроксильные ионы связываются с водородными ионами кислоты в недиссоциированные молекулы воды. Убыль их тотчас же нарушает равновесие (2), вызывая диссоциацию нового числа молекул Сu (ОН) 2 , что, в свою очередь, нарушает равновесие (1), заставляя часть осадка перейти в раствор. Образовавшиеся вследствие диссоциации ионы гидроксила снова связываются с ионами водорода и так далее, пока при достаточном количестве кислоты весь осадок не перейдет в раствор. Все происходящее можно представить в виде следующей схемы:

Реакции ионного обмена — реакции в водных растворах между электролитами, протекающие без изменений степеней окисления образующих их элементов

Необходимым условием протекания реакции между электролитами (солями, кислотами и основаниями) является образование малодиссоциирующего вещества (вода, слабая кислота, гидроксид аммония), осадка или газа.

Расcмотрим реакцию, в результате которой образуется вода. К таким реакциям относятся все реакции между любой кислотой и любым основанием. Например, взаимодействие азотной кислоты с гидроксидом калия:

HNO 3 + KOH = KNO 3 + H 2 O (1)

Исходные вещества, т.е. азотная кислота и гидроксид калия, а также один из продуктов, а именно нитрат калия, являются сильными электролитами, т.е. в водном растворе они существуют практически только в виде ионов. Образовавшаяся вода относится к слабым электролитам, т.е. практически не распадается на ионы. Таким образом, более точно переписать уравнение выше можно, указав реальное состояние веществ в водном растворе, т.е. в виде ионов:

H + + NO 3 − + K + + OH ‑ = K + + NO 3 − + H 2 O (2)

Как можно заметить из уравнения (2), что до реакции, что после в растворе находятся ионы NO 3 − и K + . Другими словами, по сути, нитрат-ионы и ионы калия никак не участвовали в реакции. Реакция произошла только благодаря объединению частиц H + и OH − в молекулы воды. Таким образом, произведя алгебраически сокращение одинаковых ионов в уравнении (2):

H + + NO 3 − + K + + OH ‑ = K + + NO 3 − + H 2 O

мы получим:

H + + OH ‑ = H 2 O (3)

Уравнения вида (3) называют сокращенными ионными уравнениями , вида (2) — полными ионными уравнениями , а вида (1) — молекулярными уравнениями реакций .

Фактически ионное уравнение реакции максимально отражает ее суть, именно то, благодаря чему становится возможным ее протекание. Следует отметить, что одному сокращенному ионному уравнению могут соответствовать множество различных реакций. Действительно, если взять, к примеру, не азотную кислоту, а соляную, а вместо гидроксида калия использовать, скажем, гидроксид бария, мы имеем следующее молекулярное уравнение реакции:

2HCl+ Ba(OH) 2 = BaCl 2 + 2H 2 O

Соляная кислота, гидроксид бария и хлорид бария являются сильными электролитами, то есть существуют в растворе преимущественно в виде ионов. Вода, как уже обсуждалось выше, – слабый электролит, то есть существует в растворе практически только в виде молекул. Таким образом, полное ионное уравнение данной реакции будет выглядеть следующим образом:

2H + + 2Cl − + Ba 2+ + 2OH − = Ba 2+ + 2Cl − + 2H 2 O

Сократим одинаковые ионы слева и справа и получим:

2H + + 2OH − = 2H 2 O

Разделив и левую и правую часть на 2, получим:

H + + OH − = H 2 O,

Полученное сокращенное ионное уравнение полностью совпадает с сокращенными ионным уравнением взаимодействия азотной кислоты и гидроксида калия.

При составлении ионных уравнений в виде ионов записывают только формулы:

1) сильных кислот (HCl, HBr, HI, H 2 SO 4 , HNO 3 , HClO 4) (список сильных кислот надо выучить!)

2) сильных оснований (гидроксиды щелочных (ЩМ) и щелочно-земельных металлов(ЩЗМ))

3) растворимых солей

В молекулярном виде записывают формулы:

1) Воды H 2 O

2) Слабых кислот (H 2 S, H 2 CO 3 , HF, HCN, CH 3 COOH (и др. практически все органические))

3) Слабых оcнований (NH 4 OH и практически все гидроксиды металлов кроме ЩМ и ЩЗМ

4) Малорастворимых солей (↓) («М» или «Н» в таблице растворимости).

5) Оксидов (и др. веществ, не являющихся электролитами)

Попробуем записать уравнение между гидроксидом железа (III) и серной кислотой. В молекулярном виде уравнение их взаимодействия записывается следующим образом:

2Fe(OH) 3 + 3H 2 SO 4 = Fe 2 (SO 4) 3 + 6H 2 O

Гидроксиду железа (III) соответствует в таблице растворимости обозначение «Н», что говорит нам о его нерастворимости, т.е. в ионном уравнении его надо записывать целиком, т.е. как Fe(OH) 3 . Серная кислота растворима и относится к сильным электролитам, то есть существует в растворе преимущественно в продиссоциированном состоянии. Сульфат железа (III), как и практически все другие соли, относится к сильным электролитам, и, поскольку он растворим в воде, в ионном уравнении его нужно писать в виде ионов. Учитывая все вышесказанное, получаем полное ионное уравнение следующего вида:

2Fe(OH) 3 + 6H + + 3SO 4 2- = 2Fe 3+ + 3SO 4 2- + 6H 2 O

Сократив сульфат-ионы слева и справа, получаем:

2Fe(OH) 3 + 6H + = 2Fe 3+ + 6H 2 O

разделив обе части уравнения на 2 получаем сокращенное ионное уравнение:

Fe(OH) 3 + 3H + = Fe 3+ + 3H 2 O

Теперь давайте рассмотрим реакцию ионного обмена, в результате которой образуется осадок. Например, взаимодействие двух растворимых солей:

Все три соли – карбонат натрия, хлорид кальция, хлорид натрия и карбонат кальция (да-да, и он тоже) – относятся к сильным электролитам и все, кроме карбоната кальция, растворимы в воде, т.е. есть участвуют в данной реакции в виде ионов:

2Na + + CO 3 2- + Ca 2+ + 2Cl − = CaCO 3 ↓+ 2Na + + 2Cl −

Сократив одинаковые ионы слева и справа в данном уравнении, получим сокращенное ионное:

CO 3 2- + Ca 2+ = CaCO 3 ↓

Последнее уравнение отображает причину взаимодействия растворов карбоната натрия и хлорида кальция. Ионы кальция и карбонат-ионы объединяются в нейтральные молекулы карбоната кальция, которые, соединяясь друг с другом, порождают мелкие кристаллы осадка CaCO 3 ионного строения.

Примечание важное для сдачи ЕГЭ по химии

Чтобы реакция соли1 с солью2 протекала, помимо базовых требований к протеканиям ионных реакций (газ, осадок или вода в продуктах реакции), на такие реакции накладывается еще одно требование – исходные соли должны быть растворимы. То есть, например,

CuS + Fe(NO 3) 2 ≠ FeS + Cu(NO 3) 2

реакция не идет, хотя FeS – потенциально мог бы дать осадок, т.к. нерастворим. Причина того что реакция не идет – нерастворимость одной из исходных солей (CuS).

А вот, например,

Na 2 CO 3 + CaCl 2 = CaCO 3 ↓+ 2NaCl

протекает, так как карбонат кальция нерастворим и исходные соли растворимы.

То же самое касается взаимодействия солей с основаниями. Помимо базовых требований к протеканию реакций ионного обмена, для того чтобы соль с основанием реагировали необходима растворимость их обоих. Таким образом:

Cu(OH) 2 + Na 2 S – не протекает,

т.к. Cu(OH) 2 нерастворим, хотя потенциальный продукт CuS был бы осадком.

А вот реакция между NaOH и Cu(NO 3) 2 протекает, так оба исходных вещества растворимы и дают осадок Cu(OH) 2:

2NaOH + Cu(NO 3) 2 = Cu(OH) 2 ↓+ 2NaNO 3

Внимание! Ни в коем случае не распространяйте требование растворимости исходных веществ дальше реакций соль1+ соль2 и соль + основание.

Например, с кислотами выполнение этого требования не обязательно. В частности, все растворимые кислоты прекрасно реагируют со всеми карбонатами, в том числе нерастворимыми.

Другими словами:

1)Соль1+ соль2 — реакция идет если исходные соли растворимы, а в продуктах есть осадок

2) Соль + гидроксид металла – реакция идет, если в исходные вещества растворимы и в продуктах есть садок или гидроксид аммония.

Рассмотрим третье условие протекания реакций ионного обмена – образование газа. Строго говоря, только в результате ионного обмена образование газа возможно лишь в редких случаях, например, при образовании газообразного сероводорода:

K 2 S + 2HBr = 2KBr + H 2 S

В большинстве же остальных случаев газ образуется в результате разложения одного из продуктов реакции ионного обмена. Например, нужно точно знать в рамках ЕГЭ, что с образованием газа в виду неустойчивости разлагаются такие продукты, как H 2 CO 3 , NH 4 OH и H 2 SO 3:

H 2 CO 3 = H 2 O + CO 2

NH 4 OH = H 2 O + NH 3

H 2 SO 3 = H 2 O + SO 2

Другими словами, если в результате ионного обмена образуются угольная кислота, гидроксид аммония или сернистая кислота, реакция ионного обмена протекает благодаря образованию газообразного продукта:

Запишем ионные уравнения для всех указанных выше реакций, приводящих к образованию газов. 1) Для реакции:

K 2 S + 2HBr = 2KBr + H 2 S

В ионном виде будут записываться сульфид калия и бромид калия, т.к. являются растворимыми солями, а также бромоводородная кислота, т.к. относится к сильным кислотам. Сероводород же, являясь малорастворимым и плохо диссоциирцющим на ионы газом, запишется в молекулярном виде:

2K + + S 2- + 2H + + 2Br — = 2K + + 2Br — + H 2 S

Сократив одинаковые ионы получаем:

S 2- + 2H + = H 2 S

2) Для уравнения:

Na 2 CO 3 + H 2 SO 4 = Na 2 SO 4 + H 2 O + CO 2

В ионном виде запишутся Na 2 CO 3 , Na 2 SO 4 как хорошо растворимые соли и H 2 SO 4 как сильная кислота. Вода является малодиссоциирующим веществом, а CO 2 и вовсе неэлектролит, поэтому их формулы будут записываться в молекулярном виде:

2Na + + CO 3 2- + 2H + + SO 4 2- = 2Na + + SO 4 2 + H 2 O + CO 2

CO 3 2- + 2H + = H 2 O + CO 2

3) для уравнения:

NH 4 NO 3 + KOH = KNO 3 + H 2 O + NH 3

Молекулы воды и аммиака запишутся целиком, а NH 4 NO 3 , KNO 3 и KOH запишутся в ионном виде, т.к. все нитраты являются хорошо растворимыми солями, а KOH является гидроксидом щелочного металла, т.е. сильным основанием:

NH 4 + + NO 3 − + K + + OH − = K + + NO 3 − + H 2 O + NH 3

NH 4 + + OH − = H 2 O + NH 3

Для уравнения:

Na 2 SO 3 + 2HCl = 2NaCl + H 2 O + SO 2

Полное и сокращенное уравнение будут иметь вид:

2Na + + SO 3 2- + 2H + + 2Cl − = 2Na + + 2Cl − + H 2 O + SO 2

Уравнения реакций обмена обычно записывают в молекулярной и ионно-молекулярной формах. Молекулярная форма уравнения показывает, какие вещества можно выделить из раствора и рассчитать их количества. Ионно-молекулярная форма уравнения позволяет определить возможность превращения и его причины, которые сводятся к образованию малорастворимого либо малодиссоциированного соединения. Такие уравнения позволяют также предсказать принципиальную обратимость или необратимость взаимодействия.

В ионных уравнениях формулы веществ записывают в виде ионов или в виде молекул.

В виде ионов записывают формулы сильных электролитов.

В виде молекул записывают формулы воды, слабых электролитов, малорастворимых солей (↓), формулы газообразных веществ, формулы оксидов металлов и неметаллов.

1) AgNO 3 + NaCl → AgCl↓ + NaNO 3 ;

Ag + + NO 3 - + Na + + Cl - → AgCl↓ + Na + + NO 3 - ;

Ag + + Cl - → AgCl↓.

2) Na 2 CO 3 + H 2 SO 4 → Na 2 SO 4 + H 2 O + CO 2 ;

2Na + + CO 3 2- + 2H + + SO 4 2- → 2Na + + SO 4 2- + H 2 O + CO 2 ;

CO 3 2- + 2H + → H 2 O + CO 2 .

3) NaOH + HCl → NaCl + H 2 O;

Na + + OH - + H + + Cl - → 2Na + + Cl - + H 2 O;

H + + OH - → H 2 O.

4) HgI 2 + 2KI → K 2 ;

HgI 2 + 2K + + 2I - → 2K + + 2- ;

HgI 2 + 2I - → 2- .

2.4 Смещение равновесий в растворах слабых электролитов

В растворах слабых электролитов устанавливается динамическое равновесие между недиссоциированными молекулами и образовавшимися в результате диссоциации ионами.

Это динамическое равновесие можно сместить одним из следующих способов:

1) разбавление раствора способствует диссоциации, равновесие смещается в сторону образования дополнительного количества ионов;

2) увеличение концентрации одноименных ионов будет подавлять диссоциацию, равновесие сместится в сторону образования недиссо­циированных молекул.

Например: при внесении в раствор уксусной кислоты ацетата натрия диссоциация кислоты уменьшается:

CH 3 COOH ↔ CH 3 COO - + Н +

NaCH 3 COO → Na + + CH 3 COO - ,

Величина К дисс при данной температуре постоянная, поэтому увеличение концентрации ацетат-ионов CH 3 COO -  должно привести к умень­шению концентрации водородных ионов H +  и увеличению концентрации недиссоциированных молекул кислоты CH 3 COOH , т.е. часть ионов Н + и СН 3 СОО - должна соединяться в молекулы CH 3 COOH;

3) связывание одного из образующихся ионов будет усиливать диссоциацию. Например,

NH 4 OH ↔ NH 4 + + OH - ;

HCl → H + + Cl - ;

H + + OH - ↔ H 2 O.

Связывание ОН - - ионов в молекулы воды при постоянной

должно привести к увеличению NH + 4  и уменьшению NH 4 OH , т.е. к усилению диссоциации гидроксида аммония.

2.5 Произведение растворимости

В системе, состоящей из осадка малорастворимого электролита и насыщенного раствора над ним, устанавливается динамическое равновесие:

Me n X m(тв) ↔ n Me m+ + m X n-

Константа равновесия для данного случая имеет вид

.

Знаменатель этой дроби есть величина постоянная, поэтому произ­ведение K равн Me n Х m  тоже является постоянной при данной температуре. Отсюда, следует, что произведение n · m представ­ляет собой постоянную величину, называемую произведением раствори­мости и обозначаемую ПР. Например:

ПР(AgCl) = Ag + ·Cl - ,

ПР(Bi 2 S 3) = Bi 3+  2 ·S 2-  3 .

Таким образом, в насыщенном растворе труднорастворимого электролита произведение концентраций его ионов есть величина постоянная при данной темпе­ратуре.

Если произведение концентраций ионов такого электролита в растворе превышает величину его ПР, то образуется осадок.

Если произведение концентраций ионов труднорастворимого электролита в растворе меньше его ПР, то осадок не образуется. В том случае, когда оса­док был получен ранее, а концентрации составляющих его ионов в растворе каким-либо образом уменьшили и значение ПР не достигается-происходит растворение осадка.

Константа диссоциации - вид константы равновесия, которая характеризует склонность объектадиссоциировать(разделяться) обратимым образом на частицы, как например когдакомплексраспадается на составляющиемолекулы, или когдасольдиссоциирует в водном растворе наионы. Константа диссоциации обычно обозначается K d и обратнаконстанте ассоциации. В случае с солями, константу диссоциации иногда называютконстантой ионизации.

В общей реакции

где комплекс разбивается наx единиц A и y единиц B, константа диссоциации определяется так:

где [A], [B] и - концентрацииA, B и комплекса A x B y соответственно.

Изотонический коэффициент (также фактор Вант-Гоффа ; обозначается i ) - безразмерный параметр, характеризующий поведениевеществаврастворе. Он численно равен отношению значения некоторогоколлигативного свойствараствора данного вещества и значения того же коллигативного свойстванеэлектролитатой жеконцентрациипри неизменных прочих параметрах системы:

где solut. - данный раствор, nel. solut. - раствор неэлектролита той же

концентрации, T bp - температура кипения, аT mp - температура плавления(замерзания).

Вопрос№18 Законы Рауля и Вант-Гоффа для слабых электролитов.

Законы Рауля

Закон Вант-Гоффа

Найденные Вант-Гоффом значения i для растворов солей, кислот, оснований имеют разные значения, зависящие от природы и концентрации растворителя, и изменяются от 1 до 4.

Билет №19 Электролитическая диссоциация воды. Ионное произведение воды, водородный и другие показатели среды и методы их определения.

Ио́нное произведе́ние воды́ - произведение концентраций ионов водорода Н+ и ионов гидроксида OH− в воде или в водных растворах, константа автопротолиза воды. Вывод значения ионного произведения воды

Вода, хотя и является слабым электролитом, в небольшой степени диссоциирует:

H2O + H2O ↔ H3O+ + OH−илиH2O ↔ H+ + OH−

Равновесие этой реакции сильно смещено влево. Константу диссоциации воды можно вычислить по формуле:

Константа диссоциации воды при 25оС равна: Такое значение константы соответствует диссоциации одной из ста миллионов молекул воды, поэтому концентрацию воды можно считать постоянной и равной 55,55 моль/л (плотность воды 1000 г/л, масса 1 л 1000 г, количество вещества воды 1000г:18г/моль=55,55 моль, С=55,55 моль: 1 л = 55,55 моль/л). Тогда

Эта величина постоянная при данной температуре (25оС), она называется ионным произведением воды KW :

Водородный показатель рН:

В чистой воде при 25 °C концентрации ионов водорода () и гидроксид-ионов () одинаковы и составляют 10 −7 моль/л, это напрямую следует из определения ионного произведения воды, которое равно · и составляет 10 −14 моль²/л² (при 25 °C).

Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. При добавлении к воде кислоты концентрация ионов водорода увеличивается, а концентрация гидроксид-ионов соответственно уменьшается, при добавлении основания - наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает. Когда > говорят, что раствор является кислым , а при > - щелочным .

Для удобства представления, чтобы избавиться от отрицательного показателя степени, вместо концентраций ионов водорода пользуются их десятичным логарифмом, взятым с обратным знаком, который собственно и является водородным показателем - pH.

Билет №20 Обменные реакции в растворах электролитов. Условие необратимости реакций.

В обменных реакциях, протекающих в растворах электролитов, наряду с недиссоциированными молекулами слабых электролитов, твердыми веществами и газами участвуют также находящиеся в растворе ионы. Поэтому сущность протекающих процессов наиболее полно выражается при записи их в форме ионно-молекулярных уравнений. Например, уравнения реакций нейтрализации сильных кислот щелочами

HClO 4 + NaOH →NaClO 4 + H 2 O,

2HNO 3 + Ba(OH) 2 → Ba(NO 3) 2 + 2H 2 O,

выражаются одним и тем же ионно-молекулярным уравнением

H + + OH – → H 2 O,

из которого следует, что сущность этих процессов сводится к образованию из ионов водорода и гидроксид-ионов малодиссоциированного электролита – воды. Аналогично уравнения реакций

BaCl 2 +H 2 SO 4 → BaSO 4 + 2HCl,

Ba(NO 3) 2 + Na 2 SO 4 → BaSO 4 + 2NaNO 3

выражают один и тот же процесс образования из ионов Ва 2+ и SO 4 2- осадка малорастворимого электролита – сульфата бария

Ва 2+ + SO 4 2– → BaSO 4 ↓.

На основании рассмотренных примеров можно сделать следующий вывод: реакции в растворах электролитов всегда идут в сторону образования наименее диссоциированных или наименее растворимых веществ . Из этого, в частности, следует, что сильные кислоты вытесняют слабые из растворов их солей

Реакции в растворах электролитов идут до конца если в результате взаимодействия веществ происходит образование осадка, выделение газа и образование слабого электролита. При написании ионно- молекулярных уравнений реакций, слабые электролиты, малорастворимые соединения и газы записываются в молекулярной форме, а находящиеся в растворесильные электролиты – в виде составляющих их ионов.

Условия необратимости реакций (условия протекания реакций до конца): 1. Образование осадка. К 2 SО 4 + BаСl 2  BaSО 4  + 2КСl 2К + + SО 4 2- + Bа 2+ + 2Сl -  BаSО 4  + 2К + + 2Сl - SО 4 2- + Bа 2-  BаSО 4  2. Выделение газа. Na 2 S + 2HCl  2NaCl + H 2 S 2Na + + S 2- + 2H + + 2Cl -  2Na + + 2Cl - + H 2 S S 2- + 2H +  H 2 S 3. Образование малодиссоциирующего соединения (слабого электролита или воды). NaOH + HCl  NaCl + H 2 O Na + + OH - + H + + Cl -  Na + + Cl - + H 2 O OH - + H +  H 2 O 4. Образование комплексного соединения. NaOH + Al(OH) 3  NaAl(OH) 4  Na + + OH - + Al(OH) 3  Na + + Al(OH) 4  - OH - + Al(OH) 3  Al(OH) 4  - Следовательно, реакции идут с образованием веществ с меньшей концентрацией ионов в растворе. В соответствии с законом действующих масс скорость реакции прямопропорциональна произведению концентрации реагирующих веществ. Следовательно, не возможность протекания обратной реакции в случае её необратимости объясняется тем, что концентрациях ионов в растворе уменьшается (ионы связываются в молекулы неэлектролитов), скорость обратной реакции стремится к нулю. Вывод: реакции в растворах электролитов могут протекать лишь только в том случае, если участвующие во взаимодействии ионы полностью или частично уходят из сферы реакции (в виде газа, осадка, слабого электролита или комплексного соединения).

Билет №21 Гидролиз солями обратимый и не обратимый.

Гидро́лиз (от др.-греч. ὕδωρ - вода + λύσις - разложение) - один из видов химических реакций сольволиза, где при взаимодействии веществ с водой происходит разложение исходного вещества с образованием новых соединений. Механизм гидролиза соединений различных классов: соли, углеводы, белки, сложные эфиры, жиры и др. имеет существенные различия.

Гидролиз солей - разновидность реакций гидролиза, обусловленного протеканием реакций ионного обмена в растворах (преимущественно, водных) растворимых солей-электролитов. Движущей силой процесса является взаимодействие ионов с водой, приводящее к образованию слабого электролита в ионном или (реже) молекулярном виде («связывание ионов »).

Различают обратимый и необратимый гидролиз солей :

    1. Гидролиз соли слабой кислоты и сильного основания (гидролиз по аниону):

(раствор имеет слабощелочную среду, реакция протекает обратимо

(раствор имеет слабокислую среду, реакция протекает обратимо , гидролиз по второй ступени протекает в ничтожной степени)

    3. Гидролиз соли слабой кислоты и слабого основания:

(равновесие смещено в сторону продуктов, гидролиз протекает практически полностью , так как оба продукта реакции уходят из зоны реакции в виде осадка или газа).


Билет №22 Электрохимические системы. Окислительно-восстановительные реакции. Составление уравнений. Электронный баланс.

Существование электрохимических систем возможно из-за возникновения разности потенциалов между металлами и электролитом при их контакте. Измерить потенциал металла (электрода) непосредственно нельзя, но можно измерить его относительно другого электрода.

Эталоном при сопоставлении металлов по их энергетическому потенциалу является стандартный водородный электрод, потенциал которого условно принимается за нуль. Его устройство таково: платиновый электрод покрыт мелкодисперсной платиной (платиновой чернью), погружен в раствор серной кислоты с концентрацией ионов водорода 1 моль/л, обдувается струей газообразного водорода под давлением 100 кПа (Т = 298 K). Водород адсорбируется на поверхности платины. На практике при потенциометрических измерениях водородный электрод используют редко. Чаще применяют более удобные компактные электроды сравнения, имеющие определенное значение потенциала относительно водородного электрода. Обычно пользуются каломельным электродом, состоящим из металлической ртути и раствора хлорида ртути (каломели Hg 2 Cl 2) в хлориде калия. Потенциал каломельного электрода зависит от концентрации ионов ртути, а последняя – от концентрации раствора KCl.

На основании теоретических расчетов установлено, что величина электродного потенциала, возникающая на границе между металлом и раствором соли этого металла (т. е. раствором, содержащим ионы этого металла), равна:

где Е 0 – электрическая постоянная, зависящая от выбора электрода сравнения, R – газовая постоянная, равная 8,32 Дж/граджмоль, Т – абсолютная температура, n – степень окисления металла в данном соединении (в соответствии с теорией строения атома – число электронов, которое теряет атом металла, превращаясь в ион), F – число Фарадея, с – молярная концентрация ионов металла в данном растворе.

Окисли́тельно-восстанови́тельные реа́кции , также редокс (англ. redox , от red uction - ox idation - окисление-восстановление) - это встречно-параллельные химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующихся путём перераспределения электронов между атомом-окислителем и атомом-восстановителем.

Окислительно-восстановительная реакция между водородом и фтором

Разделяется на две полуреакции:

1) Окисление:

2) Восстановление:

Окисление, восстановление

В окислительно-восстановительных реакциях электроны от одних атомов, молекул или ионов переходят к другим. Процесс отдачи электронов - окисление. При окислении степень окисления повышается:

Процесс присоединения электронов - восстановление. При восстановлении степень окисления понижается:

Метод электронного баланса складывается из следующих этапов:

а) записывают схему реакции (формулы реагентов и продуктов), а затем находят элементы, которые повышают и понижают свои степени окисления, и выписывают их отдельно:

MnCO3 + KClO3 → MnO2 + KCl + CO2 ClV → Cl−I MnII → MnIV

б) составляют уравнения полуреакций восстановления и окисления, соблюдая законы сохранения числа атомов и заряда в каждой полуреакции:

полуреакция восстановления ClV + 6e− = Cl−I полуреакция окисления MnII − 2e− = MnIV

в) подбирают дополнительные множители для уравнения полуреакций так, чтобы закон сохранения заряда выполнялся для реакции в целом, для чего число принятых электронов в полуреакциях восстановления делают равным числу отданных электронов в полуреакции окисления:

ClV + 6e− = Cl−I * 1 MnII − 2e− = MnIV * 3

г) проставляют (по найденным множителям) стехиометрические коэффициенты в схему реакции (коэффициент 1 опускается):

3MnCO3 + KClO3 = 3MnO2 + KCl + CO2

д) уравнивают числа атомов тех элементов, которые не изменяют своей степени окисления при протекании реакции (если таких элементов два, то достаточно уравнять число атомов одного из них, а по второму провести проверку). Получают уравнение химической реакции:

3MnCO3 + KClO3 = 3MnO2 + KCl + 3CO2

е) проводят проверку по элементу, который не менял свою степень окисления (чаще всего это кислород):

слева 9 + 3 = 12 атомов O справа 6 + 6 = 12 атомов O

Подбор коэффициентов проведен правильно.

Билет №23 Механизм образования двойного электрического слоя и электродного потенциала на границе раздела металл-электролит.

Билет №24 Зависимость электродного потенциала от природы электродов, температуры, концепции потенциала-определяющих ионов. Уравнение Нериста.

уравнение Нернста

Билет №25 Типы электродов (металлические, газовые, первого и второго родов).

К электродам первого рода относятся такие, потенциал которых относительно какого-либо электрода сравнения определяется концентрацией катионов. К ним принадлежат металлы, погруженные в растворы своих солей.

Разновидностью электродов первого рода являются амальгамные электроды, т.е. состоящие либо из растворов металлов в ртути, либо вообще из сплавов металлов жидких или твердых растворов.

В этом случае процесс на электроде изображается уравнением Me n + + ne и, следовательно:

Отсюда следует, что потенциал амальгамного электрода зависит от активности катиона в растворе и активности компонента в металлической фазе.

Электроды второго рода обычно имеют следующее устройство. Металл погружен в насыщенный раствор своей малорастворимой соли, в котором находится другая хорошо растворимая соль с тем же анионом. Примером может служить электрод из металлического серебра, находящегося в соприкосновении с осадком AgCl, т.е. в растворе, насыщенном этой солью. Этот раствор также должен содержать и другой хорошо растворимый электролит с одноименным ионом (например, KCl). На электроде происходит обратимая реакция перехода ионов серебра в раствор или их разрядки, т.е. Ag т ←→ Ag + + e .

За этим следует реакция Ag + + Cl - = AgCl т. Суммарный процесс описывается уравнением Ag т + Cl - = AgCl т + e .

Так как a AgClт = 1, то, согласно уравнению (IX.20), E = E 0 - RT /F ln(1/a Cl -).

К электродам третьего рода относятся газовые электроды , в которых газ омывает пластинку из металла или графита, погруженную в раствор. Чаще всего для газовых электродов используется платина. В водородном электроде платинированная платина 1 погружена в раствор какой-либо кислоты, например H 2 SO 4 .

Билет №26 Стандартные электродные потенциалы. Ряд напряжений и его возможности для характеристики химических свойств веществ.

В электрохимии стандартный электродный потенциал , обозначаемый E o , E 0 , или E O , является мерой индивидуального потенциала обратимого электрода (в равновесии) в стандартном состоянии, которое осуществляется в растворах при эффективной концентрации в 1 моль/кг и в газах при давлении в 1 атмосферу или 100 кПа (килопаскалей). Объёмы чаще всего взяты при 25 °C. Основой для электрохимической ячейки, такой как гальваническая ячейка всегда является окислительно-восстановительная реакция, которая может быть разбита на две полуреакции: окисление на аноде (потеря электрона) ивосстановление на катоде (приобретение электрона). Электричество вырабатывается вследствие различия электростатического потенциала двух электродов. Эта разность потенциалов создаётся в результате различий индивидуальных потенциалов двух металлов электродов по отношению к электролиту.

Электрохимический ряд активности (ряд напряжений, ряд стандартных электродных потенциалов) металлов - последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциаловφ 0 , отвечающих полуреакции восстановления катиона металла Me n+ : Me n+ + nē → Me

Li→Rb→K→Ba→Sr→Ca→Na→Mg→Al→Mn→Zn→Cr→Fe→Cd→Co→Ni→Sn→Pb→H →Sb→Bi→Cu→Hg→Ag→Pd→Pt→Au

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.