Метод вариации. Вариации произвольных постоянных. Метод вариации произвольных постоянных для построения решений системы линейных дифференциальных уравнений в векторной нормальной форме

Для нахождения общего решения y’’ + (x) y’ + (x) y = f (x) необходимо найти частное решение .

Его можно найти из общего решения уравнения y’’ + (x) y’ + (x) y = 0 некоторых вариаций произвольных постоянных

Подставим в (5.1)

+ + + + (x) + +

(x) + = f (x)

+ + + + (x) +

(x) + = f (x)

Интегрированием найдем и

Затем по формуле (5.6) составим общее решение

Теорема (5.2) : о наложение решения

Если правая часть уравнения y’’ + (x) y’ + (x) y = f (x) представляет собой сумму 2-ух функций:

f(x) = (x) + (x) ,

а u - частное решение уравнения

+ (x) y ‘ + (x) y = (x)

+ (x) y ‘ + (x) y = (x)

То функция

Является решение данного уравнения

() ‘’ + ) ‘ + ) ‘= ‘’ + + + () ‘’ + ) ‘ + = (x) + (x) = f(x)

10. Уравнение Бернулли.

11. Уравнение Риккати.:

Уравнение Риккати является одним из наиболее интересных нелинейных дифференциальных уравнений первого порядка . Оно записывается в форме:

где a (x ), b (x ), c (x ) − непрерывные функции, зависящие от переменной x .

Уравнение Риккати встречается в различных областях математики (например, в алгебраической геометрии и в теории конформных отображений) и физики. Оно также нередко возникает в прикладных математических задачах.

Приведенное выше уравнение называется общим уравнением Риккати . Его решение основано на следующей теореме:

Теорема : Если известно частное решение y 1 уравнения Риккати, то его общее решение определяется формулой

Действительно, подставляя решение y = y 1 + u в уравнение Риккати, имеем:

Подчеркнутые члены в левой и правой части можно сократить, поскольку y 1 − частное решение, удовлетворяющее уравнению. В результате мы получаем дифференциальное уравнение для функции u (x ):

Второй вариант риккати(писать только один из)

В общем случае не интегрированно в квадратурах

Однако если известно одно частное решение , то уравнение Риккати можно свести к уравнению Бернулли

Для этого положим сделаем замену:

P(x) + p (x) z + q (x) * + q (x) * 2 z + q (x) = f (x)

P(x) z + 2q (x) z +q(x) = 0

Z (p (x) + 2q (x) ) + q (x) =0

n=2 Бернули

12. Уравнение Лагранжа .:


13. Уравнение Клеро.:


14. Дифференциальные уравнения порядка выше первого. Случаи понижения порядка .

15. Линейные дифференциальные уравнения n го порядка. Вронскиан. Фундаментальная система решений.:

16. Однородные дифференциальные уравнения с постоянными коэффициентами. Характеристическое уравнение:

Частным случаем рассмотренных выше линейных однородных

дифференциальных уравнений являются ЛОДУ с постоянными

коэффициентами.

17. Линейные неоднородные уравнения. Отыскание частного решения в случае уравнения с квазиполиномом:

Квазиполином Эйлера: Рассмотрим ЛНДУ 2-го порядка с постоянными коэффициентами: y’’ + p y’ + q y = f(x) (5.7) Можно искать частное решение методом Лагранжа, однако в некоторых случаях можно найти проще Рассмотрим эти случаи:1. f(x) = , -многочлен степени n. 2.f(x) = ( cos β x + (x) sin β x). В этих случаях f(x) называют квазиполиномом ЭЙЛЕРА. В этих случаях записывают ожидаемую форму решения с неопределенными коэффициентами и подставляют в ур-е (5.1). Из полученного тождества находят значение коэффициентов. Случай 1 : правая часть (5.7) имеет вид:f(x) = α R -многочлен степени n. Ур-е (5,7) запишется в виде: y’’ + p y’ + q y = (5.8) В этом случае частное реш-е ищем в виде: = Qn (x) (5.9) где r – число = кратности α как корня характеристического ур-я + p k + q = 0,т.е. r – число,показывающее сколько раз α явл-я корнем ур-я + p k + q = 0, При этом Qn (x) = + + …. + A n –многочлен степени n, записанный с неопределёнными коэффициентами Ai (i= 0, 1, 2,…n) А) Пусть α не является корнем характеристического ур-я: + p k + q = 0,т.е. α , r = 0 и решение ищем в виде = Q n (x) Б) Пусть α является однократным(простым) корнем характеристического ур-я + p k + q = 0, α = r = 1, = x Q n (x) В) Пусть α = является 2-хкратным корнем характеристического ур-я + p k + q = 0 , r = 2 = Q n (x) Случай 2: Правая часть (5.7) имеет вид:f(x) = () cosβx + Q m (x) sin β (x) ,Где )и Qm (x) многочлены степени n и m соответственно, α и β - действительного числа, тогда ур-е (5.7) запишется в виде y’’ + py’ + qy = () cosβx + Qm (x) sinxβ) (5.10) В это случае частное решение: = * (Ml (x) cosβx + N l (x) sin βx) (5.11) r-число равное кратности (α + βi) как корня уравнения: + pk + q = 0, Me (x) и Ne (x)-многочлены степени l с неопределёнными коэффициентами. l –наивысшая степень многочленов )и Qm (x), l =max(n,m). Замечание 1: После подстановки функции (5.11) в (5.10) приравнивают многочлены, стоящие перед одноименными тригоном. функциями в левой и правой частях ур-я. Замечание 2 : Формула (5.11) сохраняется и при ) 0 и Qm (x) 0. Замечание 3 : Если правая часть ур-я (5.7) есть сумма функций вида 1 и 2 , то для нахождения следует использовать теорему (5.2) о наложении решений. Теорема (5.2) : о наложении решений: Если правые части ур-я (5.1) представляют собой сумму 2-х функций:f(x) = (x) + (x) ,а u - частные решения ур-я + (x) y ‘ + (x) y = (x) + (x) y ‘ + (x) y = (x)То является решение данного ур-я. Интегрирование ЛНДУ п-го порядка (n постоянным коэффициентом и правой частью специального вида. Рассмотрим ЛНДУ n-го порядка + (x) + (x) + … + (x)y = f(x) где (x) , …, (x) , f(x) заданы непрерывной функцией на интервале (а, b) . Соотв. однородное ур-е + (x) + … + (x)y = 0. Общее решение y ЛНДУ n-го порядка = сумме частного решения НУ и общего решения ОУy= . может быть найдено если известно общее решение ОУ = + + … + гдеyi(x) – частное реш-е образующее фундаментальную систему решений ОУ.Для нахождения Сi(x)составляется система ур-й + + … + = 0 + + … + = 0 + + … + = 0 + + … + = f (x)Однако для ЛНДУ n-го порядка с постоянными коэффициентами, правая часть f(x) которого имеет специальный вид, можно найти методом неопределенных коэф-в.Метод подбора частного решения для уравнения y’’ + + … + y = f (x) R,где f (x) квазиполином Эйлера тот же что и при n=2.

Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:
(1) .
Существует три способа решения этого уравнения:

  • метод вариации постоянной (Лагранжа).

Рассмотрим решение линейного дифференциального уравнения первого порядка методом Лагранжа.

Метод вариации постоянной (Лагранжа)

В методе вариации постоянной мы решаем уравнение в два этапа. На первом этапе мы упрощаем исходное уравнение и решаем однородное уравнение. На втором этапе мы заменим постоянную интегрирования, полученную на первой стадии решения, на функцию. После чего ищем общее решение исходного уравнения.

Рассмотрим уравнение:
(1)

Шаг 1 Решение однородного уравнения

Ищем решение однородного уравнения:

Это уравнение с разделяющимися переменными

Разделяем переменные - умножаем на dx , делим на y :

Интегрируем:

Интеграл по y - табличный :

Тогда

Потенцируем:

Заменим постоянную e C на C и уберем знак модуля, что сводится к умножению на постоянную ±1 , которую включим в C :

Шаг 2 Заменим постоянную C на функцию

Теперь заменим постоянную C на функцию от x :
C → u(x)
То есть, будем искать решение исходного уравнения (1) в виде:
(2)
Находим производную.

По правилу дифференцирования сложной функции:
.
По правилу дифференцирования произведения:

.
Подставляем в исходное уравнение (1) :
(1) ;

.
Два члена сокращаются:
;
.
Интегрируем:
.
Подставляем в (2) :
.
В результате получаем общее решение линейного дифференциального уравнения первого порядка:
.

Пример решения линейного дифференциального уравнения первого порядка методом Лагранжа

Решить уравнение

Решение

Решаем однородное уравнение:

Разделяем переменные:

Умножим на :

Интегрируем:

Интегралы табличные :

Потенцируем:

Заменим постоянную e C на C и убираем знаки модуля:

Отсюда:

Заменим постоянную C на функцию от x :
C → u(x)

Находим производную:
.
Подставляем в исходное уравнение:
;
;
Или:
;
.
Интегрируем:
;
Решение уравнения:
.

Метод вариации произвольных постоянных

Метод вариации произвольных постоянных для построения решения линейного неоднородного дифференциального уравнения

a n (t )z (n ) (t ) + a n − 1 (t )z (n − 1) (t ) + ... + a 1 (t )z "(t ) + a 0 (t )z (t ) = f (t )

состоит в замене произвольных постоянных c k в общем решении

z (t ) = c 1 z 1 (t ) + c 2 z 2 (t ) + ... + c n z n (t )

соответствующего однородного уравнения

a n (t )z (n ) (t ) + a n − 1 (t )z (n − 1) (t ) + ... + a 1 (t )z "(t ) + a 0 (t )z (t ) = 0

на вспомогательные функции c k (t ) , производные которых удовлетворяют линейной алгебраической системе

Определителем системы (1) служит вронскиан функций z 1 ,z 2 ,...,z n , что обеспечивает её однозначную разрешимость относительно .

Если - первообразные для , взятые при фиксированных значениях постоянных интегрирования, то функция

является решением исходного линейного неоднородного дифференциального уравнения. Интегрирование неоднородного уравнения при наличии общего решения соответствующего однородного уравнения сводится, таким образом, к квадратурам .

Метод вариации произвольных постоянных для построения решений системы линейных дифференциальных уравнений в векторной нормальной форме

состоит в построении частного решения (1) в виде

где Z (t ) - базис решений соответствующего однородного уравнения, записанный в виде матрицы, а векторная функция , заменившая вектор произвольных постоянных, определена соотношением . Искомое частное решение (с нулевыми начальными значениями при t = t 0 имеет вид

Для системы с постоянными коэффициентами последнее выражение упрощается:

Матрица Z (t )Z − 1 (τ) называется матрицей Коши оператора L = A (t ) .

Внешние ссылки

  • exponenta.ru - Теоретическая справка c примерами

Wikimedia Foundation . 2010 .

Теоретический минимум

В теории дифференциальных уравнений существует метод, претендующий на достаточно высокую для этой теории степень универсальности.
Речь идёт о методе вариации произвольной постоянной, применимом к решению различных классов дифференциальных уравнений и их
систем. Это именно тот случай, когда теория - если вывести за скобки доказательства утверждений - минимальна, но позволяет добиваться
значительных результатов, поэтому основной акцент будет сделан на примерах.

Общую идею метода сформулировать довольно просто. Пусть заданное уравнение (систему уравнений) решить сложно или вообще непонятно,
как его решать. Однако видно, что при исключении из уравнения некоторых слагаемых оно решается. Тогда решают именно такое упрощённое
уравнение (систему), получают решение, содержащее некоторое количество произвольных констант - в зависимости от порядка уравнения (количества
уравнений в системе). Затем полагают, что константы в найденном решении в действительности константами не являются, найденное решение
подставляется в исходное уравнение (систему), получается дифференциальное уравнение (или система уравнений) для определения "констант".
Существует определённая специфика в применении метода вариации произвольной постоянной к разным задачам, но это уже частности, которые будут
продемонстрированы на примерах.

Отдельно рассмотрим решение линейных неоднородных уравнений высших порядков, т.е. уравнений вида
.
Общее решение линейного неоднородного уравнения есть сумма общего решения соответствующего однородного уравнения и частного решения
данного уравнения. Предположим, что общее решение однородного уравнения уже найдено, а именно построена фундаментальная система решений (ФСР)
. Тогда общее решение однородного уравнения равно .
Нужно найти любое частное решение неоднородного уравнения. Для этого константы считаются зависящими от переменной .
Далее нужно решить систему уравнений
.
Теория гарантирует, что у этой системы алгебраических уравнений относительно производных от функций есть единственное решение.
При нахождении самих функций константы интегрирования не появляются: ищется ведь любое одно решение.

В случае решения систем линейных неоднородных уравнений первого порядка вида

алгоритм почти не меняется. Сначала нужно найти ФСР соответствующей однородной системы уравнений, составить фундаментальную матрицу
системы , столбцы которой представляют собой элементы ФСР. Далее составляется уравнение
.
Решая систему, определяем функции , находя таким образом, частное решение исходной системы
(фундаментальная матрица умножается на столбец найденных функций ).
Прибавляем его к общему решению соответствующей системы однородных уравнений, которое строится на основе уже найденной ФСР.
Получается общее решение исходной системы.

Примеры.

Пример 1. Линейные неоднородные уравнения первого порядка .

Рассмотрим соответствующее однородное уравнение (искомую функцию обозначим ):
.
Это уравнение легко решается методом разделения переменных:

.
А теперь представим решение исходного уравнения в виде , где функцию ещё предстоит найти.
Подставляем такой вид решения в исходное уравнение:
.
Как видно, второе и третье слагаемое в левой части взаимно уничтожаются - это характерная черта метода вариации произвольной постоянной.

Вот здесь уже - действительно, произвольная постоянная. Таким образом,
.

Пример 2. Уравнение Бернулли .

Действуем аналогично первому примеру - решаем уравнение

методом разделения переменных. Получится , поэтому решение исходного уравнения ищем в виде
.
Подставляем эту функцию в исходное уравнение:
.
И снова происходят сокращения:
.
Здесь нужно не забыть удостовериться, что при делении на не теряется решение. А случаю отвечает решение исходного
уравнения . Запомним его. Итак,
.
Запишем .
Это и есть решение. При записи ответа следует также указать найденное ранее решение , так как ему не соответствует никакое конечное значение
константы .

Пример 3. Линейные неоднородные уравнения высших порядков .

Сразу заметим, что это уравнение можно решить и проще, но на нём удобно показать метод. Хотя некоторые преимущества
у метода вариации произвольной постоянной и в этом примере есть.
Итак, начинать нужно с ФСР соответствующего однородного уравнения. Напомним, что для нахождения ФСР составляется характеристическое
уравнение
.
Таким образом, общее решение однородного уравнения
.
Входящие сюда константы и предстоит варьировать. Составляем сист

Рассмотрим теперь линейное неоднородное уравнение
. (2)
Пусть y 1 ,y 2 ,.., y n - фундаментальная система решений, а - общее решение соответствующего однородного уравнения L(y)=0 . Аналогично случаю уравнений первого порядка, будем искать решение уравнения (2) в виде
. (3)
Убедимся в том, что решение в таком виде существует. Для этого подставим функцию в уравнение. Для подстановки этой функции в уравнение найдём её производные. Первая производная равна
. (4)
При вычислении второй производной в правой части (4) появится четыре слагаемых, при вычислении третьей производной - восемь слагаемых и так далее. Поэтому, для удобства дальнейшего счёта, первое слагаемое в (4) полагают равным нулю. С учётом этого, вторая производная равна
. (5)
По тем же, что и раньше, соображениям, в (5) также полагаем первое слагаемое равным нулю. Наконец, n-я производная равна
. (6)
Подставляя полученные значения производных в исходное уравнение, имеем
. (7)
Второе слагаемое в (7) равно нулю, так как функции y j , j=1,2,..,n, являются решениями соответствующего однородного уравнения L(y)=0. Объединяя с предыдущим, получаем систему алгебраических уравнений для нахождения функций C" j (x)
(8)
Определитель этой системы есть определитель Вронского фундаментальной системы решений y 1 ,y 2 ,..,y n соответствующего однородного уравнения L(y)=0 и поэтому не равен нулю. Следовательно, существует единственное решение системы (8). Найдя его, получим функции C" j (x), j=1,2,…,n, а, следовательно, и C j (x), j=1,2,…,n Подставляя эти значения в (3), получаем решение линейного неоднородного уравнения.
Изложенный метод называется методом вариации произвольной постоянной или методом Лагранжа.

Максимальная степень производной 2 3 4 5 6

Пример №1 . Найдём общее решение уравнения y"" + 4y" + 3y = 9e -3 x . Рассмотрим соответствующее однородное уравнение y"" + 4y" + 3y = 0. Корни его характеристического уравнения r 2 + 4r + 3 = 0 равны -1 и -3. Поэтому фундаментальная система решений однородного уравнения состоит из функций y 1 = e - x и y 2 = e -3 x . Решение неоднородного уравнения ищем в виде y = C 1 (x)e - x + C 2 (x)e -3 x . Для нахождения производных C" 1 , C" 2 составляем систему уравнений (8)

решая которую, находим , Интегрируя полученные функции, имеем
Окончательно получим

Пример №2 . Решить линейные дифференциальные уравнения второго порядка с постоянными коэффициентами методом вариации произвольных постоянных:

y(0) =1 + 3ln3
y’(0) = 10ln3

Решение:
Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.
Решение уравнения будем искать в виде y = e rx . Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
r 2 -6 r + 8 = 0
D = (-6) 2 - 4 1 8 = 4

Корни характеристического уравнения: r 1 = 4, r 2 = 2
Следовательно, фундаментальную систему решений составляют функции:
y 1 = e 4x , y 2 = e 2x
Общее решение однородного уравнения имеет вид:

Поиск частного решения методом вариации произвольной постоянной.
Для нахождения производных C" i составляем систему уравнений:

C" 1 (4e 4x) + C" 2 (2e 2x) = 4/(2+e -2x)
Выразим C" 1 из первого уравнения:
C" 1 = -c 2 e -2x
и подставим во второе. В итоге получаем:
C" 1 = 2/(e 2x +2e 4x)
C" 2 = -2e 2x /(e 2x +2e 4x)
Интегрируем полученные функции C" i:
C 1 = 2ln(e -2x +2) - e -2x + C * 1
C 2 = ln(2e 2x +1) – 2x+ C * 2

Поскольку , то записываем полученные выражения в виде:
C 1 = (2ln(e -2x +2) - e -2x + C * 1) e 4x = 2 e 4x ln(e -2x +2) - e 2x + C * 1 e 4x
C 2 = (ln(2e 2x +1) – 2x+ C * 2)e 2x = e 2x ln(2e 2x +1) – 2x e 2x + C * 2 e 2x
Таким образом, общее решение дифференциального уравнения имеет вид:
y = 2 e 4x ln(e -2x +2) - e 2x + C * 1 e 4x + e 2x ln(2e 2x +1) – 2x e 2x + C * 2 e 2x
или
y = 2 e 4x ln(e -2x +2) - e 2x + e 2x ln(2e 2x +1) – 2x e 2x + C * 1 e 4x + C * 2 e 2x

Найдем частное решение при условии:
y(0) =1 + 3ln3
y’(0) = 10ln3

Подставляя x = 0, в найденное уравнение, получим:
y(0) = 2 ln(3) - 1 + ln(3) + C * 1 + C * 2 = 3 ln(3) - 1 + C * 1 + C * 2 = 1 + 3ln3
Находим первую производную от полученного общего решения:
y’ = 2e 2x (2C 1 e 2x + C 2 -2x +4 e 2x ln(e -2x +2)+ ln(2e 2x +1)-2)
Подставляя x = 0, получим:
y’(0) = 2(2C 1 + C 2 +4 ln(3)+ ln(3)-2) = 4C 1 + 2C 2 +10 ln(3) -4 = 10ln3

Получаем систему из двух уравнений:
3 ln(3) - 1 + C * 1 + C * 2 = 1 + 3ln3
4C 1 + 2C 2 +10 ln(3) -4 = 10ln3
или
C * 1 + C * 2 = 2
4C 1 + 2C 2 = 4
или
C * 1 + C * 2 = 2
2C 1 + C 2 = 2
Откуда:
C 1 = 0, C * 2 = 2
Частное решение запишется как:
y = 2 e 4x ln(e -2x +2) - e 2x + e 2x ln(2e 2x +1) – 2x e 2x + 2 e 2x