Как поделить окружность на 3 равные. Урок «Деление окружности на равные части. Виды обозначений сечений на чертежах

Деление окружности на три равные части. Устанавливают угольник с углами 30 и 60° большим катетом параллельно одной из центровых линий. Вдоль гипотенузы из точки 1 (первое деление) проводят хорду (рис. 2.11, а ), получая второе деление – точку 2. Перевернув угольник и проведя вторую хорду, получают третье деление – точку 3 (рис. 2.11, б ). Соединив точки 2 и 3; 3 и 1 прямыми, получают равносторонний треугольник.

Рис. 2.11.

а, б – с помощью угольника; в – с помощью циркуля

Ту же задачу можно решить с помощью циркуля. Поставив опорную ножку циркуля в нижний или верхний конец диаметра (рис. 2.11, в ), описывают дугу, радиус которой равен радиусу окружности. Получают первое и второе деления. Третье деление находится на противоположном конце диаметра.

Деление окружности на шесть равных частей

Раствор циркуля устанавливают равным радиусу R окружности. Из концов одного из диаметров окружности (из точек 1, 4 ) описывают дуги (рис. 2.12, а, б ). Точки 1, 2, 3, 4, 5, 6 делят окружность на шесть равных частей. Соединив их прямыми, получают правильный шестиугольник (рис. 2.12, б ).

Рис. 2.12.

Ту же задачу можно выполнить с помощью линейки и угольника с углами 30 и 60° (рис. 2.13). Гипотенуза угольника при этом должна проходить через центр окружности.

Рис. 2.13.

Деление окружности на восемь равных частей

Точки 1, 3, 5, 7 лежат на пересечении центровых линий с окружностью (рис. 2.14). Еще четыре точки находят с помощью угольника с углами 45°. При получении точек 2, 4, 6, 8 гипотенуза угольника проходит через центр окружности.

Рис. 2.14.

Деление окружности на любое число равных частей

Для деления окружности на любое число равных частей пользуются коэффициентами, приведенными в табл. 2.1.

Длину l хорды, которую откладывают на заданной окружности, определяют по формуле l = dk, где l – длина хорды; d – диаметр заданной окружности; k – коэффициент, определяемый по табл. 1.2.

Таблица 2.1

Коэффициенты для деления окружностей

Чтобы разделить окружность заданного диаметра 90 мм, например, на 14 частей, поступают следующим образом.

В первой графе табл. 2.1 находят число делений п, т.е. 14. Из второй графы выписывают коэффициент k, соответствующий числу делений п. В данном случае он равен 0,22252. Диаметр заданной окружности умножают на коэффициент и получают длину хорды l= dk = 90 0,22252 = 0,22 мм. Полученную длину хорды откладывают циркулем-измерителем 14 раз на заданной окружности.

Нахождение центра дуги и определение величины радиуса

Задана дуга окружности, центр и радиус которой неизвестны.

Для их определения нужно провести две непараллельные хорды (рис. 2.15, а ) и восставить перпендикуляры к серединам хорд (рис. 2.15, б ). Центр О дуги находится на пересечении этих перпендикуляров.

Рис. 2.15.

Сопряжения

При выполнении машиностроительных чертежей, а также при разметке заготовок деталей на производстве часто приходится плавно соединять прямые линии с дугами окружностей или дугу окружности с дугами других окружностей, т.е. выполнять сопряжение.

Сопряжением называют плавный переход прямой в дугу окружности или одной дуги в другую.

Для построения сопряжений надо знать величину радиуса сопряжений, найти центры, из которых проводят дуги, т.е. центры сопряжений (рис. 2.16). Затем нужно найти точки, в которых одна линия переходит в другую, т.е. точки сопряжений. При построении чертежа сопрягающиеся линии нужно доводить точно до этих точек. Точка сопряжения дуги окружности и прямой лежит на перпендикуляре, опущенном из центра дуги на сопрягаемую прямую (рис. 2.17, а ), или на линии, соединяющей центры сопрягаемых дуг (рис. 2.17, б ). Следовательно, для построения любого сопряжения дугой заданного радиуса нужно найти центр сопряжения и точку (точки ) сопряжения.

Рис. 2.16.

Рис. 2.17.

Сопряжение двух пересекающихся прямых дугой заданного радиуса. Даны пересекающиеся под прямым, острым и тупым углами прямые линии (рис. 2.18, а ). Нужно построить сопряжения этих прямых дугой заданного радиуса R.

Рис. 2.18.

Для всех трех случаев можно применять следующее построение.

1. Находят точку О – центр сопряжения, который должен лежать на расстоянии R от сторон угла, т.е. в точке пересечения прямых, проходящих параллельно сторонам угла на расстоянии R от них (рис. 2.18, б ).

Для проведения прямых, параллельных сторонам угла, из произвольных точек, взятых на прямых, раствором циркуля, равным R, делают засечки и к ним проводят касательные (рис. 2.18, б ).

  • 2. Находят точки сопряжений (рис. 2.18, в). Для этого из точки О опускают перпендикуляры на заданные прямые.
  • 3. Из точки О, как из центра, описывают дугу заданного радиуса R между точками сопряжений (рис. 2.18, в).

Иногда для изготовления трафаретов, шаблонов, рисунков, выкроек, поделок необходимо разделить на 6 частей .
Например, нам потребовалось изготовить шаблон для цветка в виде шестиконечной звезды.

Для тех, кто забыл геометрию, напоминаю, что разделить окружность на 6 частей можно двумя способами:

  1. С помощью транспортира .
  2. С помощью циркуля .

1. Как разделить окружность на 6 частей с помощью транспортира

Разделить окружность с помощью транспортира очень просто.

Проводим линию, соединяющую центр и любую точку (например, точку 1) на окружности. От этой линии с помощью транспортира откладываем угол 60, 120, 180 градусов. Ставим на окружности точки (например, точки 2, 3, 4) Разворачиваем транспортир и делим другую часть окружности таким же способом.

2. Как разделить окружность на 6 частей с помощью циркуля

Бывает, что под рукой нет транспортира. Тогда окружность можно разделить на 6 равных частей с помощью циркуля.

Чертим окружность, например, радиусом 5 см. (окружность красного цвета). Не изменяя радиуса, переносим ножку циркуля на окружность (точка 1) и чертим еще одну окружность. Получаем две точки пересечения черной и красной окружностей 6 и 2.

Переносим ножку циркуля в точку 2 и опять проводим окружность. Получаем точку 3.

Переносим ножку циркуля в точку 3. Опять чертим окружность.

Таким образом, продолжаем делить окружность, пока не разделим ее на 6 равных частей.

С помощью циркуля и линейки можно разделить окружность не на любое число частей. Математики доказали, что на 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17,…, 257,…частей разделить можно, на 7, 9, 11, 13, 14, … частей нельзя.

К сожалению, нет единого способа деления. Приведем самые главные.

1) Деление окружности на 6, 3, 12, 24, …, 3×2 k (k=0,1,2,3,…) равных частей.

Начинаем с деления окружности на 6 частей . Для этого тем же раствором циркуля, которым проводилась окружность, из любой точки окружности, как из центра, надо провести окружность. Затем повторить процедуру, взяв в качестве центра точку пересечения начальной и новой окружностей.

Чтобы поделить окружность на 3 части, надо поделить ее на 6 частей и взять точки через одну (рис. 5а). Чтобы поделить окружность на 12 частей, надо поделить ее на 6 частей и каждую дугу поделить пополам, далее процесс деления дуг пополам можно продолжать неограниченно.

Длина перпендикуляра, опущенного из центра окружности на сторону шестиугольника, является неплохим приближением для длины стороны семиугольника, вписанного в окружность (на рисунке 5а показан штриховкой). Длина перпендикуляра ≈0,866R, длина стороны семиугольника ≈0,868R – точность ≈2%.

2) Деление окружности на 2, 4, 8, 16,…, 2 k (k=1,2,3,…) равные части.

Разделить окружность на 2 части с помощью линейки можно, проведя прямую через центр окружности. Но можно от любой точки окружности 3 раза отложить радиус круга. Начальная и конечная точки делят окружность пополам (через них можно провести диаметр - рис. 5а). Чтобы поделить окружность на 4 части, надо поделить пополам полученные дуги. Последовательное выполнение деления полученных дуг пополам обеспечивает деление окружности на 8, 16 и т.д. частей.

3) Деление окружности на 5 частей.

Принятый в черчении способ построения использует соотношение между стороной правильного десятиугольника (а 10 правильного пятиугольника (а 5 )- a 5 2 =R 2 +a 10 2 . Выполняется построение следующим образом. Проведем 2 перпендикулярные прямые через центр окружности О. А и В – точки их пересечения с окружностью. Из точки А, как из центра, проведем окружность того же радиуса (найдем середину отрезка АО – точку С). Из середины отрезка АО точки С проведем еще одну окружность радиуса СВ. Отрезок ВЕ – равен стороне пятиугольника, ОЕ – десятиугольника (рис. 5б).

Можно делить окружность на 5 и 10 частей способом, изображенным на рисунке 5в. Отрезок ВС - сторона пятиугольника, АС - десятиугольника. О замечательных свойствах пятиугольника и десятиугольника и о том, почему верен способ построения, приведенный на рисунке 5в, мы расскажем в следующей главе.




МедресеКукельдаш (XVIв., Ташкент)

Рисунок 5г демонстрирует прием приближенного геомет-рического решения задачи о делении окружности на любое число частей. Пусть, например, требуется разделить данную окружность на 7 равных частей. Построим на диаметре окружности АВ равносторонний треугольник АВС и разделим диаметр АВ точкой D в отношении AD:AB=2:7 (в общем случае 2:n). Для этого надо провести вспомогательную прямую, на ней отложить n+2 одинаковых отрезка, крайнюю точку соединить с точкой В и через вторую точку провести прямую, параллельную прямой BF. Проведем прямую DC до пересечения с окружностью. Дуга АЕ будет составлять 7-ую часть окружности (в общем случае n-ю). Этот метод при n<11 дает погрешность не более 1%.

Алгоритмы деления окружности на равные части можно использовать, например, для построения опорных точек спиралей - спирали Архимеда, названной так в честь великого древнегреческого ученого Архимеда (III в. до н.э.), впервые изучившего эту линию, и логарифмической спирали.

И построение правильных вписанных многоугольников

Деление окружности на 3, 6 и 12 равных частей. Построение правильного вписанного треугольника, шестиугольника и двенадцатиугольника.

Для построения правильного вписанного треугольника надо из точки А пересечения центровой линии с окружностью отложить раз­мер, равный радиусу R, в одну и другую сторону. Получим вершины 1 и 2(рис. 26, а ). Вершина 3 лежит на противоположном точке А конце диаметра.

1/3 1/6 1/12

а) б) в)

Рис. 26

Сторона шестиугольника равна радиусу окружности. Деление на 6 частей показано на рис. 26, б.

Для того чтобы разделить окружность на 12 частей, надо раз­мер, равный радиусу, отложить на окружности в одну и другую сто­рону из четырех центров (рис. 26, в).

Деление окружности на 4 и 8

вписанного четырехугольника и восьмиугольника.

Рис. 27

На 4 части окружность делится двумя взаимно перпендикулярными центровыми линиями. Для деления на 8 частей надо дугу, равную четверти окружности, разделить пополам (рис.27.)

Деление окружности на 5 и 10 равных частей. Построение правильного

вписанного пятиугольника и десятиугольника.

1/5 1/10


а) б)

Рис. 28

Половину любого диаметра (радиус) делят пополам (рис. 28, а ), получают точку N. Из точки N, как из центра, проводят дугу радиу­сом R 1 , равным расстоянию от точки N до точки А , до пересечения со второй половиной этого диаметра, в точке Р. Отрезок АР равен хорде, стягивающей дугу, длина которой равна 1/5 длины окружности. Делая засечки на окружности радиусом R 2 , равным отрезку АР, делят окруж­ность на пять равных частей. Начальную точку выбирают в зависимости от расположения пятиугольника. ( ! Нельзя выполнять засечки в одну сторону, так как происходит набегание ошибок и последняя сторона пятиугольника получается перекошенной.)

Деление окружности на 10 равных частей выполняют аналогично делению окружности на пять равных частей (рис. 28, б ), но сначала делят окружность на пять частей, начиная построение из точки А, а затем из точки В, находящейся на противоположном конце диаметра. Можно использовать для построения отрезок ОР – длина которого равна хорде 1/10 длины окружности.

Деление окружности на 7 равных частей.

1/7


а) б) в)

Рис. 29

Из любой точки (например, А ) окружности, радиусом заданной окружности рповодят дугу до пересечения с окружностью в точках В и D (рис. 29,а). Соединив точки В и D прямой, получают отрезок ВС, равный хорде, которая стягивает дугу, составляющую 1/7 длины окружности. Засечки выполняют в последовательности, указанной на рис. 29 б .

Сопряжения

Часто в конструкции деталей одна поверхность переходит в другую. Обычно эти переходы делают плавными, что повышает прочность деталей и делает их более удобными в работе. Сопряжение – это плавный переход от одной линии к другой. Построение сопряжений сводится к трем моментам: 1)определение центра сопряжения; 2)нахождение точек сопряжения; 3)построение дуги сопряжения заданного радиуса. Для построения сопряжения чаще всего задан радиус сопряжения. Центр и точка сопряжения определяются графически.

Окружностью называется замкнутая кривая линия, каждая точка которой расположена на одинаковом расстоянии от одной точки О, называемой центром.

Прямые линии, соединяющие любую точку окружности с её центром, называют радиусами R.

Прямая АВ, соединяющая две точки окружности и проходящая через её центр О, называется диаметром D.

Части окружностей называются дугами .

Прямая СD, соединяющая две точки на окружности, называется хордой .

Прямая МN,которая имеет только одну общую точку с окружностью называется касательной .

Часть круга, ограниченная хордой СD и дугой, называется сигментом .

Часть круга, ограниченная двумя радиусами и дугой, называется сектором .

Две взаимно перпендикулярные горизонтальная и вертикальная линии, пересекающиеся в центре окружности, называются осями окружности .

Угол, образованный двумя радиусами КОА, называется центральным углом .

Два взаимно перпендикулярных радиуса составляют угол в 90 0 и ограничивают 1/4 окружности.

Деление окружности на части

Проводим окружность с горизонтальной и вертикальной осями, которые делят её на 4-ре равные части. Проведённые с помощью циркуля или угольника под 45 0 , две взаимно перпендикулярные линии делят окружность на 8-мь равных частей.

Деление окружности на 3 и 6 равных частей (кратные 3 трём)

Для деления окружности на 3, 6 и кратное им количество частей, проводим окружность заданного радиуса и соответствующие оси. Деление можно начинать от точки пересечения горизонтальной или вертикальной оси с окружностью. Заданный радиус окружности последовательно откладывается 6-ть раз. Затем полученные точки на окружности последовательно соединяются прямыми линиями и образуют правильный вписанный шести-угольник. Соединение точек через одну даёт равносторонний треугольник, и деление окружности на три равные части.

Построение правильного пятиугольника выполняется следующим образом. Проводим две взаимно перпендикулярные оси окружности равные диаметру окружности. Делим правую половину горизонтального диаметра пополам с помощью дуги R1. Из полученной точки "а" в середине этого отрезка радиусом R2 проводим дугу окружности до пересечения с горизонтальным диаметром в точке "b". Радиусом R3 из точки "1" проводят дугу окружности до пересечения с заданной окружностью (т.5) и получают сторону правильного пятиугольника. Расстояние "b-О" даёт сторону правильного десятиугольника.

Деление окружности на N-ное количество одинаковых частей (построение правильного многоугольника с N сторон)

Выполняется следующим образом. Проводим горизонтальную и вертикальную взаимно перпендикулярные оси окружности. Из верхней точки "1" окружности проводим под произвольным углом к вертикальной оси прямую линию. На ней откладываем равные отрезки произвольной длины, число которых равно числу частей на которое мы делим данную окружность, например 9. Конец последнего отрезка соединяем с нижней точкой вертикального диаметра. Проводим линии, параллельные полученной, из концов отложенных отрезков до пересечения с вертикальным диаметром, разделив таким образом вертикальный диаметр данной окружности на заданное количество частей. Радиусом равным диаметру окружности, из нижней точки вертикальной оси проводим дугу MN до пересечения с продолжением горизонтальной оси окружности. Из точек M и N проводим лучи через чётные (или нечётные) точки деления вертикального диаметра до пересечения с окружностью. Полученные отрезки окружности будут являться искомыми, т.к. точки 1, 2, …. 9 делят окружность на 9-ть (N) равных частей.

Для нахождения центра дуги окружности нужно выполнить следующие построения: на данной дуге отмечаем четыре произвольные точки А, В, С, D и соединяем их попарно хордами АВ и СD. Каждую из хорд при помощи циркуля делим пополам, получив, таким образом, перпендикуляр, проходящий через середину соответствующей хорды. Взаимное пересечение этих перпендикуляров даёт центр данной дуги и соответствующей ей окружности.