Силы, действующие в атмосфере, и их влияние на ветер. Уравнения статики атмосферы. Тензор упругих напряжений. Связь с вязкостью

Раздел метеорологии, в котором устанавливаются закономерности строения атмосферы при отсутствии движения её относительно поверхности Земли, носит название статики атмосферы .

Несмотря на то, что атмосфера обычно находится в движении относительно земной поверхности (наблюдается ветер), изучение её статического состояния оправданно, так как устанавливаемые законы распределения давления и плотности воздуха по высоте с одинаковой точностью справедливы для статичной и движущейся атмосферы. Законы статики используются при решении многих практических задач. Наиболее важная из них – определение высоты прибора, станции или летательного аппарата по измеренному давлению (барометрический метод расчета высот.)

Силы, действующие в атмосфере в состоянии равновесия

Система находится в равновесии (покое), если результирующая всех сил, действующих на систему, равна нулю.

Силы, действующие в атмосфере, можно разделить на две группы: массовые и поверхностные.

К массовым относятся силы, которые действуют на каждый элемент массы (или объем) независимо от того, существуют ли рядом с рассматриваемым элементом массы (объема) другие воздушные частицы.

Массовыми силами , действующими на атмосферу в целом и на отдельные её части, являются сила тяжести и отклоняющая сила вращения Земли (сила Кориолиса ).

Поверхностные силы представляют собой силы взаимодействия некоторого объема воздуха и окружающей среды. Эти силы приложены к поверхностным частицам выделенного объема.

Поверхностные силы , действующие в атмосфере, - это сила давления и сила трения . Но кориолисова сила и сила трения появляются лишь при наличии движения атмосферы относительно поверхности Земли или одних её частей относительно других. Поэтому силами, действующими в атмосфере в состоянии покоя, являются сила тяжести и сила давления (см. приложение).

Ускорение свободного падения (ускорение силы тяжести) g представляет собой результирующую (векторную сумму) ускорения силы гравитационного (ньютонова) притяжения g a и центробежной силы Z :

g = g a + Z

Центробежная сил возникает вследствие суточного вращения Земли, в котором полностью участвует и атмосфера. В каждой точке она направлена вдоль перпендикуляра к оси вращения Земли.

Направление, в котором действует сила тяжести, носит название истинной вертикали , а поверхность, в каждой точке которой сила тяжести перпендикулярна к ней, - уровенной поверхности .

Под влиянием касательной (к меридиану) составляющей центробежной силы Земля приобрела сплюснутую форму. С достаточной для практики степенью точности уровенные поверхности можно считать эллипсоидами вращения. При решении метеорологических задач зависимость ускорения свободного падения g от расстояния r до центра Земли и широты места φ записывается в виде:

g (z , φ) = g 0 (1 - а 1 cos 2φ)(1- а 2 z ),

где g 0 = 9,80665 м/с 2 – ускорение свободного падения на широте 45º и на уровне моря; z – высота точки над уровнем моря; а 1 = 0,0026 и а 2 = 3,14 ×10 -7 м -1 – постоянные /Матвеев/.

Зависимость ускорения свободного падения от широты и высоты учитывается при решении некоторых задач, рассматриваемых в метеорологии. К числу таких задач относится, прежде всего, измерение давления воздуха с помощью ртутных барометров. Высота столба ртути в барометре при фиксированном давлении зависит от ускорения свободного падения на данной широте и высоте станции над уровнем моря, а также от температуры ртути. Ускорение свободного падения нужно рассматривать как функцию высоты и широты при решении вопросов, относящихся к строению и физическим процессам, происходящим на больших высотах. Это, например, вопрос о плотности и составе воздуха на больших высотах, об ускользании газов из земной атмосферы, о высоте и форме верхней границы атмосферы и др. Во всех случаях зависимость g от φ и z можно учесть путем перехода от высоты к вводимой геопотенциальной высоте.

Силы, действующие в атмосфере.

Все силы, рассматриваемые в метеорологи, беруться на единицу массы. Если давление в горизонтальной плоскости неоднаково, то возникает поток воздуха в сторону наименьшего давления. Другими словами, возникает сила, заставляющая воздух двигаться. Она называется солой барического градиента и на единицу массы равна:

где ρ – плотность воздуха. Градиент давления dp/dn направлен в сторону роста давления. Движение, вызванное разностью давления, направлено в противоположную сторону. Поэтому, чтобы значения силы барического градиента было противоположным, в уравнении ставят знак минус.

Кроме этого есть еще и другие силы, которые оказывают влияние на движение воздуха. Это силы Кариолиса К, центробежная сила Z, трения F тр и сила тяжести g.

Сила Кариолиса К или, иначе, отклоняющая сила вращения Земли, является инерционной кажущейся силой. Она возникает потому, что Земля вращается вокруг своей оси и на единицу массы равна:

K = 2ω С sinφ, (14)

где ω угловая скорость вращения Земли, равная ω = 2 π /Т, где Т – период обращения Земли вокруг своей оси, Т = 24*60*60с;

С –скорость движения воздуха;

φ – широта места.

Таким образом, сила Кариолиса зависит от скорости движения и широты места. Сила Кариолиса действует только на движущиеся тела перпендикулярно направлению движения. Она наибольшая на полюсах, а на экваторе – равна нулю. В результате, тела перемещаются вдоль земной плоскости, отклоняются в северном полушарии вправо, а в южном – влево от перво начального направления их движения.

Центробежная сила Z. Центробежная сила является также кажущейся, инерционной силой, возникающей при движении по криволинейной траектории. Она направлена по радиусу от центра и на единицу массы равна:

Z = C 2 /r, (15)

где r – радиус кривизны.

Аналитическое выражение для силы трения F тр имеет сложный вид. В навигации решаются задачи в, так называемой геострофической модели, без учета силы трения, а сила трения вводится затем коэффициентом. И, наконец, есть еще известная всем сила тяжести g. Она часто рассматривается как константа.

Сила тяжести g. Несравненно больше других сил (9,81 ~ 10 м/с 2). Она действует вдоль вертикальной оси. Однако мы не замечаем в атмосфере заметных вертикальных движений, направленных к поверхности Земли (вниз). Это связано с тем, что такая большая сила уравновешивается столь же большой силой барического градиента по вертикали. Из основного уравнения статики следует:

g = - dp/dz (16)

Как видим, в левой части уравнения стоит сила тяжести, а в правой записана сила барического градиента по вертикали. Вертикальный барический градиент – большая величина, а значит и сила барического градиента велика. Аналогично, можно констатировать, что очень большая сила барического градиента по вертикали, не вызывает движений вверх так как уравновешивается силой тяжести. Эти силы находятся на одной оси, направленные в разные стороны и обычно уравновешивают друг друга.

Таким образом, на ветер, под которым мы понимаем горизонтальное движение воздуха, сила тяжести g не влияет. Ее проекция на горизонтальную плоскость равна нулю. Силы Кариолиса К и центробежная сила Z появляются лишь после того, как уже возникло движение. То есть, единственной силой, вызывающей движение воздуха, является сила барического градиента по горизонтали G r . Разность давлений в разных местах порождает движение воздуха, стремящееся сгладить эти различия. Остальные сила разворачивают движение относительно первоначального направления и тормозят его.

В атмосфере постоянно наблюдаются движения воздуха. Непосредственной причиной их служит неравномерное распределение давления, обусловленное в свою очередь неоднородностью поля температуры. Каковы же силы вызывающие эти движения:

3.1 Силы, действующие в атмосфере.

Силы, действующие в атмосфере можно разделить на 2 группы: массовые и поверхностные. Массовые – это силы, которые действуют на каждый элемент массы (объема) независимо от того, существуют ли рядом другие воздушные частицы. Такими силами являются:сила тяжести, отклоняющая сила вращения Земли,центробежная сила.Поверхностные силы представляют собой силы взаимодействия некоторого объема воздуха и окружающей среды. Это силабарического градиента и вязкие силы.

В механике доказывается, что при движении любого тела (в том числе воздуха) относительно вращающейся Земли оно отклоняется от первоначального направления вправо в северном полушарии и влево – в южном, сила направлена под углом 90 0 к скорости. Она не меняет модуль , а лишь меняет направление. Причина возникновения силы заключается в том, что тело сохраняет свое направление движения, а суточное вращение Земли изменяет направление меридианов и параллелей. Поэтому с Земли кажется, что тела откланяются от направления меридианов и параллелей. Горизонтальная составляющая силы Кориолиса равнаA= 2*v*Sinφ, гдеv– скорость движения тела. Следовательно эта сила увеличивается по направлению к полюсам (за счетSinφ) и с увеличением скоростиv. На экваторе она равна 0.

3.1.3 Сила барического градиента.

В атмосфера почти всегда наблюдаются горизонтальные градиенты атмосферного давления. При этом воздух стремится перемещаться из мест с более высоким давлением в места с более низким давлением. Мерой неравномерности давления является горизонтальный барический градиент (
. Поэтому чем больше барический градиент, тем интенсивнее движение воздуха. Если барический градиент отнести к единице массы, т.е.
, то по смыслу (и по размерности) это выражение является ускорением или силой, отнесенной к ед. массы. По направлению эта сила в каждой точке барического поля совпадает с нормалью к изобаре в сторону убывания давления. Сила барического градиента является единственной силой, которая вызывает движение воздуха. Все другие силы могут лишь тормозить движение или отклонять его от направления градиента.

Если бы на воздух действовало только ускорение, которое получает воздух под действием барического градиента, то движение воздуха постоянно бы ускорялось. Однако в действительности скорость ветра не может превышать нескольких десятков м/с. Из этого следует, что кроме силы барического градиента на воздух действуют другие силы, которые уравновешивают силу градиента.

3.1.4. Сила трения

Сила трения в атмосфере возникает, когда объемы (слои) движущегося воздуха имеют разные скорости. Между слоями воздуха имеет место определенная вязкость, которая препятствует скольжению их относительно друг друга. Поэтому чем больше скорость воздуха (их разности), тем больше сила трения или R= -kv(гдеk– коэффициент трения), тем сильнее затормаживается движение и изменяется его направление.

Природа вязкости между слоями воздуха двоякая: она молекулярная и турбулентная. Однако расчеты показывают, что коэффициент турбулентной вязкости на несколько порядков больше молекулярного. В связи с этим молекулярной вязкостью можно пренебречь. Тогда
, гдеR– сила трения;p– плотность воздуха; τ – касательное напряжение внутреннего трения;z– направление движения воздуха (перпендикулярно к стенке).

С высотой влияние трения в атмосфере быстро уменьшается. И на уровне 1000-1500 м оно практически исчезает. Эта высота потому называется уровнем трения, а стой атмосферы – слоем трения (пограничным слоем).

При неустойчивой атмосфере уровень трения выше, чем при устойчивой.

3.1.5. Центробежная сила. Она возникает в том случае, если движение воздуха происходит по криволинейной траектории. В этом случае она равна: с =v 2 /r, гдеv– скорость движения;r– радиус кривизны движения. Для атмосферных движений с обычно мала, т.к. велико значениеr.

3.1.6. Уравнение движения

Таким образом в атмосфере на объем воздуха действуют выше названные силы. Уравнение движения в общем виде будет иметь вид:

3.1.7. Геострофический ветер, его изменения с высотой

Рассмотрим один из частных случаев движения воздуха в атмосфере. Пусть частица воздуха, имеющая единицу массы, попала в атмосферу. При этом трение отсутствует и мы рассматриваем горизонтальное движение. Тогда под действием силы градиента давления частица начнет двигаться от высокого давления к низкому вдоль нормали к изобаре. Но как только она начнет двигаться на нее начнет действовать сила Кориолиса, которая будет отклонять движение частицы вправо от направления под прямым углом. В конце-концов, когда эти две силы уравновесятся частица будет совершать прямолинейное равномерное движение.

Такое движение называется геострофическим ветром.

Математически такое движение можно описать так.
, гдеG– сила барического градиента; А – сила Кориолиса. Или
= 2*v g *Sinφ, отсюда
.

Таким образом, геострофический ветер пропорционален градиенту давления и обратно пропорционален широте. На экваторе он не существует (т.к. = бесконечности). Для стандартных условий (t= 0 0 C,P= 1000гПа):
, где ∆P/∆n– в гПа на 100км,v g – в м/с.

Т.к. при геострофическом ветре сила трения не принимается во внимание, то такой ветер может наблюдаться лишь выше слоя трения, т.е. выше 1-1,5 км. С высотой из-за уменьшения ρ геострофический ветер усиливается.

Более общим случаем движения воздуха без трения является градиентное в поле криволинейных изобар (циклон, антициклон). В этом случае в уравнении движения входит помимо силы барического градиента и силы Кориолиса еще третья сила – центробежная, т.е.
- 2*v*Sinφ-
; илиv гр = - *r*Sinφ+
- для циклона.

Графически градиентный ветер можно изобразить следующим образом:

Здесь в циклоне силу барического градиента уравновешивают 2 силы А и С. Градиентный ветер направляется вправо под прямым углом к градиенту.

В антициклоне сила Кориолиса уравновешивается Gи С.

В обоих случаях градиентный ветер направлен по касательной к изобаре вправо от барического градиента.

Расчеты градиентного ветра (v гр) можно выразить через геострофический:

V гр.циклон =v g -
;V гр.антициклон =v g +
.

У земной поверхности воздух испытывает трение при движении относительно Земли. Особенно заметно влияние поверхности примерно до высот 50-100 м над Землей. Этот слой называется приземным (до 1-1,5 км – пограничный). В этом слое при формировании ветра необходимо учитывать силу трения, которая тормозит движение и меняет его направление. Рассмотрим схему соотношения сил в атмосфере в этом случае. В случае прямолинейных изобар барический градиент направлен перпендикулярно изобарам (G); ветерvи его направление уже будет дуть не вдоль изобар, а под острым углом от силы барического градиента α (вправо). Сила тренияRнаправлена в противоположную сторону движения воздуха. А уравновешивать силу барического градиента должны 2 силы: сила Кориолиса А и сила трения (А+R). Тогда из построения прямоугольника и учитывая, что сила А направлена под прямым углом кvи в право от него, находим положение силы Кориолиса.

Для определения скорости реального ветра нужно составить уравнение, где сумма трех сил равна нулю:G+A+R=0, подставив выражение для каждой силы, можно прийти к выражению дляv:v=*
, гдеk– коэффициент трения. Следовательно скорость ветра у Земли пропорциональна барическому градиенту и обратно пропорциональна коэффициенту трения и широте. Угол α между ветром и барическим градиентом составляет в умеренных широтах 60-75 0 над океанами и 40-50 0 – над сушей.

При круговых изобарах, т.е. в циклонах и антициклонах у Земли следует учитывать еще и центробежную силу С. Схема направления движения в этих случаях будет:

С высотой в слое трения скорость ветра растет, а направление приближается к изобаре (слева низкое давление). Изменение ветра с высотой в слое трения можно представить годографом, т.е. кривой которая еще называется спиралью Экмана. То ветер с высотой как бы вращается вправо.

В слое трения у поверхности обнаруживается суточный ход ветра, с maxв 14 часов,minночью или утром. Начиная примерно с высоты 500 м суточный ход обратный –maxночью,minднем. Такой суточный ход объясняется суточным ходом турбулентного обмена. Днем турбулентностьmax, поэтому сверху к поверхности опускаются вихри с повышенной скоростью, а снизу вверх – с пониженной. Поэтому днем внизуmax, а вверхуminскорости. Ночью внизуminинтенсивности турбулентности, а вверху, поэтому, вихри с повышенной скоростью остаются там и скорости здесь достигаютmax.

Силы, действующие в атмосфере в состоянии равновесия

СТАТИКА АТМОСФЕРЫ

Система находится в равновесии (покое), если результирующая всех сил, действующих на систему равна нулю.

Силы подразделяются на массовые и поверхностные.

Массовыми силами, действующими на атмосферу в целом и на ее части, являются сила тяжести и отклоняющая сила вращения Земли (кориолисова сила).

Поверхностные силы, действующие в атмосфере, - это сила давления и сила трения.

Однако кориолисова сила и сила трения появляются лишь при движении атмосферы относительно поверхности Земли или одних ее частей относительно других. Поэтому силами, действующими в атмосфере в состоянии покоя, являются сила тяжести и сила давления.

Пусть атмосфера находится в состоянии покоя по отношению к земной поверхности. Тогда горизонтальная составляющая градиента давления должна обращаться в нуль (в противном случае воздух придет в движение). Для этого необходимо и достаточно, чтобы изобарические поверхности совпадали с уровенными.

Выделим в атмосфере две изобарические поверхности, расположенные на высотах z и z+dz (рис.). Между изобарическими поверхностямиp p+dp выделим объем воздуха с горизонтальными основаниями 1 м 2 . На нижнее основание действует сила давления p, направленное снизу вверх; на верхнее – сила давления p+dp, направленная сверху вниз. Силы давления, действующие на боковые грани выделенного объема взаимно уравновешиваются.

Рис. К выводу уравнения статики.

На этот объем действует сила тяжести Р, направленная по вертикали вниз и равная по модулю

Спроектируем все силы на ось z. Поскольку сумма всех сил равна нулю, то и сумма этих проекций равна нулю:

Подставив выражение силы тяжести, получим .

Разделив на dz определим второй вид основного уравнения статики атмосферы:

Левая часть представляет собой вертикальную составляющую градиента давления, правая – силу тяжести, действующую на единичный объем воздуха. Таким образом, уравнение статики выражает равновесие двух сил – градиента давления и силы тяжести.

Из уравнения статики можно сделать три важных вывода:

1. Увеличению высоты (dz>0) соответствует отрицательное приращение давления (dp>0), что означает убывае давления с высотой. Уравнение статики выполняется с высокой точностью и в случае движения атмосферы.

2. Выделим в атмосфере вертикальный столб воздуха с основанием 1м2 и высотой от уровня z до верхней границы атмосферы . Вес этого столба равен . Проинтегрировав обе части () в пределах от z , где давление р, до , давление равно 0 (по определению верхней границы), получим: , или .

Таким образом, приходим ко второму определения понятия давления. Атмосферное давление на каждом уровне равно весу столба воздуха единичного поперечного сечения и высотой от данного уровня до верхней границы атмосферы. Отсюда понятен физический смысл убывания давления с высотой.

3. Уравнения статики позволяют сделать вывод о скорости убывания давления с высотой. Уменьшение давления тем больше, чем больше плотность воздуха и ускорение свободного падения. Основную роль играет плотность. Плотность воздуха с увеличением высоты падает. Чем выше расположен уровень, тем меньше убывание давления.

Если точки расположены на одной и той же изобарической поверхности, то плотность воздуха будет зависеть только от температуры в этих точках. В точке с более низкой температурой плотность выше. Это означает, что при подъеме на одну и ту же высоту понижение давления в точке с более высокой температурой меньше, чем в точке с более низкой температурой.

В холодной воздушной массе давление с высотой убывает быстрее, чем в теплой. Подтверждением этого вывода является тот факт, что на высотах (в средней и верхней тропосфере) в холодных воздушных массах преобладает низкое давление, а в теплых – высокое.

Оценим значение вертикального градиента. При нормальных условиях вблизи уровня моря r=1.29 кг/м3, g=9.81 м/с2. Подставив эти значения в (), найдем: G=12ю5 гПа/100м.



Силы, действующие в атмосфере в состоянии равновесия

СТАТИКА АТМОСФЕРЫ

Система находится в равновесии (покое), если результирующая всех сил, действующих на систему равна нулю.

Силы подразделяются на массовые и поверхностные.

Массовыми силами, действующими на атмосферу в целом и на ее части, являются сила тяжести и отклоняющая сила вращения Земли (кориолисова сила).

Поверхностные силы, действующие в атмосфере, - это сила давления и сила трения.

Однако кориолисова сила и сила трения появляются лишь при движении атмосферы относительно поверхности Земли или одних ее частей относительно других. Поэтому силами, действующими в атмосфере в состоянии покоя, являются сила тяжести и сила давления.

Пусть атмосфера находится в состоянии покоя по отношению к земной поверхности. Тогда горизонтальная составляющая градиента давления должна обращаться в нуль (в противном случае воздух придет в движение). Для этого необходимо и достаточно, чтобы изобарические поверхности совпадали с уровенными.

Выделим в атмосфере две изобарические поверхности, расположенные на высотах z и z+dz (рис.). Между изобарическими поверхностямиp p+dp выделим объем воздуха с горизонтальными основаниями 1 м 2 . На нижнее основание действует сила давления p, направленное снизу вверх; на верхнее – сила давления p+dp, направленная сверху вниз. Силы давления, действующие на боковые грани выделенного объема взаимно уравновешиваются.

Рис. К выводу уравнения статики.

На этот объем действует сила тяжести Р, направленная по вертикали вниз и равная по модулю

Спроектируем все силы на ось z. Поскольку сумма всех сил равна нулю, то и сумма этих проекций равна нулю:

Подставив выражение силы тяжести, получим .

Разделив на dz определим второй вид основного уравнения статики атмосферы:

Левая часть представляет собой вертикальную составляющую градиента давления, правая – силу тяжести, действующую на единичный объем воздуха. Таким образом, уравнение статики выражает равновесие двух сил – градиента давления и силы тяжести.

Из уравнения статики можно сделать три важных вывода:

1. Увеличению высоты (dz>0) соответствует отрицательное приращение давления (dp>0), что означает убывае давления с высотой. Уравнение статики выполняется с высокой точностью и в случае движения атмосферы.

2. Выделим в атмосфере вертикальный столб воздуха с основанием 1м2 и высотой от уровня z до верхней границы атмосферы . Вес этого столба равен . Проинтегрировав обе части () в пределах от z , где давление р, до , давление равно 0 (по определению верхней границы), получим: , или .


Таким образом, приходим ко второму определения понятия давления. Атмосферное давление на каждом уровне равно весу столба воздуха единичного поперечного сечения и высотой от данного уровня до верхней границы атмосферы. Отсюда понятен физический смысл убывания давления с высотой.

3. Уравнения статики позволяют сделать вывод о скорости убывания давления с высотой. Уменьшение давления тем больше, чем больше плотность воздуха и ускорение свободного падения. Основную роль играет плотность. Плотность воздуха с увеличением высоты падает. Чем выше расположен уровень, тем меньше убывание давления.

Если точки расположены на одной и той же изобарической поверхности, то плотность воздуха будет зависеть только от температуры в этих точках. В точке с более низкой температурой плотность выше. Это означает, что при подъеме на одну и ту же высоту понижение давления в точке с более высокой температурой меньше, чем в точке с более низкой температурой.

В холодной воздушной массе давление с высотой убывает быстрее, чем в теплой. Подтверждением этого вывода является тот факт, что на высотах (в средней и верхней тропосфере) в холодных воздушных массах преобладает низкое давление, а в теплых – высокое.

Оценим значение вертикального градиента. При нормальных условиях вблизи уровня моря r=1.29 кг/м3, g=9.81 м/с2. Подставив эти значения в (), найдем: G=12ю5 гПа/100м.