Формула длины отрезка по координатам. Нахождение координат середины отрезка: примеры, решения. Определение координат середины отрезка через координаты радиус-векторов его концов

Собственный вектор квадратной матрицы - это такой вектор, который при умножении на заданную матрицу дает в результате коллинеарный вектор. Простыми словами, при умножении матрицы на собственный вектор последний остается тем же самым, но умноженным на некоторое число.

Определение

Собственный вектор - это ненулевой вектор V, который при умножении на квадратную матрицу Mпревращается в самого себя, увеличенного на некоторое число λ. В алгебраической записи это выглядит как:

M × V = λ × V,

где λ - собственное число матрицы M.

Рассмотрим числовой пример. Для удобства записи числа в матрице будет отделять точкой с запятой. Пусть у нас есть матрица:

  • M = 0; 4;
  • 6; 10.

Умножим ее на вектор-столбец:

  • V = -2;

При умножении матрицы на вектор-столбец мы получаем также вектор-столбец. Строгим математическим языком формула умножения матрицы 2 × 2 на вектор-столбец будет выглядеть так:

  • M × V = M11 × V11 + M12 × V21;
  • M21 × V11 + M22 × V21.

М11 означает элемент матрицы M, стоящий в первой строке и первом столбце, а M22 - элемент, расположенные во второй строке и втором столбце. Для нашей матрицы эти элементы равны M11 = 0, М12 = 4, М21 = 6, М22 10. Для вектора-столбца эти значения равны V11 = –2, V21 = 1. Согласно этой формуле мы получим следующий результат произведения квадратной матрицы на вектор:

  • M × V = 0 × (-2) + (4) × (1) = 4;
  • 6 × (-2) + 10 × (1) = -2.

Для удобства запишем вектор столбец в строку. Итак, мы умножили квадратную матрицу на вектор (-2; 1), в результате чего получили вектор (4; -2). Очевидно, что это тот же вектор, умноженный на λ = -2. Лямбда в данном случае обозначает собственное число матрицы.

Собственный вектор матрицы - это коллинеарный вектор, то есть объект, который не изменяет своего положения в пространстве при умножении его на матрицу. Понятие коллинеарности в векторной алгебре сходно с термином параллельности в геометрии. В геометрической интерпретации коллинеарные вектора - это параллельные направленные отрезки разной длины. Еще со времен Евклида мы знаем, что у одной прямой существует бесконечное количество параллельных ей прямых, поэтому логично предположить, что каждая матрица обладает бесконечным количеством собственных векторов.

Из предыдущего примера видно, что собственными векторами могут быть и (-8; 4), и (16; -8), и (32, -16). Все это коллинеарные вектора, соответствующие собственному числу λ = -2. При умножении исходной матрицы на эти вектора мы все так же будет получать в результате вектор, который отличается от исходного в 2 раза. Именно поэтому при решении задач на поиск собственного вектора требуется найти только линейно независимые векторные объекты. Чаще всего для матрицы размером n × n существует n-ное количество собственных векторов. Наш калькулятор заточен под анализ квадратных матриц второго порядка, поэтому практически всегда в результате будут найдены два собственных вектора, за исключением случаев, когда они совпадают.

В примере выше мы заранее знали собственный вектор исходной матрицы и наглядно определили число лямбда. Однако на практике все происходит наоборот: в начале находится собственные числа и только затем собственные вектора.

Алгоритм решения

Давайте вновь рассмотрим исходную матрицу M и попробуем найти оба ее собственных вектора. Итак, матрица выглядит как:

  • M = 0; 4;
  • 6; 10.

Для начала нам необходимо определить собственное число λ, для чего требуется вычислить детерминант следующей матрицы:

  • (0 − λ); 4;
  • 6; (10 − λ).

Данная матрица получена путем вычитания неизвестной λ из элементов на главной диагонали. Детерминант определяется по стандартной формуле:

  • detA = M11 × M21 − M12 × M22
  • detA = (0 − λ) × (10 − λ) − 24

Так как наш вектор должен быть не нулевым, полученное уравнение принимаем как линейно зависимое и приравниваем наш детерминант detA к нулю.

(0 − λ) × (10 − λ) − 24 = 0

Раскроем скобки и получим характеристическое уравнение матрицы:

λ 2 − 10λ ­− 24 = 0

Это стандартное квадратное уравнение, которое требуется решить через дискриминант.

D = b 2 − 4ac = (-10) × 2 − 4 × (-1) × 24 = 100 + 96 = 196

Корень из дискриминанта равен sqrt(D) = 14, следовательно, λ1 = -2, λ2 = 12. Теперь для каждого значения лямбда требуется найти собственный вектор. Выразим коэффициенты системы для λ = -2.

  • М − λ × E = 2; 4;
  • 6; 12.

В данной формуле E - это единичная матрица. На основании полученной матрицы составим систему линейных уравнений:

2x + 4y = 6x + 12y,

где x и y - элементы собственного вектора.

Соберем все иксы слева, а все игреки справа. Очевидно, что - 4x = 8y. Разделим выражение на - 4 и получим x = –2y. Теперь мы можем определить первый собственный вектор матрицы, приняв любые значения неизвестных (вспоминаем про бесконечность линейно зависимых собственных векторов). Примем y = 1, тогда x = –2. Следовательно, первый собственный вектор выглядит как V1 = (–2; 1). Вернитесь в начало статьи. Именно на этот векторный объект мы умножали матрицу для демонстрации понятия собственного вектора.

Теперь отыщем собственный вектор для λ = 12.

  • М - λ × E = -12; 4
  • 6; -2.

Составим такую же систему линейных уравнений;

  • -12x + 4y = 6x − 2y
  • -18x = -6y
  • 3x = y.

Теперь примем x = 1, следовательно, y = 3. Таким образом, второй собственный вектор выглядит как V2 = (1; 3). При умножении исходной матрицы на данный вектор, в результате всегда будет такой же вектор, умноженный на 12. На этом алгоритм решения заканчивается. Теперь вы знаете, как вручную определить собственный вектор матрицы.

  • определитель;
  • след, то есть сумму элементов на главной диагонали;
  • ранг, то есть максимальное количество линейно независимых строк/столбцов.

Программа действует по выше приведенному алгоритму, максимально сокращая процесс решения. Важно указать, что в программе лямбда обозначена литерой «c». Давайте рассмотрим численный пример.

Пример работы программы

Попробуем определить собственные вектора для следующей матрицы:

  • M = 5; 13;
  • 4; 14.

Введем эти значения в ячейки калькулятора и получим ответ в следующем виде:

  • Ранг матрицы: 2;
  • Детерминант матрицы: 18;
  • След матрицы: 19;
  • Расчет собственного вектора: c 2 − 19,00c + 18,00 (характеристическое уравнение);
  • Расчет собственного вектора: 18 (первое значение лямбда);
  • Расчет собственного вектора: 1 (второе значение лямбда);
  • Система уравнений вектора 1: -13x1 + 13y1 = 4x1 − 4y1;
  • Система уравнений вектора 2: 4x1 + 13y1 = 4x1 + 13y1;
  • Собственный вектор 1: (1; 1);
  • Собственный вектор 2: (-3,25; 1).

Таким образом, мы получили два линейно независимых собственных вектора.

Заключение

Линейная алгебра и аналитическая геометрия - стандартные предметы для любого первокурсника технической специальности. Большое количество векторов и матриц приводит в ужас, а в столь громоздких вычислениях легко сделать ошибку. Наша программа позволит студентам проверить свои выкладки или автоматически решит задачу на поиск собственного вектора. В нашем каталоге есть и другие калькуляторы по линейной алгебре, используйте их в своей учебе или работе.

СИСТЕМА ОДНОРОДНЫХ ЛИНЕЙНЫХ УРАВНЕНИЙ

Системой однородных линейных уравнений называется система вида

Ясно, что в этой случае , т.к. все элементы одного из столбцов в этих определителях равны нулю.

Так как неизвестные находятся по формулам , то в случае, когда Δ ≠ 0, система имеет единственное нулевое решение x = y = z = 0. Однако, во многих задачах интересен вопрос о том, имеет ли однородная система решения отличные от нулевого.

Теорема. Для того, чтобы система линейных однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы Δ ≠ 0.

Итак, если определитель Δ ≠ 0, то система имеет единственное решение. Если же Δ ≠ 0, то система линейных однородных уравнений имеет бесконечное множество решений.

Примеры.

СОБСТВЕННЫЕ ВЕКТОРЫ И СОБСТВЕННЫЕ ЗНАЧЕНИЯ МАТРИЦЫ

Пусть задана квадратная матрица , X – некоторая матрица–столбец, высота которой совпадает с порядком матрицы A . .

Во многих задачах приходится рассматривать уравнение относительно X

где λ – некоторое число. Понятно, что при любом λ это уравнение имеет нулевое решение .

Число λ, при котором это уравнение имеет ненулевые решения, называется собственным значением матрицы A , а X при таком λ называется собственным вектором матрицы A .

Найдём собственный вектор матрицы A . Поскольку E X = X , то матричное уравнение можно переписать в виде или . В развёрнутом виде это уравнение можно переписать в виде системы линейных уравнений. Действительно .

И, следовательно,

Итак, получили систему однородных линейных уравнений для определения координат x 1 , x 2 , x 3 вектора X . Чтобы система имела ненулевые решения необходимо и достаточно, чтобы определитель системы был равен нулю, т.е.

Это уравнение 3-ей степени относительно λ. Оно называется характеристическим уравнением матрицы A и служит для определения собственных значений λ.

Каждому собственному значению λ соответствует собственный вектор X , координаты которого определяются из системы при соответствующем значении λ.

Примеры.

ВЕКТОРНАЯ АЛГЕБРА. ПОНЯТИЕ ВЕКТРОРА

При изучении различных разделов физики встречаются величины, которые полностью определяются заданием их численных значений, например, длина, площадь, масса, температура и т.д. Такие величины называются скалярными. Однако, кроме них встречаются и величины, для определения которых, кроме численного значения, необходимо знать также их направление в пространстве, например, сила, действующая на тело, скорость и ускорение тела при его движении в пространстве, напряжённость магнитного поля в данной точке пространства и т.д. Такие величины называются векторными.

Введём строгое определение.

Направленным отрезком назовём отрезок, относительно концов которого известно, какой из них первый, а какой второй.

Вектором называется направленный отрезок, имеющий определённую длину, т.е. это отрезок определённой длины, у которого одна из ограничивающих его точек принимается за начало, а вторая – за конец. Если A – начало вектора, B – его конец, то вектор обозначается символом, кроме того, вектор часто обозначается одной буквой . На рисунке вектор обозначается отрезком, а его направление стрелкой.

Модулем или длиной вектора называют длину определяющего его направленного отрезка. Обозначается || или ||.

К векторам будем относить и так называемый нулевой вектор, у которого начало и конец совпадают. Он обозначается . Нулевой вектор не имеет определенного направления и модуль его равен нулю ||=0.

Векторы и называются коллинеарными , если они расположены на одной прямой или на параллельных прямых. При этом если векторы и одинаково направлены, будем писать , противоположно .

Векторы, расположенные на прямых, параллельных одной и той же плоскости, называются компланарными .

Два вектора и называются равными , если они коллинеарны, одинаково направлены и равны по длине. В этом случае пишут .

Из определения равенства векторов следует, что вектор можно переносить параллельно самому себе, помещая его начало в любую точку пространства.

Например .

ЛИНЕЙНЫЕ ОПЕРАЦИИ НАД ВЕКТОРАМИ

  1. Умножение вектора на число.

    Произведением вектора на число λ называется новый вектор такой, что:

    Произведение вектора на число λ обозначается .

    Например, есть вектор, направленный в ту же сторону, что и вектор , и имеющий длину, вдвое меньшую, чем вектор .

    Введённая операция обладает следующими свойствами :

  2. Сложение векторов.

    Пусть и – два произвольных вектора. Возьмём произвольную точку O и построим вектор . После этого из точки A отложим вектор . Вектор , соединяющий начало первого вектора c концом второго , называется суммой этих векторов и обозначается .

    Сформулированное определение сложения векторов называют правилом параллелограмма , так как ту же самую сумму векторов можно получить следующим образом. Отложим от точки O векторы и . Построим на этих векторах параллелограмм ОАВС . Так как векторы , то вектор , являющийся диагональю параллелограмма, проведённой из вершины O , будет очевидно суммой векторов .

    Легко проверить следующие свойства сложения векторов .

  3. Разность векторов.

    Вектор, коллинеарный данному вектору , равный ему по длине и противоположно направленный, называется противоположным вектором для вектора и обозначается . Противоположный вектор можно рассматривать как результат умножения вектора на число λ = –1: .

Определение 9.3. Вектор х называется собственным вектором матрицы А , если найдется такое число λ, что выполняется равенство: Ах = λх , то есть результатом применения к х линейного преобразования, задаваемого матрицей А , является умножение этого вектора на число λ . Само число λ называетсясобственным числом матрицы А .

Подставив в формулы (9.3) x` j = λx j , получим систему уравнений для определения координат собственного вектора:

. (9.5)

Эта линейная однородная система будет иметь нетривиальное решение только в случае, если ее главный определитель равен 0 (правило Крамера). Записав это условие в виде:

получим уравнение для определения собственных чисел λ , называемое характеристическим уравнением . Кратко его можно представить так:

| A - λE | = 0, (9.6)

поскольку в его левой части стоит определитель матрицы А-λЕ . Многочлен относительно λ | A - λE | называется характеристическим многочленом матрицы А.

Свойства характеристического многочлена:

1) Характеристический многочлен линейного преобразования не зависит от выбора базиса. Доказательство. (см. (9.4)), но следовательно, . Таким образом, не зависит от выбора базиса. Значит, и |A-λE | не изменяется при переходе к новому базису.

2) Если матрица А линейного преобразования является симметрической (т.е. а ij =a ji ), то все корни характеристического уравнения (9.6) – действительные числа.

Свойства собственных чисел и собственных векторов:

1) Если выбрать базис из собственных векторов х 1 , х 2 , х 3 , соответствующих собственным значениям λ 1 , λ 2 , λ 3 матрицы А , то в этом базисе линейное преобразование А имеет матрицу диагонального вида:

(9.7) Доказательство этого свойства следует из определения собственных векторов.

2) Если собственные значения преобразования А различны, то соответствующие им собственные векторы линейно независимы.

3) Если характеристический многочлен матрицы А имеет три различных корня, то в некотором базисе матрица А имеет диагональный вид.

Найдем собственные числа и собственные векторы матрицы Составим характеристическое уравнение: (1- λ )(5 - λ )(1 - λ ) + 6 - 9(5 - λ ) - (1 - λ ) - (1 - λ ) = 0, λ ³ - 7λ ² + 36 = 0, λ 1 = -2, λ 2 = 3, λ 3 = 6.

Найдем координаты собственных векторов, соответствующих каждому найденному значению λ. Из (9.5) следует, что если х (1) ={x 1 ,x 2 ,x 3 } – собственный вектор, соответствующий λ 1 =-2, то

- совместная, но неопределенная система. Ее решение можно записать в виде х (1) ={a ,0,-a }, где а – любое число. В частности, если потребовать, чтобы |x (1) |=1, х (1) =

Подставив в систему (9.5) λ 2 =3, получим систему для определения координат второго собственного вектора - x (2) ={y 1 ,y 2 ,y 3 }:

, откуда х (2) ={b,-b,b } или, при условии |x (2) |=1, x (2) =

Для λ 3 = 6 найдем собственный вектор x (3) ={z 1 , z 2 , z 3 }:

, x (3) ={c ,2c,c } или в нормированном варианте

х (3) = Можно заметить, что х (1) х (2) = ab – ab = 0, x (1) x (3) = ac – ac = 0, x (2) x (3) = bc - 2bc + bc = 0. Таким образом, собственные векторы этой матрицы попарно ортогональны.

Лекция 10.

Квадратичные формы и их связь с симметричными матрицами. Свойства собственных векторов и собственных чисел симметричной матрицы. Приведение квадратичной формы к каноническому виду.

Определение 10.1. Квадратичной формой действительных переменных х 1 , х 2 ,…,х n называется многочлен второй степени относительно этих переменных, не содержащий свободного члена и членов первой степени.

Примеры квадратичных форм:

(n = 2),

(n = 3). (10.1)

Напомним данное в прошлой лекции определение симметрической матрицы:

Определение 10.2. Квадратная матрица называется симметрической , если , то есть если равны элементы матрицы, симметричные относительно главной диагонали.

Свойства собственных чисел и собственных векторов симметрической матрицы:

1) Все собственные числа симметрической матрицы действительные.

Доказательство (для n = 2).

Пусть матрица А имеет вид: . Составим характеристическое уравнение:

(10.2) Найдем дискриминант:

Следовательно, уравнение имеет только действительные корни.

2) Собственные векторы симметрической матрицы ортогональны.

Доказательство (для n = 2).

Координаты собственных векторов и должны удовлетворять уравнениям.

Длина, как уже отмечалось, обозначается знаком модуля.

Если даны две точки плоскости и , то длину отрезка можно вычислить по формуле

Если даны две точки пространства и , то длину отрезка можно вычислить по формуле

Примечание: Формулы останутся корректными, если переставить местами соответствующие координаты: и , но более стандартен первый вариант

Пример 3

Решение: по соответствующей формуле:

Ответ:

Для наглядности выполню чертёж

Отрезок – это не вектор , и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ можно проверить обычной линейкой, непосредственно измерив длину отрезка.

Да, решение короткое, но в нём есть ещё пара важных моментов, которые хотелось бы пояснить:

Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».

Во-вторых, повторим школьный материал, который полезен не только для рассмотренной задачи:

Обратите внимание на важный технический приём вынесение множителя из-под корня . В результате вычислений у нас получился результат и хороший математический стиль предполагает вынесение множителя из-под корня (если это возможно). Подробнее процесс выглядит так: . Конечно, оставить ответ в виде не будет ошибкой – но недочетом-то уж точно и весомым аргументом для придирки со стороны преподавателя.

Вот другие распространенные случаи:

Нередко под корнем получается достаточно большое число, например . Как быть в таких случаях? На калькуляторе проверяем, делится ли число на 4: . Да, разделилось нацело, таким образом: . А может быть, число ещё раз удастся разделить на 4? . Таким образом: . У числа последняя цифра нечетная, поэтому разделить в третий раз на 4 явно не удастся. Пробуем поделить на девять: . В результате:
Готово.

Вывод: если под корнем получается неизвлекаемое нацело число, то пытаемся вынести множитель из-под корня – на калькуляторе проверяем, делится ли число на: 4, 9, 16, 25, 36, 49 и т.д.

В ходе решения различных задач корни встречаются часто, всегда пытайтесь извлекать множители из-под корня во избежание более низкой оценки да ненужных заморочек с доработкой ваших решений по замечанию преподавателя.

Давайте заодно повторим возведение корней в квадрат и другие степени:

Правила действий со степенями в общем виде можно найти в школьном учебнике по алгебре, но, думаю, из приведённых примеров всё или почти всё уже ясно.


Задание для самостоятельного решения с отрезком в пространстве:

Пример 4

Даны точки и . Найти длину отрезка .

Решение и ответ в конце урока.

Существуют три основных системы координат, используемых в геометрии, теоретической механике, других разделах физики: декартова, полярная и сферическая. В этих системах координат вся точка имеет три координаты. Зная координаты 2-х точек, дозволено определить расстояние между этими двумя точками.

Вам понадобится

Инструкция

1. Разглядите для начала прямоугольную декартову систему координат. Расположение точки в пространстве в этой системе координат определяется координатами x,y и z. Из начала координат к точке проводится радиус-вектор. Проекции этого радиус-вектора на координатные оси и будут координатами этой точки.Пускай у вас сейчас есть две точки с координатами x1,y1,z1 и x2,y2 и z2 соответственно. Обозначьте за r1 и r2, соответственно, радиус-векторы первой и 2-й точки. Видимо, что расстояние между этими двумя точками будет равно модулю вектора r = r1-r2, где (r1-r2) – векторная разность.Координаты вектора r, видимо, будут следующими: x1-x2, y1-y2, z1-z2. Тогда модуль вектора r либо расстояние между двумя точками будет равно: r = sqrt(((x1-x2)^2)+((y1-y2)^2)+((z1-z2)^2)).

2. Разглядите сейчас полярную систему координат, в которой координата точки будет задаваться радиальной координатой r (радиус-вектор в плоскости XY), угловой координатой? (углом между вектором r и осью X) и координатой z, аналогичной координате z в декартовой системе.Полярные координаты точки дозволено перевести в декартовы дальнейшим образом: x = r*cos?, y = r*sin?, z = z. Тогда расстояние между двумя точками с координатами r1, ?1 ,z1 и r2, ?2, z2 будет равно R = sqrt(((r1*cos?1-r2*cos?2)^2)+((r1*sin?1-r2*sin?2)^2)+((z1-z2)^2)) = sqrt((r1^2)+(r2^2)-2r1*r2(cos?1*cos?2+sin?1*sin?2)+((z1-z2)^2))

3. Сейчас разглядите сферическую систему координат. В ней расположение точки задается тремя координатами r, ? и?. r – расстояние от начала координат до точки, ? и? – азимутальные и зенитный угол соответственно. Угол? аналогичен углу с таким же обозначением в полярной системе координат, а? – угол между радиус-вектором r и осью Z, причем 0<= ? <= pi.Переведем сферические координаты в декартовы: x = r*sin?*cos?, y = r*sin?*sin?*sin?, z = r*cos?. Расстояние между точками с координатами r1, ?1, ?1 и r2, ?2 и?2 будет равно R = sqrt(((r1*sin?1*cos?1-r2*sin?2*cos?2)^2)+((r1*sin?1*sin?1-r2*sin?2*sin?2)^2)+((r1*cos?1-r2*cos?2)^2)) = (((r1*sin?1)^2)+((r2*sin?2)^2)-2r1*r2*sin?1*sin?2*(cos?1*cos?2+sin?1*sin?2)+((r1*cos?1-r2*cos?2)^2))

Видео по теме