Получение пищевого белка. Тема: Получение белка. Получение микробного белка на низших спиртах


В основе жизнедеятельности клетки лежат биохимические процессы, протекающие на молекулярном уровне и служащие предметом изучения биохимии. Соответственно и явления наследственности и изменчивости тоже связаны с молекулами органических веществ, и в первую очередь с нуклеиновыми кислотами и белками.

Состав белков

Белки представляют собой большие молекулы, состоящие из сотен и тысяч элементарных звеньев - аминокислот. Такие вещества, состоящие из повторяющихся элементарных звеньев - мономеров, называются полимерами. Соответственно белки можно назвать полимерами, мономерами которых служат аминокислоты.

Всего в живой клетке известно 20 видов аминокислот. Название аминокислоты получили из-за содержания в своем составе аминной группы NHy, обладающей основными свойствами, и карбоксильной группы СООН, имеющей кислотные свойства. Все аминокислоты имеют одинаковую группу NH2-СН-СООН и отличаются друг от друга химической группой, называемой радикалом - R. Соединение аминокислот в полимерную цепь происходит благодаря образованию пептидной связи (СО - NH) между карбоксильной группой одной аминокислоты и аминогруппой другой аминокислоты. При этом выделяется молекула воды. Если образовавшаяся полимерная цепь короткая, она называется олигопептидной, если длинная - полипептидной.

Строение белков

При рассмотрении строения белков выделяют первичную, вторичную, третичную структуры.

Первичная структура определяется порядком чередования аминокислот в цепи. Изменение в расположении даже одной аминокислоты ведет к образованию совершенно новой молекулы белка. Число белковых молекул, которое образуется при сочетании 20 разных аминокислот, достигает астрономической цифры.

Если бы большие молекулы (макромолекулы) белка располагались в клетке в вытянутом состоянии, они занимали бы в ней слишком много места, что затруднило бы жизнедеятельность клетки. В связи с этим молекулы белка скручиваются, изгибаются, свертываются в самые различные конфигурации. Так на основе первичной структуры возникает вторичная структура - белковая цепь укладывается в спираль, состоящую из равномерных витков. Соседние витки соединены между собой слабыми водородными связями, которые при многократном повторении придают устойчивость молекулам белков с этой структурой.

Спираль вторичной структуры укладывается в клубок, образуя третичную структуру. Форма клубка у каждого вида белков строго специфична и полностью зависит от первичной структуры, т. е. от порядка расположения аминокислот в цепи. Третичная структура удерживается благодаря множеству слабых электростатических связей: положительно и отрицательно заряженные группы аминокислот притягиваются и сближают даже далеко отстоящие друг от друга участки белковой цепи. Сближаются и иные участки белковой молекулы, несущие, например, гидрофобные (водоотталкивающие) группы.

Некоторые белки, например гемоглобин, состоят из нескольких цепей, различающихся по первичной структуре. Объединяясь вместе, они создают сложный белок, обладающий не только третичной, но и четвертичной структурой (рис. 2).

В структурах белковых молекул наблюдается следующая закономерность: чем выше структурный уровень, тем слабее поддерживающие их химические связи. Связи, образующие четвертичную, третичную, вторичную структуру, крайне чувствительны к физико-химическим условиям среды, температуре, радиации и т. д. Под их воздействием структуры молекул белков разрушаются до первичной - исходной структуры. Такое нарушение природной структуры белковых молекул называется денатурацией. При удалении денатурирующего агента многие белки способны самопроизвольно восстанавливать исходную структуру. Если же природный белок подвергается действию вьюокой температуры или интенсивному действию других факторов, то он необратимо денатурируется. Именно фактом наличия необратимой денатурации белков клеток объясняется невозможность жизни в условиях очень высокой температуры.

Биологическая роль белков в клетке

Белки, называемые также протеинами (греч. протос - первый}, в клетках животных и растений выполняют многообразные и очень важные функции, к которым можно отнести следующие.

Каталитическая. Природные катализаторы - ферменты представляют собой полностью или почти полностью белки. Благодаря ферментам химические процессы в живых тканях ускоряются в сотни тысяч или в миллионы раз. Под их действием все процессы идут мгновенно в «мягких» условиях: при нормальной температуре тела, в нейтральной для живой ткани среде. Быстродействие, точность и избирательность ферментов несопоставимы ни с одним из искусственных катализаторов. Например, одна молекула фермента за одну минуту осуществляет реакцию распада 5 млн. молекул пероксида водорода (Н202). Ферментам характерна избирательность. Так, жиры расщепляются специальным ферментом, который не действует на белки и полисахариды (крахмал, гликоген). В свою очередь, фермент, расщепляющий только крахмал или гликоген, не действует на жиры.

Процесс расщепления или синтеза любого вещества в клетке, как правило, разделен на ряд химических операций. Каждую операцию выполняет отдельный фермент. Группа таких ферментов составляет биохимический конвейер.

Считают, что каталитическая функция белков зависит от их третичной структуры, при ее разрушении каталитическая активность фермента исчезает.

Защитная. Некоторые виды белков защищают клетку и в целом организм от попадания в них болезнетворных микроорганизмов и чужеродных тел. Такие белки носят название антител. Антитела связываются с чужеродными для организма белками бактерий и вирусов, что подавляет их размножение. На каждый чужеродный белок организм вырабатывает специальные «антибелки» - антитела. Такой механизм сопротивления возбудителям заболеваний называется иммунитетом.

Чтобы предупредить заболевание, людям и животным вводят ослабленные или убитые возбудители (вакцины), которые не вызывают болезнь, но заставляют специальные клетки организма производить антитела против этих возбудителей. Если через некоторое время болезнетворные вирусы и бактерии попадают в такой организм, они встречают прочный защитный барьер из антител.

Гормональная. Многие гормоны также представляют собой белки. Наряду с нервной системой гормоны управляют работой разных органов (и всего организма) через систему химических реакций.

Отражательная. Белки клетки осуществляют прием сигналов, идущих извне. При этом различные факторы среды (температурный, химический, механический и др.) вызывают изменения в структуре белков - обратимую денатурацию, которая, в свою очередь, способствует возникновению химических реакций, обеспечивающих ответ клетки на внешнее раздражение. Эта способность белков лежит в основе работы нервной системы, мозга.

Двигательная. Все виды движений клетки и организма: мерцание ресничек у простейших, сокращение мышц у высших животных и другие двигательные процессы - производятся особым видом белков.

Энергетическая. Белки могут служить источником энергии для клетки. При недостатке углеводов или жиров окисляются молекулы аминокислот. Освободившаяся при этом энергия используется на поддержание процессов жизнедеятельности организма.

Транспортная. Белок гемоглобин крови способен связывать кислород воздуха и транспортировать его по всему телу. Эта важнейшая функция свойственна и некоторым другим белкам.

Пластическая. Белки - основной строительный материал клеток (их мембран) и организмов (их кровеносных сосудов, нервов, пищеварительного тракта и др.). При этом белки обладают индивидуальной специфичностью, т. е. в организмах отдельных людей содержатся некоторые, характерные лишь для него, белки-

Таким образом, белки - эти важнейший компонент клетки, без которого невозможно проявление свойств жизни. Однако воспроизведение живого, явление наследственности, как мы увидим позже, связано с молекулярными структурами нуклеиновых кислот. Это открытие - результат новейших достижений биологии. Теперь известно, что живая клетка обязательно обладает двумя видами полимеров-белками и нуклеиновыми кислотами. В их взаимодействии заключены самые глубокие стороны явления жизни.



) и протеиды (сложные белки). Как правило, протеины состоят только из аминокислот, а протеиды включают в себя, помимо них, и другие вещества. Также все белки делят на фибриллярные и глобулярные белки. Фибриллярные белки плохо растворимы в воде, их молекулы имеют вытянутую форму. Они входят в состав волос и эпителия . Гемоглобин относится к группе глобулярных белков. Его молекулы свернуты в шарообразные цепи. К этой же группе относятся инсулин и пепсин.

Особенно сложны по своему строению молекулы протеидов. Строение этих белков может меняться при воздействии на них внешних факторов. В частности, к ним относятся: действие сильных кислот и этилового спирта, нагревание, давление, ионизирующее излучение. Изменение структуры называют его денатурацией. В молекулах белков имеется амидогруппа, которая называется пептидной связью. Эта связь соединяет между собой α-аминокислоты белков.

α-аминокислоты основой всех белковых веществ. Белки получаются из остатков аминокислот, причем аминокислоты имеют две группы: COOH и NH2. Поэтому в молекулах белков находится амидогруппа -С(O)-NH-. В зависимости от количества аминокислот белки получили различные . Из двух аминокислот образуются дипептиды, из трех - трипептиды, а из большего количества - полипептиды. Дипептид, реагируя с третьей аминокислотой, дает трипептид. На рисунке изображены показаны молекулы основных, часто встречающихся в быту и , трипептидов.
Строение белковой молекулы зависит от количества аминокислот, образовавших пептидную или полипептидную цепь. Также строение белка, как уже сказано выше, может меняться под воздействием внешних факторов. Белки могут включать в себя свыше 20 аминокислот. Благодаря своему сложному строению они участвуют практически во всех процессах обмена веществ. Гормоны и антибиотики также относятся к белкам. Особенно важную роль в играют белки, получаемые из пищи.

В период беременности женщина не реже двух раз в месяц сдает анализ мочи. Это необходимо, чтобы контролировать работу почек и вовремя заметить появление белка в моче. Незначительное эпизодическое появление белка в моче не является опасным, но если белок обнаруживается при повторном анализе, имеется тенденция к увеличению протеинурии, высоки риски развития гестоза.

Инструкция

Правильно собранная моча позволяет получить информативный анализ, данные о работе почек и состоянии мочевыводящих путей. Почки в период беременности работают в повышенной нагрузки, увеличивающаяся в размерах матка оказывает дополнительное давление на них. Первым признаком нарушения работы почек является белок в моче. В норме у человека не должно быть белка в моче, для беременных допускается не более 0,14г/л. Значительное увеличение концентрации белка в моче может свидетельствовать о воспалительном процессе почек, обострении имеющегося заболевания почек или о начинающемся гестозе. Высокое содержание белка в моче бывает и при сахарном диабете, который нередко дебютирует в период беременности.

При постоянной потере белка с мочой появляются тянущие или режущие боли в области почек, общая слабость, моча приобретает темный цвет. Самой частой причиной потери белка становятся воспалительные заболевания почек. Этому способствуют застойные явления в почках, нарушения оттока мочи, очаг хронического воспаления в организме беременной женщины нередко приводит к пиелонефриту. Лечат его в стационаре, назначая антибиотики. При своевременной диагностике и адекватном лечении после родов состояние почек нормализуется. Гораздо страшнее гломерулонефрит, при этой патологии поражаются клубочки почек, нарушается процесс образования мочи. У 5-7% беременных диагностируют гломерулонефрит. При гломерулонефрите основную опасность представляют отеки и высокое артериальное давление. При таких симптомах велик риск преждевременной отслойки плаценты и хронической гипоксии плода.

У 2-3% беременных развивается нефропатия, это одно из проявлений позднего гестоза. Кроме потери белка и нарушения функции почек женщину беспокоит высокое артериальное давление и отеки. Основной причиной гестоза является сенсибилизация организма гормонами плаценты и плацентарным белком. Без своевременной помощи при стремительно развивающемся гестозе может наступить осложнение в виде эклампсии. Женщину начинают беспокоить сильные головные боли, артериальное давление повышается до критической отметки, могут начаться судороги. Без своевременно оказанной медицинской помощи может наступить внутриутробная гибель плода. При любых нарушениях работы почек страдает и плод. Если белок в моче появился из-за воспаления, то велики риски внутриутробного воспаления плода. При гестозе и гломерулонефрите плод находится в состоянии хронической гипоксии. При появлении белка в моче следует четко соблюдать предписания врача: изменить схему питания, принимать дополнительные лекарственные средства, улучшающие кровообращение плаценты, при необходимости нужно лечь в стационар.

Азот – это газ, не поддерживающий горение, он входит в состав воздуха, которым мы дышим. Азот , химически инертный элемент, то есть в обычных условиях он плохо взаимодействует с другими веществами. В промышленности его получают перегонкой жидкого воздуха, то есть разделяют воздух на азот и кислород. Но его можно получить и менее трудоемким способом.

Вам понадобится

  • Дистиллированная вода, сульфат аммония, нитрит натрия, серная кислота, пробирки, горелка, уголь, каустическая сода.

Инструкция

Налейте немного раствора сульфата аммония в пробирку и нагрейте его на спиртовой горелке. Затем, по каплям добавляйте туда раствор нитрита натрия. При взаимодействии этих двух будет происходить с образованием нитрита аммония, а он в свою очередь, разлагаясь от температуры, будет выделять азот.

Полученный азот будет загрязнен примесями, поэтому, для очистки, его нужно пропустить через раствор . Закройте пробирку, в которой проходит реакция, пробкой с вставленной в нее трубкой, а другой конец трубки опустите на дно второй пробирки, в которую налита серная . Часть примесей и влага задержится серной кислотой, а азот выйдет.

Неоднократно пропуская воздух через раскаленный уголь, воздуха, взаимодействуя с ним, образует газ. Вы получите смесь и двуокиси углерода. Пропустите эту смесь через раствор гидроксида натрия (каустическая сода), углекислый газ, взаимодействуя со , останется , а на выходе будет азот.

Видео по теме

Полезный совет

Для более качественной очистки азота можно пропустить его через раствор двухвалентного сульфата железа и раскаленную медь.

Белок в организме человека выполняет довольно широкий спектр жизненно важных функций. Не так часто затрагивается проблема дефицита белка, хотя это достаточно серьезный и многоплановый вопрос.

И его может заменить растительный. Несмотря на обилие слухов, диетологи сходятся на одном мнении – белок является основой для строительства и формирования тела организма.

Функции белка

Из белков состоят мышцы, волосы, ногти, внутренние органы и многие другие составляющие человеческого тела. Белки, употребляемые с пищей, распадаются в организме до аминокислот, которые затем синтезируются печенью до собственных белков тела. Организм человека способен производить часть из этих аминокислот сам, однако большая часть аминокислот должна поступать вместе с пищей и заменить их другими не получится. Незаменимые кислоты содержатся в животных белках, растительные же имеют более скудный набор аминокислот и полностью заменить их, к сожалению, не могут. Таким образом, белки выполняют важнейшую строительную функцию организма.

Другой функцией белков является непосредственное участие в обмене веществ. Подавляющее большинство ферментов – это белок или соединение белка с другими составляющими. Иначе говоря, пищеварительная система напрямую зависит от поступления белка в организм. При дефиците белка нарушаются и другие виды обмена веществ. Таким образом, организм страдает не только от , но и от недополучения других важнейших веществ (жиры, углеводы, витамины, минералы, микроэлементы).

Помимо этого, белки носят транспортную функцию, а именно позволяют переносить в организме полезные элементы – ионы, питательные и другие вещества. Иммунитет человека во многом полагается на белки. Они обеспечивают иммунную защиту организма, так как антитела состоят из белковых соединений.

Белки задерживают старение – это происходит благодаря поэтапной регенерации молекул коллагена и эластина, которые препятствуют старению кожи.

Как пополнить запасы белка

Для того чтобы избежать проблем с нехваткой белка, следует начать внимательнее относиться к питанию. Общепризнанными источниками белка являются курица, говядина, яйца. Но и растительным белком тоже пренебрегать не стоит. Получить его можно из таких продуктов как: горох, орехи, гречневая крупа. Диетологи советуют употреблять белковую пищу отдельно от картофеля, крупы, хлеба, так как они недостаточно хорошо позволяют белку усваиваться организмом. Допустимо сочетать белок с тушеными или свежими овощами.

Однако следует помнить, что не следует перегружать организм белком, так как его избыток приводит к нежелательным проблемам с пищеварением.



Владельцы патента RU 2281656:

Изобретение относится к биотехнологии. Биомассу личинок насекомых измельчают. Экстракцию белка из биомассы проводят 0,01-0,5%-раствором щелочи, при соотношении 1:3-1:11, температуре 20-100°С и постоянном перемешивании в течение 10-60 мин. Экстракт отделяют от нерастворимых частиц суспензии. Белок выделяют, подкисляя экстракт кислотой. Осевший белок отделяют. Белковый препарат отличается большим содержанием высокоценного белка. 2 з.п. ф-лы, 2 табл.

Изобретение относится к биотехнологии, касается получения белка из биомассы насекомых мухи и может быть использовано в пищевой и комбикормовой промышленности.

Известен способ получения белковой пищевой добавки из животного сырья (измельченных замороженных органов и тканей млекопитающих), экстрагированием в щелочном растворе, удалением балластных веществ, подкислением экстракта, промывкой осадка и высушиванием (1).

Недостаток известного способа состоит в том, что он не обеспечивает получения высокобелкового продукта, содержание протеина в сухом продукте не более 26%.

Наиболее близким по совокупности существенных признаков к достигаемому результату является способ получения белкового препарата из растительного сырья (2-прототип), включающий экстракцию сырья, отделение экстракта и выделение из него белка путем подкисления и центрифугирования.

Недостатками этого способа являются:

Невысокое содержание белка в исходном сырье, в отрубях содержится 16,8-17,0% белка;

Присутствие в отрубях полиуглеводов требует их предварительного осаждения подкислением экстракта с последующим отделением осадка, что влечет потерю части белковых компонентов;

Лимитированность растительного белка рядом незаменимых аминокислот;

Продолжительность и низкая эффективность процесса получения белка;

Сезонность поступления растительного сырья.

Известно, что белковые препараты, полученные из растительного сырья, содержат ряд антипитательных соединений (тиогликозиды, сапонины, танины и др.).

Сущностью изобретения является способ получения белка, на основе нового типа высокобелкового сырья - личинок насекомых и совокупности приемов извлечения белка, увеличение качества, выхода и удешевление целевого продукта.

Технический результат изобретения - предложено новое высокобелковое сырье, использование которого позволяет достичь сверх суммарного результата по содержанию белка и аминокислот в целевом препарате пищевого и кормового назначения. Достигнута рациональная переработка вторичного продукта утилизации отходов пищевых производств и сельского хозяйства - личинок насекомых, а также сточных вод молочного производства - молочной сыворотки.

Технический результат достигается тем, что в известном способе, предусматривающем экстракцию растительного сырья, отделение экстракта и осаждение из него белка соляной кислотой, согласно изобретению в качестве исходного сырья используют биомассу личинок насекомых, экстракцию белка из гомогенизированной биомассы проводят 0,01-0,5% - раствором щелочи, при соотношении 1:3-1:11, температуре 20°С-100°С и постоянном перемешивании в течение 10-60 мин. Экстракт отделяют от нерастворимых частиц суспензии. Белок выделяют добавлением раствора кислоты или использованием в качестве осаждающего агента 8-10% молочной сыворотки с кислотностью 200-300°Т до достижения рН 4,0-6,0, осевший белок отделяют и высушивают.

Биомасса личинок насекомых отличается тем, что при экстракции белка на воздухе при комнатной температуре биомасса быстро темнеет, белок приобретает темный цвет. Отличительной особенностью нового способа являются условия экстракции белка из сырья, а именно проведение процесса извлечения белка при повышенной температуре до 100°С. Предлагаемый температурный режим повышает органолептические характеристики конечного продукта и степень экстракции белковых компонентов.

Оптимальная совокупность предлагаемых физических и химических методов получения белка из биомассы насекомых позволяет достичь максимального, по степени извлечения, содержанию и качеству белка результата.

В сухом белковом препарате, полученном по предлагаемому способу, содержится 78-96% протеина.

В таблице 1 приведены данные, характеризующие достижение поставленной цели по предлагаемому способу в сравнении с прототипом.

Предложенный способ за счет использования в качестве сырья для получения протеина личинок различных насекомых дает сверхсуммарный результат по содержанию незаменимых аминокислот в белковом концентрате и выходу протеина. Способ позволяет расширить сырьевую базу, рационально использовать дешевый вторичный продукт переработки производственных стоков и отходов - личинки насекомых, удешевить белок, рационально использовать стоки молочного производства, утилизировать молочную сыворотку.

Выход белка зависит от его общего содержания в сырье. Использование в качестве сырья личинок насекомых позволяет достичь более высоких значений параметров технологического процесса, так как их биомасса содержит более 58% белка. Из биомассы личинок извлекается до 62,0% протеина.

Повышение качества белкового концентрата достигается за счет использования высокобелкового сырья - личинок насекомых, увеличения содержания в концентрате протеина и незаменимых аминокислот (табл.2).

Результаты исследований свидетельствуют, что заявляемый способ позволяет получить белок улучшенного состава. Использование в качестве сырья для получения белка, дешевого вторичного продукта, высвобождающегося в процессе переработки сельскохозяйственных и промышленных отходов и стоков, снижает стоимость целевого продукта, т.е. обеспечивает решение поставленной задачи.

Пример 1. 1 кг измельченной в блендере биомассы личинок комнатной мухи Musca domestica экстрагировали в 3 л 0,01% раствора NaOH при t 20°C при постоянном перемешивании в течение 110 мин. Суспензию центрифугировали при 3000 об/мин в течение 5 мин. Полученный экстракт подкисляли 5%-ным раствором HCl до рН 4,0, центрифугировали при 2000 об/мин в течение 5 мин.

Белковый препарат имеет вид темно-серого, рассыпчатого порошка, содержит 78%, сумма незаменимых аминокислот белка 49,5%.

Пример 2. 1 кг измельченной в блендере, обезжиренной биомассы личинок комнатной мухи Musca domestica экстрагировали в 9 л 0,5% раствора NaOH при температуре 60°С при постоянном перемешивании в течение 60 мин. Суспензию центрифугировали при 3000 об/мин в течение 5 мин. Полученный экстракт подкисляли 5%-ным раствором HCl до рН 5,0, центрифугировали при 3000 об/мин в течение 5 мин. Белковый препарат имеет вид серого, рассыпчатого порошка, содержит 86% протеина, сумма незаменимых аминокислот белка 50,0%.

Пример 3. 1 кг измельченной в блендере биомассы личинок комнатной мухи Musca domestica экстрагировали в 11 л 0,5% раствора NaOH при температуре 100°С при постоянном перемешивании в течение 30 мин. Суспензию центрифугировали при 3000 об/мин в течение 5 мин. Полученный экстракт подкисляли введением молочной сыворотки кислотностью 200°Т до рН 5,0, центрифугировали при 3000 об/мин в течение 5 мин.

Белковый препарат имеет вид белого, рассыпчатого порошка, содержит 89% протеина, сумма незаменимых аминокислот 50,2%.

Пример 4. 1 кг измельченной в блендере, обезжиренной биомассы личинок термитов Cryptotermes domesticus экстрагировали в 8 л 0,5% раствора NaOH при температуре 95°С при постоянном перемешивании в течение 50 мин. Суспензию центрифугировали при 3000 об/мин в течение 5 мин. Полученный экстракт подкисляли введением 10% молочной сыворотки кислотностью 200°Т до рН 5,0, центрифугировали при 3000 об/мин в течение 5 мин.

Белковый препарат имеет вид белого, рассыпчатого порошка, содержит 96% протеина, сумма незаменимых аминокислот белка 50,4%.

Пример 5. 1 кг измельченной в блендере, обезжиренной биомассы личинок мучного червя Tenebrio molitor экстрагировали в 9 л 0,4% раствора NaOH при температуре 95°С при постоянном перемешивании в течение 60 мин. Суспензию центрифугировали при 3000 об/мин в течение 5 мин. Полученный экстракт подкисляли 5%-ным раствором HCl до рН 4,5, центрифугировали при 3000 об/мин в течение 5 мин.

Пример 6. 1 кг измельченной в блендере биомассы личинок саранчи Locusta migratoria экстрагировали в 9 л 0,5% раствора NaOH при температуре 95°С при постоянном перемешивании в течение 60 мин. Суспензию центрифугировали при 3000 об/мин в течение 5 мин. Полученный экстракт подкисляли 5%-ным раствором HCl до рН 4,5, центрифугировали при 3000 об/мин в течение 5 мин. Белковый препарат имеет вид белого, рассыпчатого порошка, содержит 96% протеина, сумма незаменимых аминокислот белка 50,5%.

Пример 7. 1 кг измельченной в блендере, обезжиренной биомассы личинок зеленых мясных мух Lucilia sericata экстрагировали в 8 л 0,5% раствора NaOH при температуре 95°С при постоянном перемешивании в течение 30 мин. Суспензию центрифугировали при 3000 об/мин в течение 5 мин. Полученный экстракт подкисляли 5%-ным раствором HCl до рН 4,5, центрифугировали при 3000 об/мин в течение 5 мин.

Белковый препарат имеет вид белого, рассыпчатого порошка, содержит 96% протеина, сумма незаменимых аминокислот белка 50,5%.

Пример 8. 1 кг измельченной в блендере, обезжиренной биомассы личинок синей мясной мухи Calliphora vicina экстрагировали в 8 л 0,5% раствора NaOH при температуре 95°С при постоянном перемешивании в течение 30 мин. Суспензию центрифугировали при 3000 об/мин в течение 5 мин. Полученный экстракт подкисляли 5%-ным раствором HCl до рН 4,5, центрифугировали при 3000 об/мин в течение 5 мин. Белковый препарат имеет вид темно-серого, рассыпчатого порошка, содержит 96% протеина, сумма незаменимых аминокислот белка 50,5%.

Литература

1. Патент РФ, №2075944, С1, А 23 J 1/2, БИ №9, 27.03.97.

2. AC СССР, №1177966, А 23 J 1/12. Способ получения белка из отрубей. БИ №29, 07.08.86.

Таблица 2

Аминокислотный состав белка, полученного на основе личинок комнатной мухи

Аминокислота Содержание, % к сумме аминокислот
Предлагаемый способ Известный способ (прототип) Эталон ФАО
9 1
Аспарагиновая 7,93 8,82 5,7
Треонин 4,26 5,13 4,2 2,8
Серии 3,55 3,43 6,5
Глутаминовая 12,25 12,66 26,0
Пролин 9,03 11,43 6,3
Глицин 3,64 4,75 3,1
Аланин 4,28 4,43 3,4
Цистеин x x 0,57 2,0
Валин 6,43 6,41 3,17 4,2
Метионин 4,26 3,92 0,83 2,2
Изолейцин 4,64 4,79 3,0 4,2
Лейцин 5,79 5.69 8,18 4,8
Тирозин 9,99 7,47 1,9 2,8
Фенилаланин 8,94 8,15 5,7 2,8
Лизин 6,18 5,01 6,4 4,2
Гистидин 5,86 4,27 4,5
Аргинин 2,98 3,66 6,7
Триптофан x x 3,09 1,4
Сумма незаменимых аминокислот:
50,49 46,57 37,04 31,4
Примечание: х - (цистеин и триптофан) не определяли

Препараты получены: 1 - гидролизом биомассы опарышей, 9 - щелочной экстракцией из биомассы опарышей.

1. Способ получения белка, предусматривающий экстракцию сырья, отделение экстракта и выделение из него белка, отличающийся тем, что в качестве источника сырья используют измельченную биомассу личинок насекомых, экстракцию белка проводят 0,01-0,5%-ным раствором щелочи при соотношении биомассы и экстрагента 1:3-1:11, температуре 20-100°С и постоянном перемешивании 10-60 мин, удаляют нерастворившиеся частицы, осаждают белок из экстракта добавлением осаждающего агента.

БЕЛКИ И ПОЛИПЕПТИДЫ

Белки играют исключительно важную роль в живой природе. Жизнь немыслима без различных по строению и функциям белков. Белки - это биополимеры сложного строения, мак­ромолекулы (протеины) которых, состоят из остатков аминокислот, соединен­ных между собой амидной (пептидной) связью. Кроме длинных полимерных цепей, построенных из остатков аминокислот (полипептидных цепей), в макромолекулу белка могут входить также остат­ки или молекулы других органических соединений. На одном кольце каждой пептидной цепи имеется свободная или ацилированная аминогруппа, на другом - свободная или амидированная карбоксильная группа.

Конец цепи с аминогруппой называется М-концом, конец цепи с карбоксильной группой - С-концом пептидной цепи. Между СО-груп­пой одной пептидной группировки и NH-группой другой пептидной группировки могут легко образовываться водородные связи.

Группы, входящие в состав радикала R аминокислот, могут вступать во вза­имодействие друг с другом, с посторонними веществами и с сосед­ними белковыми и иными молекулами, образуя сложные и разнооб­разные структуры.

В макромолекулу белка вхо­дит одна или несколько пептид­ных цепей, связанных друг с другом поперечными химически­ми связями, чаще всего через се­ру (дисульфидные мостики, обра­зуемые остатками цистеина). Химическую структуру пептидных цепей принято назы­вать первичной структу­рой белка или секвенцией.

Для построения простран­ственной структуры бел­ка пептидные цепи должны при­нять определенную, свойственную данному белку конфигурацию, ко­торая закрепляется водородными связями, возникающими между пептидными группировками от­дельных участков молекулярной цепи. По мере образования водо­родных связей пептидные цепи закручиваются в спирали, стремясь к образованию максималь­ного числа водородных связей и соответственно к энергетически наиболее выгодной конфигурации.

Впервые та­кая структура на основе рентгеноструктурного анализа была обнаружена при изучении главного белка волос и шер­сти-кератина Полингом американским физиком и химиком... Ее наз­вали а-структурой или а-спиралью. На один виток спирали приходится по 3,6-3,7 остатков аминокислот. Рас­стояние между витками около 0,54 миллиардной доле метра. Строение спирали стабилизируется внут­римолекулярными водородными связями.

При растяжении спираль мак­ромолекулы белка превращается в дру­гую структуру, напоминающую линей­ную.

Но образованию правильной спирали часто мешают силы отталкива­ния или притяжения, возникающие между группами аминокислот, или стерические препятствия, например, за счет образования пирролидиновых колец пролина и оксипролина, которые заставляют пептидную цепь резко изгибаться и препятствуют образованию спирали на некоторых ее участках. Далее отдельные участки макромолекулы белка ориентируются в пространстве, принимая в некоторых случаях достаточно вытянутую форму, а иногда сильноизогнутую, свернутую пространственную структуру.

Пространственная структура закреплена вследствие взаимодействия радикалов R и аминокислот с образованием дисульфидных мостиков, водородных связей, ионных пар или других химических либо физических связей. Именно пространственная структура белка определяет хими­ческие и биологические свойства белков.

В зависимости от пространственной структуры все белки делятся на два больших класса: фибриллярные (они используются природой как структурный материал) и глобулярные (ферменты, антитела, некоторые гормоны и др.).

Полипептидные цепи фибриллярных белков имеют форму спи­рали, которая закреплена расположенными вдоль цепи внутримоле­кулярными водородными связями. В волокнах фибриллярных белков закрученные пептидные цепи расположены параллельно оси волокна, они как бы ориентированы относительно друг друга, располагаются рядом, образуя нитевидные структу­ры и имеют высокую степень асимметрии. Фибриллярные белки плохо растворимы или совсем нерастворимы в воде. При растворении в воде они образуют растворы высокой вязкости. К фибриллярным белкам относятся белки, входящие в состав тканей и покровных образований. Это мио­зин-белок мышечных тканей; коллаген, являющийся основой седиментационных тканей и кожных покровов; кератин, входящий в со­став волос, роговых покровов, шерсти и перьев. К этому же классу белков относится белок натурального шелка - фиброин, вязкая сиропообразная жидкость, за­твердевающая на воздухе в прочную нерастворимую нить. Этот белок имеет вытянутые по­липептидные цепи, соединенные друг с другом межмолекулярными водородными связями, что и определяет, по-видимому, высокую механическую прочность натурального шелка.

Пептидные цепи глобулярных белков сильно изогнуты, свернуты и часто имеют форму жестких шариков-глобул. Молекулы глобу­лярных белков обладают низкой степенью асимметрии, они хорошо растворимы в воде, причем вязкость их растворов невелика. Это прежде всего белки крови-гемоглобин, альбумин, глобулин и др.

Следует отметить условность деления белков на фибриллярные и глобулярные, так как существует большое число белков с проме­жуточной структурой.

Свойства белка могут сильно изменяться при за­мене одной аминокислоты другой. Это объясняется изменением кон­фигураций пептидных цепей и условий образования пространствен­ной структуры белка, которая в конечном счете определяет его функ­ции в организме.

СОСТАВ И СВОЙСТВА БЕЛКОВ

Число аминокислотных остатков, входящих в молекулы отдельных белков, весьма различно: в инсулине 51, в миоглобине - около 140. Поэтому и относительная молекулярная масса белков колеблется в очень широких пределах - от 10 тысяч до многих миллионов На основе определения относительной молекулярной массы и элементарного анализа установлена эмпирическая формула белковой молекулы - гемоглобина крови (C 738 H 1166 O 208 S 2 Fe) 4 Меньшая молекулярная масса может быть у простейших ферментов и некоторых гормонов белковой природы. Например, молекулярная масса гормона инсулина около 6500, а белка вируса гриппа - 320 000 000. Вещества белковой природы (состоящие из остатков аминокислот, соединенных между собой пептидной связью), имею­щие относительно меньшую молекулярную массу и меньшую сте­пень пространственной организации макромолекулы, называются полипептидами. Провести резкую границу между белками и полипептидами трудно. В большинстве случаев белки отличаются от других природных полимеров (каучука, крахмала, целлюлозы), тем, что чистый инди­видуальный белок содержит только молекулы одинакового строения и массы. Исключением является, например, желатина, в составе которой входят макромолекулы с молекулярной массой 12 000- 70000.

Строением белков объясняются их весьма разнообразные свой­ства. Они имеют разную растворимость: некоторые растворяются в воде, другие - в разбавленных растворах нейтральных солей, а некоторые совсем не обладают свойством растворимости (например, белки покровных тканей). При растворении белков в воде образуется своеобразная молекулярно-дисперсная система (раствор высокомолекулярного вещества). Некоторые белки могут быть вы­делены в виде кристаллов (белок куриного яйца, гемоглобина крови).

Белки играют важней­шую роль в жизнедеятельности всех организмов. При пищеварении белковые молекулы перевариваются до аминокислот, которые, будучи хорошо растворимы в водной среде, проникают в кровь и поступают во все ткани и клетки организма. Здесь наи­большая часть аминокислот расходуется на синтез белков различ­ных органов и тканей, часть-на синтез гормонов, ферментов и других биологически важных веществ, а остальные служат как энергетический материал. Т.е. белки выполняют каталитические (фермен­ты), регуляторные (гормоны), транспорт­ные (гемоглобин, церулоплазмин и др.), защитные (антитела, тромбин и др.) функции

Белки - важнейшие компоненты пищи человека и корма животных. Совокупность непрерывно протекающих химищеский превращений белков зани­мает ведущее место в обмене веществ орга­низмов. Скорость обновления белков у живых организмов зависит от содержания белков в пище, а также его биологической ценности, которая определяется наличием и соотношением незаменимых аминокислот

Белки растений беднее белков животного происхождения по содержа­нию незаменимых аминокислот, особен­но лизина, метионина, триптофана. Белки сои и картофеля по аминокислотному со­ставу наиболее близки белкам животных. Отсутствие в корме незаменимых аминокислот при­ходит к тяжёлым нарушениям азотистого обмена. Поэтому селекция зерновых культур направлена, в частности, и на повышение качества белкового состава зерна.

КЛАССИФИКАЦИЯ БЕЛКОВ

Белки подразделяются на две большие группы: простые белки, или протеины, и сложные белки, или протеиды.

При гидролизе протеинов в кислом водном растворе получают только а-аминокислоты. Гидролиз протеидов дает кроме амино­кислот и вещества небелковой природы (углеводы, нуклеиновые кислоты и др.); это соединения белковых веществ с небелковыми.

Протеины.

Альбумины хорошо растворяются в воде. Встречаются в моло­ке, яичном белке и крови.

Глобулины в воде не растворяются, но растворимы в разбавлен­ных растворах солей. К глобулинам принадлежат глобулины крови и мышечный белок миозин.

Глутелины растворяются только в разбавленных растворах ще­лочей. Встречаются в растениях.

Склеропротеины - нерастворимые белки. К склеропротеинам относятся кератины, белок кожи и соединительных тканей колла­ген, белок натурального шелка фиброин.

Протеиды построены из протеинов, соединенных с молекулами другого типа (простетическими группами).

Фосфопротеиды содержат молекулы фосфорной кислоты, свя­занные в виде сложного эфира у гидроксильной группы аминокисло­ты серина. К ним относится вителлин-белок, содержащийся в яичном желтке, белок молока казеин.

    высаливание : осаждение солями щелочных, щелочноземельных металлов (хлорид натрия, сульфат магния), сульфатом аммония; при этом не нарушается первичная структура белка;

    осаждение : использование водоотнимающих веществ: спирт или ацетон при низких температурах (около –20 С).

При использовании этих методов белки лишаются гидратной оболочки и выпадают в осадок в растворе.

Денатурация - нарушение пространственной структуры белков (первичная структура молекулы сохраняется). Может быть обратимая (структура белка восстанавливается после устранения денатурирующего агента) или необратимая (пространственная структура молекулы не восстанавливается, например, при осаждении белков минеральными концентрированными кислотами, солями тяжелых металлов).

Методы разделения белков Отделение белков от низкомолекулярных примесей

Диализ

Используют специальную полимерную мембрану, которая имеет поры определенной величины. Малые молекулы (низкомолекулярные примеси) проходят через поры в мембране, а крупные (белки) задерживаются. Таким образом, белки отмывают от примесей.

Разделение белков по молекулярной массе

Гель-хроматография

Хроматографическую колонку заполняют гранулами геля (сефадекс), который имеет поры определенной величины. В колонку вносят смесь белков. Белки, размер которых меньше, чем размер пор сефадекса, задерживаются в колонке, так как «застревают» в порах, а остальные свободно выходят из колонки (рис. 2.1). Размер белка зависит от его молекулярной массы.

Рис. 2.1. Разделение белков методом гель-фильтрации

Ультрацентрифугирование

Этот метод основан на различной скорости седиментации (осаждения) белковых молекул в растворах с различным градиентом плотности (сахарозный буфер или хлорид цезия) (рис. 2.2).

Рис. 2.2. Разделение белков методом ультрацентрифугирования

Электрофорез

Данный метод основан на различной скорости миграции белков и пептидов в электрическом поле в зависимости от заряда.

Носителями для электрофореза могут служить гели, ацетатцеллюлоза, агар. Разделяемые молекулы движутся в геле в зависимости от размера: те из них, которые имеют бóльшие размеры, будут задерживаться при прохождении через поры геля. Меньшие молекулы будут встречать меньшее сопротивление и, соответственно, двигаться быстрее. В результате, после проведения электрофореза, бóльшие молекулы будут находиться ближе к старту, чем меньшие (рис. 2.3).

Рис. 2.3 . Разделение белков методом электрофореза в геле

Методом электрофореза можно разделить белки и по молекулярной массе. Для этого используют электрофорез в ПААГ в присутствии додецилсульфата натрия (ДДS-Na) .

Выделение индивидуальных белков

Аффинная хроматография

Метод основан на способности белков прочно связываться с различными молекулами нековалентными связями. Используется для выделения и очистки ферментов, иммуноглобулинов, рецепторных белков.

Молекулы веществ (лиганды), с которыми специфически связываются определенные белки, ковалентно соединяют с частицами инертного вещества. Смесь белков вносят в колонку, и искомый белок прочно присоединяется к лиганду. Остальные белки свободно выходят из колонки. Задержанный белок затем можно вымыть из колонки с помощью буферного раствора, содержащего в свободном состоянии лиганд. Этот высокочувствительный метод позволяет выделить в чистом виде очень малые количества белка из клеточного экстракта, содержащего сотни других белков.

Изоэлектрофокусирование

Метод основан на различной величине ИЭТ белков. Белки разделяют методом электрофореза на пластине с амфолином (это вещество, у которого заранее сформирован градиент pH в диапазоне от 3 до 10). При электрофорезе белки разделяются в соответствии со значением их ИЭТ (в ИЭТ заряд белка будет равен нулю, и он не будет передвигаться в электрическом поле).

Двухмерный электрофорез

Представляет собой сочетание изоэлектрофокусирования и электрофореза с ДДС-Na. Проводят сначала электрофорез в горизонтальном направлении на пластине с амфолином. Белки разделяются в зависимости от заряда (ИЭТ). Затем обрабатывают пластину раствором ДДС-Na и проводят электрофорез в вертикальном направлении. Белки разделяются в зависимости от молекулярной массы.

Иммуноэлектрофорез (Вестерн-блот)

Аналитический метод, используемый для определения специфичных белков в образце (рис 2.4).

    Выделение белков из биологического материала.

    Разделение белков по молекулярной массе методом электрофореза в ПААГ с ДДС-Na.

    Перенос белков с геля на полимерную пластину с целью облегчения дальнейших работ.

    Обработка пластины раствором неспецифического белка для заполнения оставшихся пор.

Таким образом, после этого этапа получена пластинка, в порах которой содержатся разделенные белки, а пространство между ними заполнено неспецифическим белком. Теперь надо выявить, есть ли среди белков искомый, ответственный за какое-то заболевание. Для выявления используют обработку антителами. Под первичными антителами понимают антитела к искомому белку. Под вторичными антителами понимают антитела к первичным антителам. В состав вторичных антител вводят дополнительно специальную метку (т.н. молекулярный зонд), чтобы потом можно было визуализировать результаты. В качестве метки используются радиоактивный фосфат или фермент, прочно связанные с вторичным антителом. Связывание сначала с первичными, а затем с вторичными антителами преследует две цели: стандартизация метода и улучшение результатов.

    Обработка раствором первичных антител  связывание происходит в том месте пластины, где есть антиген (искомый белок).

    Удаление несвязавшихся антител (промывка).

    Обработка раствором меченых вторичных антител для последующей проявки.

    Удаление несвязавшихся вторичных антител (промывка).

Рис. 2.4 . Иммуноэлектрофорез (Вестерн-блот)

В случае присутствия искомого белка в биологическом материале – на пластинке появляется полоса, свидетельствующая о связывании этого белка с соответствующими антителами.