Как читается сурьма. Сурьма — чрезвычайно важное для промышленности вещество

Sb- сурьма. Строение атома сурьмы:
В периодическое системе элементов Д. И. Менделеева сурьма находится в пятой группе, в главной подгруппе и в пятом периоде под №51. Ее строение атома ₊₅₁Sb 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶4d¹⁰5s²5p³. Свойства сурьмы схожи с атомами пятой группы главной подгруппы, но в связи с тем, что у сурьмы 5 энергетических уровней, радиус у сурьмы значительно больше чем у азота, фосфора и астата и электроны последнего уровня слабее притягиваются к ядру у ее атомов будут проявляться сильнее металлические и восстановительные свойства. Сурьма в виде простого вещества полуметалл - диалектрик, серебристо-белого цвета с синеватым оттенком, грубозернистого строения. Сурьма, с одной стороны, в природных соединениях имеет свойства металла, с другой стороны она обладает свойствами металлоида, С такими металлами, как медь, мышьяк и палладий сурьма может давать интерметаллические соединения.
В России крупнейшее месторождение сурьмы находится в Якутии.
Основной способ получения сурьмы -это обжиг сульфидных руд с последующим восстановлением углем:
2Sb₂S₃
+ 9O₂= 2Sb₂O₃ + 6SO₂
2Sb₂O₃ + 3C = 3CO + 4Sb
Химические свойства сурьмы:
Внешний, электронный слой атома сурьмы состоит из пяти валентных электронов s²p³. Три из них (p-электроны) – неспаренные и два (s-электроны) – спаренные. Первые легче отрываются от атома и определяют характерную для сурьмы валентность 3⁺. При проявлении этой валентности пара неподеленных валентных электронов s² находится. как бы в запасе. Когда же этот запас расходуется, сурьма становится пятивалентной. Короче говоря, она проявляет те же валентности, что и ее аналог по группе – неметалл фосфор.
В соединениях сурьма может проявлять в степени окисления: +5;+3 -3 ;
На воздухе устойчива, при сильном нагревании загорается:
4Sb + 3O₂ + 650⁰= 2Sb₂O₃ Этому оксиду соответствует гидроксид Sb(OH)₃
Высший оксид сурьмы существует Sb₂O₅ и ему соответствует гидроксид H₃SbO₄
С азотом и водородом не взаимодействует.
Взаимодействует с кислотами:
Sb + H₂SO₄ = Sb₂(SO₄)₃ + SO₂ + H₂O
Азотная кислота при взаимодействии с сурьмой переводит ее в сурсьную кислоту:
Sb + 5HNO₃= H₃SbO₄ + 5NO₂ +H₂O
Легко взаимодействует с галогенами:
2Sb + 3I₂=2SbI₃
В зависимости от температуры с хлором может проявлять степень окисления +3,+5:
2Sb + 3CI₂+ 20⁰C= 2SbCI₃
2Sb + 5CI₂ + 80⁰C=2SbCI₅
Применение сурьмы: Сурьма всё больше применяется в полупроводниковой промышленности при производстве диодов, инфракрасных детекторов.
Является компонентом свинцовых сплавов, увеличивающим их твёрдость и механическую прочность. Область применения включает: батареи,антифрикционные сплавы,типографские сплавы,стрелковое оружие и трассирующие пули,оболочки кабелей,спички,лекарства, противопротозойные средства,пайка - некоторые бессвинцовые припои содержат 5 % Sb,использование в линотипных печатных машинах. Вместе с оловом и медью сурьма образует металлический сплав - баббит, обладающий антифрикционными свойствами и использующийся в подшипниках скольжения. Также Sb добавляется к металлам, предназначенным для тонких отливок.

О сурьме можно рассказывать много. Это элемент с интересной историей и интересными свойствами:; элемент, используемый давно и достаточно широко; элемент, необходимый не только технике, но и общечеловеческой культуре. Историки считают, что первые производства сурьмы появились на древнем Востоке чуть ли не 5 тыс. лет назад.
В дореволюционной России не было ни одного завода, ни одного цеха, в которых бы выплавляли сурьму. А она была нужна - прежде всего полиграфии (как компонент материала для литер) и красильной промышленности, где и до сих пор применяются некоторые соединения элемента № 51. В начале XX в. Россия ежегодно ввозила из-за границы около тысячи тонн сурьмы.
В начале 30-х годов на территории Киргизской ССР, в Ферганской долине, геологи нашли сурьмяное сырье. В разведке этого месторождения принимал участие выдающийся советский ученый академик Д. И. Щербаков. В 1934 г. из руд Кадамджайского месторождения начали получать трехсернистую сурьму, а еще через год из концентратов этого месторождения на опытном заводе выплавили первую советскую металлическую сурьму. К 1936 г. производство этого вещества достигло таких масштабов, что страна полностью освободилась от необходимости ввозить его из-за рубежа.
Разработкой технологии и организацией производства советской сурьмы руководили инженеры Н. П. Сажин и С. М. Мельников, впоследствии известные ученые, лауреаты Ленинской премии.
Спустя 20 лет на Всемирной выставке в Брюсселе советская металлическая сурьма была признана лучшей в мире и утверждена мировым эталоном.

История сурьмы и ее названия

Наряду с золотом, ртутью, медью и шестью другими элементами, сурьма считается доисторической . Имя ее первооткрывателя не дошло до нас. Известно только, что,науке не известно, кто скрывается под псевдонимом «Василий Валентин». Возможно, автор книги «Триумфальная колесница антимония» изображен на этом старинном портрете. Надпись по овалу: «Брат Василий Валентин, монах ордена бенедиктинцев и философ-герметик» (т. е. алхимик)
например, в Вавилоне еще за 3 тыс. лет до н. э. из нее делали сосуды. Латинское название элемента «stibium» встречается в сочинениях Плиния Старшего. Однако греческое «axijk», от которого происходит это название, относилось первоначально не к самой сурьме, а к ее самому распространенному минералу - сурьмяному блеску.
В странах древней Европы знали только этот минерал. В середине века из него научились выплавлять «королек сурьмы», который считали полуметаллом. Крупнейший металлург средневековья Агрикола (1494-1555) писал: «Если путем сплавления определенная порция сурьмы прибавляется к свинцу, получается типографский сплав, из которого изготовляется шрифт, применяемый теми, кто печатает книги». Таким образом, одному из главных нынешних применений элемента № 51 много веков.
Свойства и способы получения сурьмы, ее препаратов и сплавов впервые в Европе подробно описаны в известной книге «Триумфальная колесница антимония», вышедшей в 1604 г. Ее автором на протяжении многих лет счищен алхимик монах-бенедиктинец Василий Валентин, живший якобы в начале ХУ в. Однако еще в прошлом веке было установлено, что среди монахов ордена бенедиктинцев такого никогда не бывало. Ученые пришли к выводу, что «Василий Валентин» - это псевдоним неизвестного ученого, написавшего свой трактат не раньше середины XVI в. ... Название «антимоний», данное им природной сернистой сурьме, немецкий историк Липман производит от греческого ocvTepov - «цветок» (по виду сростков игольчатых кристаллов сурьмяного блеска, похожих на цветы семейства сложноцветковых).


Название «антимоний» и у нас и за рубежом долгое время относилось только к этому минералу. А металлическую сурьму в то время называли корольком сурьмы - regulus antimoni. В 1789 г. Лавуазье включил сурьму в список простых веществ и дал ей название antimonie, оно и сейчас остается французским названием элемента № 51. Близки к нему английское и немецкое названия - antimony, Antimon.
Есть, правда, и другая версия. У нее меньше именитых сторонников, зато среди них создатель Швейка - Ярослав Гашек.
...В перерывах между молитвами и хозяйственными заботами настоятель Штальгаузенского монастыря в Баварии отец Леонардус искал философский камень. В одном из своих опытов он смешал в тигле пепел сожженного еретика с пеплом его кота и двойным количеством земли, взятой с места сожжения. Эту «адскую смесь» монах стал нагревать.
После упаривания получилось тяжелое темное вещество с металлическим блеском. Это было неожиданно и интересно; тем не менее отец Леонардус был раздосадован: в книге, принадлежавшей сожженному еретику, говорилось, что камень философов должен быть невесом и прозрачен... И отец Леонардус выбросил полученное вещество от греха подальше - на монастырский двор.
Спустя какое-то время он с удивлением заметил, что свиньи охотно лижут выброшенный им «камень» и при /этом быстро жиреют. И тогда отца Леонардуса осенила

Алхимики изображали сурьму и виде волка с открытой частыо гениальная идея: он решил, что открыл питательное вещество, пригодное и для людей. Он приготовил новую порцию «камня жизни», растолок его и этот порошок добавил в кашу, которой питались его тощие братья во Христе.
На следующий день все сорок монахов Штальгаузенского монастыря умерли в страшных мучениях. Раскаиваясь в содеянном, настоятель проклял свои опыты, а «камень жизни» переименовал в антимониум, то есть средство против монахов.
За достоверность деталей этой истории ручаться трудно, но именно эта версия изложена в рассказе Я. Гашека «Камень жизни».
Этимология слова «антимоний» разобрана выше довольно подробно. Остается только добавить, что русское название этого элемента - «сурьма» - происходит от турецкого «сюрме», что переводится как «натирание» или «чернение бровей». Вплоть до XIX в. в России бытовало выражение «насурьмить брови», хотя «сурьмили» их далеко не всегда соединениями сурьмы. Лишь одно из них - черная модификация трехсернистой сурьмы - применялось как краска для бровей. Его и обозначили сначала словом, которое позже стало русским наименованием элемента № 51.
А теперь давайте выясним, что же скрывается за этими названиями.

Металл или неметалл?

Средневековым металлургам и химикам были известны семь металлов: золото , серебро , медь , олово , свинец , железо и . Открытые в то время цинк , висмут и мышьяк вместе с сурьмой были выделены в специальную группу «полуметаллов»: они хуже ковались, а ковкость считалась основным признаком металла. К тому же, по алхимическим представлениям, каждый металл был связан с каким-либо небесным телом. А тел таких знали семь: Солнце (с ним связывалось золото), Луна (серебро), Меркурий (ртуть), Венера (медь), Марс (железо), Юпитер (олово) и Сатурн (свинец).
Для сурьмы небесного тела не хватило, и на этом основании алхимики никак не желали признать ее самостоятельным металлом. Но, как это ни странно, частично они были правы, что нетрудно подтвердить, проанализировав физические и химические свойства сурьмы.
Сурьма (точнее, ее самая распространенная серая модификация) выглядит как обыкновенный металл традиционного серо-белого цвета с легким синеватым оттенком. Синий оттенок тем сильнее, чем больше примесей. Металл этот умеренно тверд и исключительно хрупок: в фарфоровой ступке фарфоровым пестиком этот металл (!) нетрудно истолочь в порошок. Электричество и тепло сурьма проводит намного хуже большинства обычных металлов: при 0° С ее электропроводность составляет лишь 3,76% электропроводности серебра. Можно привести и другие характеристики - они не изменят общей противоречивой картины. Металлические свойства выражены у сурьмы довольно слабо, однако и свойства неметалла присущи ей далеко не в полной мере.
Детальный анализ химических свойств сурьмы тоже не дал возможности окончательно убрать ее из раздела «ни то, ни се». Внешний, электронный слой атома сурьмы состоит из пяти валентных электронов s2p3. Три из них (р-электроны) - неспаренные и два (s-электроны) - спаренные. Первые легче отрываются от атома и определяют характерную для сурьмы валентность 3+. При проявлении этой валентности пара цеподелепных валентных электронов s2 находится как бы в запасе. Когда же этот запас расходуется, сурьма становится пятивалентной. Короче говоря, она проявляет те же валентности, что и ее аналог по группе - неметалл фосфор.
Проследим, как ведет себя сурьма в химических реакциях с другими элементами, например с кислородом, и каков характер ее соединений.
При нагревании на воздухе сурьма легко превращается в окисел Sb 2 0 3 - твердое вещество белого цвета, почти не растворимое в воде. В литературе это вещество часто называют сурьмянистым ангидридом, но это неправильно. Ведь ангидрид является кислотообразующим окислом, а у Sb(OH) 3 , гидрата Sb 2 0 3 , основные свойства явно преобладают над кислотными. Свойства низшего окисла сурьмы говорят о том, что сурьма - металл. Но высший окисел сурьмы Sb 2 0 5 - это действительно ангидрид с четко выраженными кислотными свойствами. Значит, сурьма все-таки неметалл?


Есть еще третий окисел - Sb 2 0 4 . В нем один атом сурьмы трех-, а другой пятивалентен, и этот окисел самый устойчивый. Во взаимодействии ее с прочими элементами - та же двойственность, и вопрос, металл сурьма или неметалл, остается открытым. Почему же тогда во всех справочниках она фигурирует среди металлов? Главным образом ради классификации: надо же ее куда-то девать, а внешне она больше похожа на металл...

Зачем нужна сурьма

Металлическая сурьма из-за своей хрупкости применяется редко. Однако, поскольку сурьма увеличивает твердость других металлов (олова, свинца) и не окисляется при обычных условиях, металлурги нередко вводят ее в состав различных сплавов. Число сплавов, в которые входит элемент № 51, близко к двумстам. Наиболее известные сплавы сурьмы - твердый свинец (или гартблей), типографский металл, подшипниковые металлы.
Подшипниковые металлы - это сплавы сурьмы с оловом, свинцом и медью, к которым иногда добавляют цинк и висмут. Эти сплавы сравнительно легкоплавки, из них методом литья делают вкладыши подшипников. Наиболее распространенные сплавы этой группы - баббиты - со-держат от 4 до 15% сурьмы. Баббиты применяются в станкостроении, на железнодорожном и автомобильном транспорте. Подшипниковые металлы обладают достаточной твердостью, большим сопротивлением истиранию, высокой коррозионной стойкостью.
Сурьма принадлежит к числу немногих металлов, расширяющихся при затвердевании. Благодаря этому свойству сурьмы типографский металл - сплав свинца (82%)," олова (3%) и сурьмы (15%) - хорошо заполняет формы при изготовлении шрифтов; отлитые из этого металла строки дают четкие отпечатки. Сурьма придает типографскому металлу твердость, ударную стойкость 11 износостойкость.
Свинец, легированный сурьмой (от 5 до 15%), известен под названием гартблея, или твердого свинца. Добавка к свинцу уже 1% Sb сильно повышает его твердость. Твердый свинец используется в химическом машиностроении, а также для изготовления труб, по которым транспортируют агрессивные жидкости. Из него же делают оболочки телеграфных, телефонных и электрических кабелей, электроды, пластины аккумуляторов. Последнее, кстати,- одно из самых главных применений элемента № 51. Добавляют сурьму и к свинцу, идущему на изготовление шрапнели и пуль.


Широкое применение в технике находят соединения сурьмы. Трехсернистую сурьму используют в производстве спичек в пиротехнике. Большинство сурьмяных препаратов также получают из этого соединения. Пятисерпистую сурьму применяют для вулканизации каучука. У «медицинской» резины, в состав которой входит Sb 2 S 5 , характерный красный цвет и высокая эластичность. Жаростойкая трехокись сурьмы используется в производстве огнеупорных красок и тканей. Краска «сурьмин», основу которой составляет трехокись сурьмы, применяется для окраски подводной части и надпалубных построек кораблей.
Интерметаллические соединения сурьмы с алюминием, галлием, индием обладают полупроводниковыми свойствами. Сурьмой улучшают свойства одного из самых важных полупроводников - германия . Словом, сурьма - один из древнейших металлов, известных человечеству,- необходима ему и сегодня.
  • ХИМИЧЕСКИЙ ХИЩНИК. В средневековых книгах сурьму обозначали фигурой волка с открытой пастью. Вероятно, такой «хищный» символ этого металла объясняется тем, что сурьма растворяет («пожирает») почти все прочие металлы. На дошедшем до нас средневековом рисунке изображен волк, пожирающий царя. Зная алхимическую символику, этот рисунок следует понимать как образование сплава золота с сурьмой.
  • СУРЬМА ЦЕЛИТЕЛЬНАЯ. В XV-XVI вв. некоторые препараты сурьмы часто применяли как лекарственные средства, главным образом как отхаркивающие и рвотные. Чтобы вызвать рвоту, пациенту давали вино, выдержанное в сурьмяном сосуде. Одно из соединений сурьмы, KC 4 H 4 O 4 (SbO) Н 2 0, так и называется рвотным камнем.

Соединения сурьмы и сейчас применяются в медицине для лечения некоторых инфекционных заболеваний человека и животных. В частности, их используют при лечении сонной болезни.

  • ВЕЗДЕ, КРОМЕ СОЛНЦА. Несмотря на то что содержание сурьмы в земной коре весьма незначительно, следы ее имеются во многих минералах. Иногда сурьму обнаруживают в метеоритах. Воды моря, некоторых рек и ручьев также содержат сурьму. В спектре Солнца линии сурьмы не найдены.
  • СУРЬМА И КРАСКИ. Очень многие соединения сурьмы могут служить пигментами в красках. Так, сурьмянокислый калий (К 2 0 2Sb 2 0 5) широко применяется в производстве керамики. Мотасурьмянокислый натрий (NaSb0 3) под названием «лейконин» используется для покрытия кухонной посуды, а также в производстве эмали и белого молочного стекла. Знаменитая краска «неаполитанская желтая» есть не что иное, как сурьмянокислая окись свинца. Применяется она в живописи как масляная краска, а также для окраски керамики и фарфора. Даже металлическая сурьма, в виде очень тонкого порошка, используется как краска. Этот порошок - основа известной краски «железная чернь».
  • «СУРЬМЯНАЯ» БАКТЕРИЯ. В 1974 г. советским микробиологом Н. Н. Ляликовой обнаружена неизвестная прежде бактерия, которая питается исключительно трехокисыо сурьмы Sb 2 0 3 . При этом трехвалентная сурьма окисляется до пятивалентной. Полагают, что многие природные соединения пятивалентной сурьмы образовались при участии «сурьмяной» бактерии.
Атомный номер 51
Внешний вид простого вещества металл серебристо-белого цвета
Свойства атома
Атомная масса
(молярная масса)
121,760 а. е. м. ( /моль)
Радиус атома 159 пм
Энергия ионизации
(первый электрон)
833,3 (8,64) кДж/моль (эВ)
Электронная конфигурация 4d 10 5s 2 5p 3
Химические свойства
Ковалентный радиус 140 пм
Радиус иона (+6e)62 (-3e)245 пм
Электроотрицательность
(по Полингу)
2,05
Электродный потенциал 0
Степени окисления 5, 3, −3
Термодинамические свойства простого вещества
Плотность 6,691 /см ³
Молярная теплоёмкость 25,2 Дж /( ·моль)
Теплопроводность 24,43 Вт /( ·)
Температура плавления 903,9
Теплота плавления 20,08 кДж /моль
Температура кипения 1908
Теплота испарения 195,2 кДж /моль
Молярный объём 18,4 см ³/моль
Кристаллическая решётка простого вещества
Структура решётки тригональная
Параметры решётки 4,510
Отношение c/a n/a
Температура Дебая 200,00
Sb 51
121,760
4d 10 5s 2 5p 3

— элемент главной подгруппы пятой группы пятого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 51. Обозначается символом Sb (лат. Stibium). Простое вещество сурьма (CAS-номер: 7440-36-0) — металл (полуметалл) серебристо-белого цвета с синеватым оттенком, грубозернистого строения. Известны четыре металлических аллотропных модификаций сурьмы, существующих при различных давлениях, и три аморфные модификации.

Историческая справка

Сурьма известна с глубокой древности. В странах Востока она употреблялась примерно за 3000 лет до н. э. для изготовления сосудов. В Древнем Египте уже в 19 в. до н. э. порошок сурьмяного блеска (природный Sb 2 S 3) под названием mesten или stem применялся для чернения бровей. В Древней Греции он был известен как stími и stíbi , отсюда латинский stibium . Около 12—14 вв. н. э. появилось название antimonium . В 1789 А. Лавуазье включил сурьму в список химических элементов под названием antimoine (современный английский antimony , испанский и итальянский antimonio , немецкий Antimon ). Русская «сурьма» произошло от турецкого sürme; им обозначался порошок свинцового блеска PbS, также служивший для чернения бровей (по другим данным, «сурьма» — от персидского «сурме» — металл). Подробное описание свойств и способов получения сурьмы и её соединений впервые дано алхимиком Василием Валентином (Германия) в 1604.

Нахождение в природе

В среднетемпературных гидротермальных жилах с рудами серебра, кобальта и никеля, также в сульфидных рудах сложного состава.

Изотопы сурьмы

Природная сурьма является смесью двух изотопов: 121 Sb (изотопная распространённость 57,36 %) и 123 Sb (42,64 %). Единственный долгоживущий радионуклид — 125 Sb с периодом полураспада 2,76 года, все остальные изотопы и изомеры сурьмы имеют период полураспада, не превышающий двух месяцев, что не позволяет использовать их в ядерном оружии.

Пороговая энергия для реакций с высвобождением нейтрона (1-го):
121 Sb — 9,248 Мэв
123 Sb — 8,977 Мэв
125 Sb — 8,730 Мэв

Физические и химические свойства

Сурьма в свободном состоянии образует серебристо-белые кристаллы с металлическим блеском, плостность 6,68 г/см³. Напоминая внешним видом металл, кристаллическая сурьма обладает большей хрупкостью и меньшей тепло- и электропроводностью.

Применение

Сурьма всё больше применяется в полупроводниковой промышленности при производстве диодов, инфракрасных детекторов, устройств с эффектом Холла. В виде сплава этот металлоид существенно увеличивает твёрдость и механическую прочность свинца.
Используется:

— батареи
— антифрикционные сплавы
— типографские сплавы
— стрелковое оружие и трассирующие пули
— оболочки кабелей
— спички
— лекарства, противопротозойные средства
— пайка отдельные бессвинцовые припои содержат 5 % Sb
— использование в линотипных печатных машинах

Соединения сурьмы в форме оксидов, сульфидов, антимоната натрия и трихлорида сурьмы, применяются в производстве огнеупорных соединений, керамических эмалей, стекла, красок и керамических изделий. Триоксид сурьмы является наиболее важным из соединений сурьмы и главным образом используется в огнестойких композициях. Сульфид сурьмы является одним из ингредиентов в спичечных головках.

Природный сульфид сурьмы, стибнит, использовали в библейские времена в медицине и косметике. Стибнит до сих пор используется в некоторых развивающихся странах в качестве лекарства. Соединения сурьмы — меглюмина антимониат (глюкантим) и натрия стибоглюконат (пентостам), применяются в лечении лейшманиоза .

Физические свойства

Обыкновенная сурьма это серебристо-белый с сильным блеском металл. В отличие от большинства других металлов, при застывании расширяется. Sb понижает точки плавления и кристаллизации свинца, а сам сплав при отвердении несколько расширяется в объёме. Вместе с оловом и медью сурьма образует металлический сплав — Баббит, обладающий антифрикционными свойствами(использование в подшипниках).Также Sb добавляется к металлам, предназначенным для тонких отливок.

Красной ртути ». Особенность этого вещества состоит в том что оно является своего рода многофункциональным ядерным катализатором (коэффициент размножения нейтронов 7—9) и должно очень строго учитываться любой страной ввиду угрозы ядерного терроризма.

Цены

Цены на металлическую сурьму в слитках чистотой 99 % составили около 5,5 долл/кг.

Термоэлектрические материалы

Теллурид сурьмы применяется как компонент термоэлектрических сплавов (термо-э.д.с 100—150 мкВ/К) с теллуридом висмута.

Биологическая роль и воздействие на организм

Сурьма относится к микроэлементам. Её содержание в организме человека составляет 10 -6 % по массе. Постоянно присутствует в живых организмах, физиологическая и биохимическая роль не выяснена. Сурьма проявляет раздражающее и кумулятивное действие. Нaкапливается в щитовидной железе, угнетает её функцию и вызывает эндемический зоб. Однако, попадая в пищеварительный тракт, соединения сурьмы не вызывают отравления, так как соли Sb(III) там гидролизуются с образованием малорастворимых продуктов. При этом соединения сурьмы (III) более токсичны чем сурьмы (V). Пыль и пары Sb вызывают носовые кровотечения, сурьмяную «литейную лихорадку», пневмосклероз, поражают кожу, нарушают половые функции. Порог восприятия привкуса в воде — 0,5 мг/л. Смертельная доза для взрослого человека — 100 мг, для детей — 49 мг. Для аэрозолей сурьмы ПДК в воздухе рабочей зоны 0,5 мг/м 3 , в атмосферном воздухе 0,01 мг/м 3 . ПДК в почве 4,5 мг/кг. В питьевой воде сурьма относится ко 2 классу опасности, имеет ПДК 0,005 мг/л, установленное по санитарно-токсикологическому ЛПВ . В природных водах норматив содержания составляет 0,05 мг/л. В сточных промышленных водах, сбрасываемых на очистные сооружения, имеющие биофильтры, содержание сурьмы не должно превышать 0,2 мг/л.

Сурьма

СУРЬМА́ -ы; ж. [перс. surma - металл]

1. Химический элемент (Sb), синевато-белый металл (употребляется в различных сплавах в технике, в типографском деле). Выплавка сурьмы. Соединение сурьмы с серой.

2. В старину: краска для чернения волос, бровей, ресниц. Навести, подвести брови сурьмой. Следы сурьмы на лице.

Сурьмя́ный, -ая, -ое (1 зн.). С-ые руды. С-ые сплавы. С. блеск (минерал свинцово-серого цвета, содержащий сурьму и серу).

сурьма́

(лат. Stibium), химический элемент V группы периодической системы. Образует несколько модификаций. Обычная сурьма (так называемая серая) - синевато-белые кристаллы; плотность 6,69 г/см 3 , t пл 630,5°C. На воздухе не изменяется. Важнейший минерал - антимонит (сурьмяный блеск). Компонент сплавов на основе свинца и олова (аккумуляторные, типографские, подшипниковые и др.), полупроводниковых материалов.

СУРЬМА

СУРЬМА́ (лат. Stibium), Sb, (читается «стибиум»), химический элемент c атомным номером 51, атомная масса 121,75. Природная сурьма состоит из двух стабильных изотопов: 121 Sb (содержание по массе 57,25%) и 123 Sb (42,75%). Рaсположена в VА группе в 5 периоде периодической системы. Электронная конфигурация внешнего слоя 5s 2 p 3 . Степени окисления +3, +5, редко –3 (валентности III, V). Радиус атома 0,161 нм. Радиус иона Sb 3+ 0,090 нм (координационные числа 4 и 6), Sb 5+ 0,062 нм (6), Sb 3– 0,208 нм (6). Энергии последовательной ионизации 8,64, 16,6, 28,0, 37,42 и 58,8 эВ. Ээлектроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,9.
Историческая справка
Сурьму применяли в странах Востока за три тысячи лет до нашей эры. Латинское название элемента связано с минералом «стиби», из которого в Древней Греции получали сурьму. Русское «сурьма» происходит от турецкого «surme» - чернить брови (порошок для чернения бровей готовили из минерала сурьмяный блеск). В 15 веке монах Василий Валентин описал процесс получения сурьмы, из сплава со свинцом для отливки типографского шрифта. Природную сернистую сурьму он назвал сурьмяным стеклом. В средние века использовали препараты сурьмы в медицинских целях: пилюли из сурьмы, вино, выдержанное в чашах из сурьмы (при этом образовывался «рвотный камень» K·1/2H 2 O).
Нахождение в природе
Содержание в земной коре 5·10 _–5 % по массе. Встречается в природе в самородном состоянии. Известно около 120 минералов, содержащих Sb, главным образом, a виде сульфида Sb 2 S 3 (сурьмяный блеск, антимонит, стибнит). Продукт окисления сульфида кислородом воздуха Sb 2 O 3 - белая сурьмяная руда (валентинит и сенармонтит). Сурьма часто содержится в свинцовых, медных и серебряных рудах (тетраэдрит Cu 12 Sb 4 S 13 , джемсонит Pb 4 FeSb 6 S 14).
Получение
Сурьму получают сплавлением сульфида Sb 2 S 3 с железом:
Sb 2 S 3 +3Fe=2Sb+3FeS,
обжигом сульфида Sb 2 S 3 и восстановлением полученного оксида углем:
Sb 2 S 3 +5O 2 =Sb 2 O 4 +3SO 2 ,
Sb 2 O 4 +4C=2Sb+4CO. Чистую сурьму (99,9%) получают электролитическим рафинированием. Сурьму извлекают также из свинцовых концентратов, полученных при переработке полиметаллических руд.
Физические и химические свойства
Сурьма серебристо-серый с синеватым оттенком хрупкий неметалл. Серая сурьма, Sb I, с ромбоэдрической решеткой (a =0,45064 нм, a=57,1°), устойчива при обычных условиях. Температура плавления 630,5°C, кипения 1634°C. Плотность 6,69 г/см 3 . При 5,5 ГПа Sb I переходит в кубическую модификацию Sb II, при давлении 8,5 ГПа - в гексагональную Sb III, выше 28 ГПа - Sb IV.
Серая сурьма имеет слоистую структуру, где каждый атом Sb пирамидально связан с тремя соседями по слою (межатомное расстояние 0,288 нм) и имеет трех ближайших соседей в другом слое (межатомное расстояние 0,338 нм). Известны три аморфные модификации сурьмы. Желтая сурьма образуется при действии кислорода на жидкий стибин SbH 3 и содержит незначительные количества химически связанного водорода (см. ВОДОРОД) . При нагревании или освещении желтая сурьма переходит в черную сурьму (плотность 5,3 г/см 3), обладающую полупроводниковыми свойствами.
При электролизе SbCl 3 при малых плотностях тока образуется взрывчатая сурьма, содержащая небольшие количества химически связанного хлора (взрывается при трении). Черная сурьма при нагревании без доступа воздуха до 400°C и взрывчатая сурьма при растирании превращаются в металлическую серую сурьму. Металлическая сурьма (Sb I) - полупроводник. Ширина запрещенной зоны 0,12 эВ. Диамагнитна. При комнатной температуре металлическая сурьма очень хрупка и легко растирается в порошок в ступке, выше 310°C - пластична, также пластичны монокристаллы сурьмы высокой чистоты.
С некоторыми металлами сурьма образует антимониды: антимонид олова SnSb, никеля Ni 2 Sb 3 , NiSb, Ni 5 Sb 2 и Ni 4 Sb. Сурьма не взаимодействует с соляной, плавиковой и серной кислотами. С концентрированной азотной кислотой образуется плохо растворимая бета-сурьмяная кислота HSbO 3:
3Sb + 5HNO 3 = 3HSbO 3 + 5NO + H 2 O.
Общая формула сурьмяных кислот Sb 2 O 5 ·n H 2 O. С концентрированной H 2 SO 4 сурьма реагирует с образованием сульфата сурьмы(III) Sb 2 (SO 4) 3:
2Sb + 6H 2 SO 4 = Sb 2 (SO 4) 3 + 3SO 2 ­ + 6H 2 O.
Сурьма устойчива на воздухе до 600°C. При дальнейшем нагревании окисляется до Sb 2 O 3:
4Sb + 3O 2 = 2Sb 2 O 3 .
Оксид сурьмы(III) обладает амфотерными свойствами и реагирует с щелочами:
Sb 2 O 3 + 6NaOH + 3H 2 O = 2Na 3 .
и кислотами:
Sb 2 O 3 + 6HCl = 2SbCl 3 + 3H 2 O
При нагревании Sb 2 O 3 выше 700°C в кислороде образуется оксид состава Sb 2 O 4:
2Sb 2 O 3 + O 2 = 2Sb 2 O 4.
Этот оксид одновременно содержит Sb(III) и Sb(V). В его структуре соединены друг с другом октаэдрические группировки и . При осторожном обезвоживании сурьмяных кислот образуется пентаоксид сурьмы Sb 2 O 5:
2HSbO 3 = Sb 2 O 5 + H 2 O,
проявляющий кислотные свойства:
Sb 2 O 5 + 6NaOH = 2Na 3 SbO 4 + 3H 2 O,
и являющийся окислителем:
Sb 2 O 5 + 10HCl = 2SbCl 3 + 2Cl 2 ­ + 5H 2 O
Соли сурьмы легко гидролизуются. Выпадение гидроксосолей начинается при pH 0,5–0,8 для Sb(III) и pH 0,1 для Sb(V). Состав продукта гидролиза зависит от соотношения соль / вода и последовательности внесения реагентов:
SbCl 3 + H 2 O = SbOCl + 2HCl,
4SbCl 3 + 5H 2 O = Sb 4 O 5 Cl 2 + 10HCl.
С фтором (см. ФТОР) сурьма образует пентафторид SbF 5 . При его взаимодействии с плавиковой кислотой HF возникает сильная кислота H. Сурьма горит при внесении ее порошка в Cl 2 с образованием смеси пентахлорида SbCl 5 и трихлорида SbCl 3:
2Sb + 5Cl 2 = 2SbCl 5 , 2Sb + 3Cl 2 = 2SbCl 3 .
С бромом (см. БРОМ) и иодом (см. ИОД) Sb образует oригалогениды:
2Sb + 3I 2 = 2SbI 3 .
При действии сероводорода (см. СЕРОВОДОРОД) H 2 S на водные растворы Sb(III) и Sb(V), образуются оранжево-красный трисульфид Sb 2 S 3 или оранжевый пентасульфид Sb 2 S 5 , которые взаимодействуют с сульфидом аммония (NH 4) 2 S:
Sb 2 S 3 + 3(NH 4) 2 S = 2(NH 4) 3 SbS 3 ,
Sb 2 S 5 + 3(NH 4) 2 S = 2(NH 4) 3 SbS 4 .
Под действием водорода (см. ВОДОРОД) на соли Sb выделяется газ стибин SbH 3:
SbCl 3 + 4Zn + 5HCl = 4ZnCl 2 + SbH 3 ­ + H 2 ­
Стибин при нагревании разлагается на Sb и H 2 . Получены органические соединения сурьмы, производные стибина, например, oриметилстибин Sb(CH 3) 3:
2SbCl 3 + 3Zn(CH 3) 2 = 3ZnCl 2 + 2Sb(CH 3) 3
Применение
Сурьма - компонент сплавов на основе свинца и олова (для аккумуляторных пластин, типографских шрифтов, подшипников, защитных экранов для работы с источниками ионизирующих излучений, посуды), на основе меди и цинка (для художественного литья). Чистую сурьму используют для получения антимонидов с полупроводниковыми свойствами. Входит в состав сложных лекарственных синтетических препаратов. При изготовлении резины используют пентасульфид сурьмы Sb 2 S 5 .
Физиологическое действие
Сурьма относится к микроэлементам, содержание в организме человека 10 –6 % по массе. Постоянно присутствует в живых организмах, физиологическая и биохимическая роль не выяснена. Нaкапливается в щитовидной железе, угнетает ее функцию и вызывает эндемический зоб. Однако, попадая в пищеварительный тракт, соединения сурьмы не вызывают отравления, так как соли Sb(III) там гидролизуются с образованием малорастворимых продуктов. Пыль и пары Sb вызывают носовые кровотечения, сурьмяную «литейную лихорадку», пневмосклероз, поражают кожу, нарушают половые функции. Для аэрозолей сурьмы ПДК в воздухе рабочей зоны 0,5 мг/м 3 , в атмосферном воздухе 0,01 мг/м 3 . ПДК в почве 4,5 мг/кг, в воде 0,05 мг/л.

Представляет собой грубозернистое вещество серебристо-серого цвета с синеватым оттенком и сильным блеском. Легко растворяется в царской водке, в смеси азотной и винной кислот. Не реагирует с соляной и фтористоводородной кислотами. Устойчива на воздухе, активно реагирует с галогенами (за исключением фтора), кислородом, концентрированной серной кислотой. При сплавлении с большинством металлов образует т.н. антимониды. Соли сурьмы легко гидролизуются.
Известны четыре металлических аллотропных модификаций сурьмы, существующих при различных давлениях, и три аморфные модификации (взрывчатая, черная и желтая сурьма).
Напоминая по внешнему виду металл, кристаллическая сурьма отличается хрупкостью и значительно хуже проводит теплоту и электрический ток, чем обычные металлы. В своих соединениях сурьма обнаруживает большое сходство с мышьяком, но отличается от него более сильно выраженными металлическими свойствами.
Плотность - 6,691 г/см³. Температура плавления - 630,5° C, температура кипения - 1634° C.

Химическая формула: Sb

В природе существует свыше 100 минералов, в состав которых входит сурьма, но чаще всего она встречается в соединениях с серой: антимонита Sb 2 S 3 , стибнита SbS 3 и кермезита Sb 2 S 2 O. Сурьму получают либо сплавлением сульфида с железом (метод вытеснения), либо обжигом сульфида и восстановлением полученного тетраоксида сурьмы углем (метод обжига-восстановления). Весьма чистую сурьму (99,6%) можно получить электролитическим рафинированием. Разработан метод, позволяющий получать электролитическим путем очень чистую сурьму непосредствепно из сульфидных руд.

Применение сурьмы.
Металлическая сурьма имеет повышенную хрупкость и в чистом виде применяется редко. Однако, поскольку сурьма увеличивает твердость других металлов (олова, свинца) и не окисляется при обычных условиях, металлурги нередко вводят ее в состав различных сплавов. Наиболее известные сплавы сурьмы - твердый свинец (или гартблей), типографский металл и подшипниковые металлы.
Подшипниковые металлы - это сплавы сурьмы с оловом, свинцом и медью, к которым иногда добавляют цинк и висмут. Эти сплавы сравнительно легкоплавки, из них методом литья делают вкладыши подшипников. Наиболее распространенные сплавы этой группы - баббиты, содержат от 4 до 15% сурьмы. Баббиты применяются в станкостроении, на железнодорожном и автомобильном транспорте. Подшипниковые металлы обладают достаточной твердостью, большим сопротивлением истиранию, высокой коррозионной стойкостью.
Сурьма принадлежит к числу немногих металлов, расширяющихся при затвердевании. Благодаря этому свойству сурьмы типографский металл - сплав свинца (82%), олова (3%) и сурьмы (15%, хорошо заполняет формы при изготовлении шрифтов; отлитые из этого металла строки дают четкие отпечатки. Сурьма придает типографскому металлу твердость, ударную стойкость и износостойкости.
Свинец, легированный сурьмой (от 5 до 15%), известен под названием гартблея, или твердого свинца. Добавка к свинцу уже 1% сурьмы сильно повышает его твердость. Твердый свинец используется в химическом машиностроении, а также для изготовления труб, по которым транспортируют агрессивные жидкости. Из него же делают оболочки телеграфных, телефонных и электрических кабелей, электроды, пластины аккумуляторов. Последнее, кстати, - одно из самых главных применений сурьмы. Добавляют сурьму и к свинцу, идущему на изготовление шрапнели и пуль.

Широкое применение в технике находят соединения сурьмы. Трехсернистую сурьму используют в производстве спичек и в пиротехнике. Большинство сурьмяных препаратов также получают из этого соединения. Пятисеринстую сурьму применяют для вулканизации каучука. У «медицинской» резины, в состав которой входит Sb 2 S 5 , характерный красный цвет и высокая эластичность. Жаростойкая трехокись сурьмы используется в производстве огнеупорных красок и тканей. Краска «сурьмин», основу которой составляет трехокись сурьмы, применяется для окраски подводной части и надпалубных построек кораблей.
Интерметаллические соединения сурьмы с алюминием, галлием, индием обладают полупроводниковыми свойствами. Сурьмой улучшают свойства одного из самых важных полупроводников - германия.

Сурьма все больше применяется в полупроводниковой промышленности при производстве диодов, инфракрасных детекторов, устройств с эффектом Холла.
Является компонентом свинцовых сплавов, увеличивающим их твердость и механическую прочность. Твердые и коррозионностойкие сплавы свинца с сурьмой (сурьмы от 5 до 15%) применяют в химическом машиностроении (для облицовки ванн и другой кислотоупорной аппаратуры), а также для изготовления труб, по которым транспортируются кислоты, щелочи и другие агрессивные жидкости. Из них же делают оболочки, окутывающие различные кабели (электрические, телеграфные, телефонные).
Сурьмянистый водород (стибин) SbH 3 - применяется в качестве фумиганта для борьбы с насекомыми, вредителями сельскохозяйственных растений.
Природный сульфид сурьмы, стибнит, использовали в библейские времена в медицине и косметике. Стибнит до сих пор используется в некоторых развивающихся странах в качестве лекарства.
Соединения сурьмы, например, меглюмина антимониат (глюкантим) и натрия стибоглюконат (пентостам), применяются в лечении лейшманиоза.

Согласно ГОСТ 1089-82, в зависимости от назначения, сурьму выпускают следующих марок:

Марки сурьмы Область применения
Су00000 В полупроводниковой и электронной технике
Су0000П В полупроводниковой технике
Су0000 В электронной технике
Су000 Для изготовления сурьмы марки Су0000П и специальных припоев
Су00 Для изготовления припоев на оловянно-свинцовой основе, эмалей и керамических красителей
Су0 Для изготовления антифрикционных аккумуляторных и типографских сплавов, припоев на оловянно-свинцовой основе и сплавов для оболочек кабелей
Су1 Для изготовления антифрикционных, аккумуляторных, типографских сплавов и сплавов для оболочек кабелей
Су2 Для изготовления сурьмянистого свинца, антифрикционных сплавов и сплавов для оболочек кабелей и аккумуляторов общего назначения

Требования безопасности сурьмы ГОСТ 1089-82
Аэрозоль металлической сурьмы относится ко 2-му классу опасности. Вдыхание аэрозоля металлической сурьмы вызывает раздражение органов дыхания, пищеварения, слизистых оболочек глаз. Возможны аллергические заболевания кожи. Длительное воздействие аэрозоля на организм может вызвать заболевание легких - антимонокониоз, не прогрессирующий после прекращения контакта с аэрозолями сурьмы, поражение сосудов, нервной системы, нарушение обменных процессов в организме.
Предельно допустимая концентрация в воздухе рабочей зоны для аэрозоля сурьмы - 0,5 мг/м³, среднесменная - 0,2 мг/м³, для свинца - 0,01 мг/м³, среднесменная - 0,007 мг/м³, для никеля - 0,05 мг/м³. Предельно допустимая концентрация свинца в питьевой воде - 0,1 мг/дм³.
Удаление пыли металлической сурьмы необходимо проводить пневматическими устройствами типа пылесосов. Утилизацию собранной пыли должны проводить возвращением ее в производственный цикл для повторной переработки.
Металлическая сурьма пожаровзрывобезопасна.
Помещения, в которых проводят работы, связанные с выделением пыли металлической сурьмы, должны быть оборудованы приточно-вытяжной вентиляцией, кроме предприятий, осуществляющих длительное хранение сурьмы.
Воздух, удаляемый вентиляционными системами, содержащий вредные вещества, перед выбросом в атмосферу подлежит очистке.Работающие с сурьмой должны обеспечиваться средствами индивидуальной защиты.

Упаковка, транспортировка и хранение.
Каждый слиток сурьмы помещают в пакет из полиэтиленовой пленки. Каждый пакет со слитком упаковывают в коробку из картона с мягкими прокладками из поролона или ваты. Коробки со слитками, упаковывают в плотные деревянные ящики, выстланные бумагой, или в контейнеры. Масса груза одного ящика должна быть не более 50 кг.
Сурьму в виде чешуйчатых пластин помещают в двойную тару: полиэтиленовые мешки, вложенные в полипропиленовые мешки. Масса брутто одного мешка не более 50 кг.
Сурьму транспортируют любым видом транспорта: в крытыд вагонах - повагонными и мелкими отправлениями; в контейнерах - в открытом подвижном составе. Транспортирование чушек сурьмы всех марок проводят транспортными пакетами в соответствии с требованиями нормативно-технической документации.
Сурьма должна храниться в крытых помещениях, исключающих потери металла, загрязнение, попадание влаги, паров кислот и других агрессивных веществ.
При соблюдении указанных условий хранения потребительские свойства сурьмы при хранении не меняются.