Метод гюйгенса френеля. Зоны Френеля для плоской волны. Задача по определению размеров колец

В результате изучения данной главы студент должен: знать

  • суть метода зон Френеля;
  • теорию дифракции на круглом отверстии и круглом диске;
  • теорию дифракции в параллельных лучах от одной щели;
  • теорию дифракционной решетки (условия максимумов и минимумов, дисперсия и разрешающая способность решетки);
  • теорию дифракции от объемных решеток и формулу Брэгга - Вульфа; уметь
  • применять метод зон Френеля для расчета дифракционных картин;
  • решать типовые прикладные физические задачи на дифракцию света; владеть
  • навыками использования стандартных методов и моделей математики применительно к дифракции света;
  • навыками проведения физического эксперимента, а также обработки результатов эксперимента по дифракции света.

Метод зон Френеля. Дифракция на круглом отверстии и круглом диске

Дифракцией света называют явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Проиллюстрировать это явление могут волны на воде, которые огибают даже довольно крупное препятствие, а мелкое (по сравнению с длиной волны) препятствие проходят так, как будто его и не было. И свет при определенных условиях может заходить в область геометрической тени. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина - чередующиеся светлые и темные кольца. Если препятствие прямолинейное (нить, щель, край экрана), то на экране возникают параллельные полосы.

Рассмотрим сначала дифракцию на круглом отверстии - дифракционную задачу о прохождении плоской монохроматической волны через небольшое круглое отверстие радиуса R в непрозрачном экране (рис. 27.1). Точка наблюдения Р находится на оси симметрии на достаточно большом расстоянии L от экрана, причем

где X - длина волны.

Рис. 27.1

В соответствии с принципом Гюйгенса - Френеля можно разбить волновую поверхность плоскости отверстия на набор вторичных источников, волны от которых дают интерференционную картину в точке Р. Исходя из круговой симметрии задачи, Френель разбил волновую поверхность падающей волны на кольцевые зоны (зоны Френеля) так, чтобы расстояния от границ соседних зон до точки Р отличались на полдлины волны:

Таким образом, волновая поверхность будет разбита на концентрические окружности (см. рис. 27.1). Найдем по теореме Пифагора радиусы р т этих окружностей (зон Френеля):

Здесь учтено условие удаленности экрана от отверстия, которое соблюдается на опыте обычно с большим запасом. Количество зон Френеля, укладывающихся на отверстии, определяется радиусом отверстия R:

где т - не обязательно целое число. Хотя для четкой интерференционной картины, как будет видно ниже, т с достаточно высокой точностью должно быть целым. Результат интерференции в точке Р зависит от числа т участвующих в интерференции зон Френеля. Покажем, что все зоны имеют одинаковую площадь S m:

Одинаковые по площади зоны, излучающие одинаковую по амплитуде волну, на первый взгляд, должны давать одинаковый вклад в освещенность в точке наблюдения. Однако это не совсем так. Чем больше номер зоны, тем больше угол а между лучом г т и нормалью к излучающей волновой поверхности. К тому же растет и расстояние до точки наблюдения г т. Оба эти фактора приводят к небольшому уменьшению амплитуды колебаний с увеличением т в точке наблюдения А т> обеспечиваемой зоной т:

Существенно, что возбуждаемые соседними зонами колебания находятся в противофазе, поскольку расстояния от них до точки наблюдения отличаются на Х/2. Поэтому волна от последующей зоны почти гасит волну от предыдущей зоны. При этом суммарная амплитуда в точке наблюдения равна конечной сумме, число слагаемых в которой ограничено величиной т

В результате группировки амплитуд видно, что суммарная амплитуда колебаний в точке наблюдения всегда меньше амплитуды колебаний, которые вызвала бы одна первая зона Френеля. Если бы отверстие было бесконечно большим и были открыты все зоны Френеля, то до точки наблюдения дошла бы невозмущенная препятствием волна с амплитудой А 0 . Тогда имеем в результате группировки амплитуд бесконечную сумму, упрощающуюся с учетом равенства (27.7):

Таким образом, действие (амплитуда), вызванное всей волновой поверхностью невозмущенной волны, равно лишь половине действия одной первой зоны. Иными словами, если отверстие в непрозрачном экране оставляет открытой одну зону Френеля, то амплитуда колебаний в точке наблюдения возрастает в 2 раза (а интенсивность - в 4 раза) по сравнению с действием невозмущенной волны. Если открыть две зоны, то амплитуда колебаний практически обращается в нуль. А если изготовить непрозрачный экран, который оставлял бы открытыми только несколько нечетных (или только несколько четных) зон, то амплитуда колебаний в точке наблюдения резко возрастет. Так, если открыты первая, третья, пятая и седьмая зоны, то амплитуда колебаний возрастает в 8 раз, а интенсивность - в 64 раза. Можно сделать вывод, что такие зонные пластинки обладают свойством фокусировать свет.

Перейдем теперь к задаче о дифракции на круглом диске , не пропускающем свет. Предположим, что при этом зоны Френеля с номерами от 1 до т оказываются закрытыми. Тогда амплитуда колебаний в точке наблюдения по аналогии с предыдущими рассуждениями дается бесконечной суммой:

Здесь учтено, что выражения в скобках в соответствии с равенством (27.7) равны нулю. Если экран закрывает не слишком много зон, то

и аналогично формуле (27.10)

Таким образом, в центре картины при дифракции света на диске наблюдается интерференционный максимум, называемый пятном Пуассона. Э го пятно окружено светлыми и темными дифракционными кольцами, причем интенсивность максимумов убывает но мере удаления от центра.

Оценим теперь характерные размеры зон Френеля. Пусть, например, дифракционная картина наблюдается на экране, расположенном на расстоянии L- 1м от препятствия, а длина волны света X = 0,5 мкм (зеленый свет). Тогда радиус первой зоны Френеля по формуле (27.3) равен

р, = 4XL ~ 0,71 мм, а радиус сотой зоны Френеля

p wo = V100XL ~ 7,1 мм.

Дифракционные явления проявляются наиболее отчетливо, когда на

препятствии укладывается малое число зон (27.4): т = ~гу ~ 1, или

Это соотношение между длиной волны X, размером препятствия R и расстоянием от препятствия до точки наблюдения L можно рассматривать как границу применимости геометрической оптики. При больших длинах волн дифракция существенна, а при меньших работают геометрическая оптика и понятие геометрического луча света.

Принцип Гюйгенса - Френеля в рамках волновой теории позволяет объяснить прямолинейное распространение света. Определим амплитуду световой волны в произвольной точке Р, используя метод зон Френеля. Рассмотрим сначала случай падающей плоской волны (рис. 5.2).

Пусть плоский фронт волны F, распространяющейся от расположенного в бесконечности источника света, в некоторый момент времени находится на расстоянии ОР r 0 от точки наблюдения Р.

Рис. 5.2. Применение принципа Гюйгенса - Френеля к плоской волне: зоны Френеля на поверхности
плоского волнового фронта
F представляют собой концентрические кольца
(для наглядности изображение зон Френеля развернуто на 90°, такими они выглядят из точки Р)

Все точки фронта волны, согласно принципу Гюйгенса - Френеля, испускают элементарные сферические волны, которые распространяются по всем направлениям и через некоторое время достигают точки наблюдения Р. Результирующая амплитуда колебаний в этой точке определяется векторной суммой амплитуд всех вторичных волн.

Колебания во всех точках волнового фронта F имеют одинаковое направление и происходят в одной фазе. С другой стороны, все точки фронта F находятся от точки Р на различных расстояниях. Для определения результирующей амплитуды всех вторичных волн в точке наблюдения Френель предложил метод разбиения волновой поверхности на кольцевые зоны, называемые зонами Френеля .

Взяв точку Р в качестве центра, построим ряд концентрических сфер, радиусы которых начинаются с и увеличиваются каждый раз на половину длины волны . При пересечении с плоским фронтом волны F эти сферы дадут концентрические окружности. Таким образом, на фронте волны появятся кольцевые зоны (зоны Френеля) с радиусами и т. д.

Определим радиусы зон Френеля, имея ввиду, что , 0А 2 = АР 2 – 0Р 2 , то есть

Аналогично находим

Для оценки амплитуд колебаний определим площади зон Френеля. Первая зона (круг):

вторая зона (кольцо):

третья и последующие зоны (кольца):

Таким образом, площади зон Френеля примерно одинаковы, поэтому, согласно принципу Гюйгенса - Френеля, каждая зона Френеля служит источником вторичных сферических волн, амплитуды которых приблизительно одинаковы. Кроме того, колебания, возбуждаемые в точке Р двумя соседними зонами, противоположны по фазе , так как разность хода соответствующих волн от этих зон до точки наблюдения Р равна . Поэтому при наложении эти колебания должны взаимно ослаблять друг друга, то есть амплитуда А результирующего колебания в точке Р может быть представлена в виде знакопеременного ряда

где А 1 - амплитуда колебаний в точке Р возбуждаемых действием центральной (первой) зоны Френеля, А 2 - амплитуда колебаний, возбуждаемых второй зоной, и т. д.

Расстояние от m -й зоны до точки Р медленно растет с номером зоны m. Угол между нормалью к элементам зоны и направлением в точку Р также растет с m, следовательно, амплитуда А m колебания, возбуждаемого m -й зоной в точке Р, монотонно убывает с ростом m. Другими словами, амплитуды колебаний, возбуждаемых в точке Р зонами Френеля, образуют монотонно убывающую последовательность:

Вследствие монотонного и медленного убывания А т можно приближенно положить, что амплитуда колебаний от зоны с номером m равна среднему арифметическому амплитуд колебаний от двух соседних зон Френеля:

В выражении для амплитуды результирующего колебания все амплитуды от четных зон входят с одним знаком, а от нечетных - с другим. Запишем это выражение в следующем виде:

Выражения в скобках на основании (5.10) будут равны нулю, так что

то есть результирующая амплитуда, создаваемая в точке наблюдения Р всей поверхностью волнового фронта, равна половине амплитуды, создаваемой одной лишь центральной (первой) зоной Френеля. Таким образом, колебания, вызываемые в точке Р волновой поверхностью F, имеют такую же амплитуду, как если бы действовала только половина первой (центральной) зоны. Следовательно, свет распространяется как бы в узком канале, сечение которого равно половине первой (центральной) зоны Френеля - мы снова пришли к прямолинейному распространению плоской волны.

Если же на пути волны поставить диафрагму с отверстием, оставляющим открытой только центральную (первую) зону Френеля, амплитуда в точке Р будет равна А 1 , то есть в два раза превзойдет амплитуду, создаваемую всем волновым фронтом. Соответственно, интенсивность света в точке Р будет в четыре раза больше, чем при отсутствии преграды между источником света и точкой Р. Удивительно, не так ли? Но чудес в природе не бывает: в других точках экрана интенсивность света будет ослаблена, а средняя освещенность всего экрана при использовании диафрагмы, как и следовало ожидать, уменьшится.

Правомерность такого подхода, заключающегося в делении волнового фронта на зоны Френеля, подтверждена экспериментально. Колебания от четных и нечетных зон Френеля находятся в противофазе и, следовательно, взаимно ослабляют друг друга. Если поставить на пути световой волны пластинку, которая перекрывает все четные или нечетные зоны Френеля, то можно убедиться, что интенсивность света в точке Р резко возрастет. Такая пластинка, называемая зонной , действует подобно собирающей линзе. Подчеркнем еще раз: зоны Френеля - это мысленно выделенные участки поверхности волнового фронта, положение которых зависит от выбранной точки наблюдения Р. При другой точке наблюдения расположение зон Френеля будет иным. Метод зон Френеля - удобный способ решения задач о дифракции волн на тех или иных препятствиях.

Различают два вида дифракции. Если источник света S и точка наблюдения Р находятся далеко от препятствия, лучи, падающие на препятствие и идущие в точку Р, образуют практически параллельные пучки. В таком случае говорят о дифракции в параллельных лучах , или дифракции Фраунгофера . Если же рассматривается дифракционная картина на конечном расстоянии от препятствия, вызвавшего дифракцию, то говорят о дифракции сферических волн , или дифракции Френеля .

Дополнительная информация

http://pymath.ru/viewtopic.php?f=77&t=757&sid=– Видеоурок «Радиус зоны Френеля»

Дифракция света – это отклонение световых лучей от прямолинейного распространения при прохождении сквозь узкие щели, малые отверстия или при огибании малых препятствий. Явл дифракции света доказывает, что свет обладает волновыми свойствами.
Для наблюдения дифракции можно: 1. пропустить свет от источника через очень малое отверстие или расположить экран на большом расстоянии от отверстия. Тогда на экране наблюд сложная картина из светлых и темных концентрических колец. 2. Или направить свет на тонкую проволоку, тогда на экране будут наблюдаться светлые и темные полосы, а в случае белого света – радужная полоса.

Принцип Гюйгенса – Френеля. Все вторичные источники, расположенные на поверхности фронта волны, когерентны между собой. Амплитуда и фаза волны в любой точке пространства – это результат интерференции волн, излучаемых вторичными источниками. Принцип Гюйгенса-Френеля дает объяснение явлению дифракции:
1. вторичные волны, исходя из точек одного и того же волнового фронта (волновой фронт- это множество точек, до которых дошло колебание в данный момент времени), когерентны, т.к. все точки фронта колеблются с одной и той же частотой и в одной и той же фазе; 2. вторичные волны, являясь когерентными, интерферируют. Явление дифракции накладывает ограничения на применение законов геометрической оптики: Закон прямолинейного распространения света, законы отражения и преломления света выполняются достаточно точно только, если размеры препятствий много больше длины световой волны. Дифракция накладывает предел на разрешающую способность оптических приборов: 1. в микроскопе при наблюдении очень мелких предметов изображение получается размытым. 2. в телескопе при наблюдении звезд вместо изображения точки получаем систему светлых и темных полос.

Метод зон Френеля Френель предложил метод разбиения фронта волны на кольцевые зоны, который впоследствии получил название метод зон Френеля . Пусть от источника света S распространяется монохроматическая сферическая волна, P - точка наблюдения. Через точку O проходит сферическая волновая поверхность. Она симметрична относительно прямой SP. Разобьем эту поверхность на кольцевые зоны I, II, III и т.д. так, чтобы расстояния от краев зоны до точки P отличались на l/2 - половину длины световой волны. Это разбиение было предложено O. Френелем и зоны назыв зонами Френеля.

Возьмем произвольную точку 1 в первой зоне Френеля. В зоне II найдется, в силу правила построения зон, такая соответствующая ей точка, что разность хода лучей, идущих в точку P от точек 1 и 2 будет равна l/2. Вследствие этого колебания от точек 1 и 2 погасят друг друга в точке P.

Из геометрич соображениях следует, что при не очень больших номерах зон их площади примерно одинаковы. Значит каждой точке первой зоны найдется соответств ей точка во второй, колебания которых погасят друг друга. Амплитуда результирующего колебания, приходящего в точку P от зоны с номером m, уменьшается с ростом m, т.е.


9. Дифракция Фраунгофера на одной щели и на дифракционной решётке. Характеристики дифракционной решётки.

Дифракционная решетка представляет собой систему одинаковых щелей, разделенных равными по ширине непрозрачными промежутками. Дифракционную картину от решетки можно рассматривать как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция.

ля наблюдения дифракции Фраунгофера необход точечный источник поместить в фокусе собирающей линзы, а дифракционную картину можно исследовать в фокальной плоскости 2ой собирающей линзы, установленной за препятствием. Пусть монохроматическая волна падает нормально плоскости бесконечно длинной узкой щели (l >> b), l- длина, b - ширина. Разность хода между лучами 1 и 2 в направ­лении φ

Разобьём волновую поверхность на участке щели МN на зоны Френеля, имеющие вид полос, параллельных ребру М щели. Ширина каждой полосы выбирается так, чтобы разность хода от краев этих зон была равна λ/2, т.е. всего на ширине щели уложится зон. Т.к. свет на щель падает нормально, то плоскость щели совпадает с фронтом волны, следовательно, все точки фронта в плоскости щели будут колебаться синфазно. Амплитуды вторичных волн в плоскости щели будут равны, т.к. выбранные зоны Френеля имеют одинаковые площади и одинаково наклонены к направлению наблюдения.

Дифракционная решётка - оптический прибор, действие которого основано на использ явл дифракции света. Представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность

Вычисление интеграла в пункте в общем случае - трудная задача.

В случаях, если в задаче существует симметрия, амплитуду результирующего колебания можно найти методом зон Френеля, не прибегая к вычислению интеграла.

Пусть от источника света S распространяется монохроматическая сферическая волна, P - точка наблюдения. Через точку O проходит сферическая волновая поверхность. Она симметрична относительно прямой SP. Разобьем эту поверхность на кольцевые зоны I, II, III и т.д. так, чтобы расстояния от краев зоны до точки P отличались на λ/2 - половину длины световой волны. Это разбиение было предложено O. Френелем и зоны называют зонами Френеля.

Что дает такое разбиение для расчета интенсивности в точке P? Возьмем произвольную точку 1 в первой зоне Френеля. В зоне II найдется, в силу правила построения зон, такая соответствующая ей точка, что разность хода лучей, идущих в точку P от точек 1 и 2 будет равна λ/2. Вследствие этого колебания от точек 1 и 2 погасят друг друга в точке P.

Из геометрических соображениях следует, что при не очень больших номерах зон их площади примерно одинаковы. Значит каждой точке первой зоны найдется соответствующая ей точка во второй, колебания которых погасят друг друга. Амплитуда результирующего колебания, приходящего в точку P от зоны с номером m, уменьшается с ростом m, т.е.

Происходит это из-за увеличения с ростом m угла между нормалью к волновой поверхности и направлением на точку P. Значит гашение колебаний соседних зон будет не совсем полным.

Дифракция Френеля.

Пусть на пути сферической световой волны, испускаемой источником S, расположен непрозрачный экран с круглым отверстием радиуса r 0 . Если отверстие открывает четное число зон Френеля, то в точке P будет наблюдаться минимум, так как все открытые зоны можно объединить в соседние пары, колебания которых в точке P приблизительно гасят друг друга.

При нечетном числе зон в точке P будет максимум, так как колебания одной зоны останутся не погашенными.

Можно показать, что радиус зоны Френеля с номером m при не очень больших m:

.

Расстояние "a" примерно равно расстоянию от источника до преграды, расстояние "b" - от преграды до точки наблюдения P.

Если отверстие оставляет открытым целое число зон Френеля, то, приравняв r 0 и r m , получим формулу для подсчета числа открытых зон Френеля:

.

При m четном в точке P будет минимум интенсивности, при нечетном - максимум.

Пятно Пуассона.

e s

С помощью спирали Френеля можно получить еще один замечательный результат. Действительно, если на пути сферической волны находится непрозрачное круглое отверстие (любого размера), то оказывается закрытым какое-то число внутренних зон Френеля. Но вклад в колебания в точке наблюдения, находящегося в центре геометрической тени,будут давать остальные зоны. В результате в этой точке должен наблюдаться свет.

Этот результат показался в свое время Пуассону столь невероятным, что он выдвинул его как возражение против рассуждений и расчетов Френеля при рассмотрении дифракции. Однако, когда был проведен соответствующий опыт, такое светлое пятнышко в центра геометрической тени было обнаружено. С тех пор оно носит название пятна Пуассона, хотя он не допускал и самой возможности его существования.

Пятно Пуассона – светлое пятно в центре геометрической тени от непрозрачного объекта. Пятно Пуассона обусловлено загибанием света в область геометрической тени.

Дифра́кция све́та - явление, наблюдаемое при распространении света в среде с резкими неоднородностями. Свет отклоняется от прямолинейного распространения при прохождении его через малое отверстие или узкие щели (0,1-1,0 мм). В этом случае лучи света распространяются не только прямо, но и в стороны, отчего вокруг светлого кружка или светлой полосы появляется цветная кайма - дифракционные кольца или полосы. Первые легко наблюдать, если смотреть сквозь малое отверстие на стоящий недалеко источник света. Чем меньше отверстие, тем больше диаметр первого кольца дифракции. С увеличением отверстия его диаметр уменьшается. Дифракция ухудшает резкость изображения при очень сильном диафрагмировании объектива. Она начинает сказываться сотносительного отверстия 1:8-1:11

Вследствие дифракции при освещении непрозрачных экранов на границе тени, где, согласно законамгеометрической оптики, должен был бы происходить скачкообразный переход от тени к свету, наблюдается ряд светлых и тёмных дифракционных полос.

Дифракция света - явление огибания светом препятствия вследствие интерференции вторичных волн от источников на краях препятствия. Условие дифракции: Размеры препятствий должны быть меньше или равны размеру волн.

Принцип Гюйгенса - Френеля - основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности, световых.

Принцип Гюйгенса является развитием принципа, который ввёл Христиан Гюйгенс в 1678 году: каждая точка фронта(поверхности, достигнутой волной) является вторичным (т.е. новым) источником сферических волн. Огибающая фронтов волн всех вторичных источников становится фронтом волны в следующий момент времени.

Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции. Огюстен Жан Френель в 1815 году дополнил принцип Гюйгенса, введя представления о когерентности иинтерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса - Френеля и дифракционные явления.

Принцип Гюйгенса - Френеля формулируется следующим образом:

Пусть волна света, созданная источниками, расположенными в области , достигла плоскости . Световое поле в этой плоскости нам известно. Пусть его комплексная амплитуда есть , где функции и описывают распределение амплитуд и фаз колебаний в плоскости .

Согласно принципу Гюйгенса каждую точку плоскости , куда пришла волна, можно рассматривать как источник вторичной волны. То есть можно представить себе, что волна возбуждает колебания некоторого фиктивного источника, который и переизлучает вторичную волну. Френель дополнил принцип Гюйгенса, предложив рассматривать световое колебание в любой точке наблюдения в области как результат интерференции этих вторичных волн.

Френель предложил оригинальный метод разбиения волновой поверхности S на зоны, позволивший сильно упростить решение задач (метод зон Френеля ).

Границей первой (центральной) зоны служат точки поверхности S , находящиеся на расстоянии от точки M (рис. 9.2). Точки сферы S , находящиеся на расстояниях , , и т.д. от точки M , образуют 2, 3 и т.д. зоны Френеля.

Колебания, возбуждаемые в точке M между двумя соседними зонами, противоположны по фазе, так как разность хода от этих зон до точки M .

Поэтому при сложении этих колебаний, они должны взаимно ослаблять друг друга:

, (9.2.2)

где A – амплитуда результирующего колебания, – амплитуда колебаний, возбуждаемая i -й зоной Френеля.