Уравнение f x 0. Уравнение касательной к графику функции. Методика использования эвристического метода

Краткая теория

Теория вероятностей имеет дело с такими экспериментами, которые можно повторять (по крайней мере теоретически) неограниченное число раз. Пусть некоторый эксперимент повторяется раз, причем результаты каждого повторения не зависят от исходов предыдущих повторений. Такие серии повторений называют независимыми испытаниями. Частным случаем таких испытаний являются независимые испытания Бернулли , которые характеризуются двумя условиями:

1) результатом каждого испытания является один из двух возможных исходов, называемых соответственно «успехом» или «неудачей».

2) вероятность «успеха», в каждом последующем испытании не зависит от результатов предыдущих испытаний и остается постоянной.

Теорема Бернулли

Если производится серия из независимых испытаний Бернулли, в каждом из которых «успех» появляется с вероятностью , то вероятность того, что «успех» в испытаниях появится ровно раз, выражается формулой:

где – вероятность «неудачи».

– число сочетаний элементов по (см. основные формулы комбинаторики)

Эта формула называется формулой Бернулли .

Формула Бернулли позволяет избавиться от большого числа вычислений - сложения и умножения вероятностей - при достаточно большом количестве испытаний.

Схему испытаний Бернулли называют также биномиальной схемой , а соответствующие вероятности – биномиальными, что связано с использованием биномиальных коэффициентов .

Распределение по схеме Бернулли позволяет, в частности, .

Если число испытаний n велико, то пользуются:

Пример решения задачи

Условие задачи

Всхожесть семян некоторого растения составляет 70%. Какова вероятность того, что из 10 посеянных семян взойдут: 8, по крайней мере 8; не менее 8?

Решение задачи

Воспользуемся формулой Бернулли:

В нашем случае

Пусть событие – из 10 семян взойдут 8:

Пусть событие – взойдет по крайней мере 8 (это значит 8, 9 или 10)

Пусть событие – взойдет не менее 8 (это значит 8,9 или 10)

Ответ

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

высшего профессионального образования

«МАТИ»  РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. К.Э. ЦИОЛКОВСКОГО

Кафедра «Моделирование систем и информационные технологии»

Повторение испытаний. Схема бернулли

Методические указания к практическим занятиям

по дисциплине «Высшая математика»

Составители: Егорова Ю.Б.

Мамонов И.М.

Москва 2006 введение

Методические указания предназначены для студентов дневного и вечернего отделения факультета №14 специальностей 150601, 160301, 230102. Указания выделяют основные понятия темы, определяют последовательность изучения материала. Большое количество рассмотренных примеров помогает в практическом освоении темы. Методические указания служат методической основой для практических занятий и выполнения индивидуальных заданий.

    СХЕМА БЕРНУЛЛИ. ФОРМУЛА БЕРНУЛЛИ

Схема Бернулли - схема повторных независимых испытаний, при которой какое-то событие А может многократно повторяться с постоянной вероятностью Р (А )= р .

Примеры испытаний, проводимых по схеме Бернулли: многократное подбрасывание монеты или игральной кости, изготовление партии деталей, стрельба по мишени и т.п.

Теорема. Если вероятность наступления события А в каждом испытании постоянна и равна р , то вероятность того, что событие А наступит m раз в n испытаниях (безразлично в какой последовательности), можно определить по формуле Бернулли:

где q = 1 – p .

ПРИМЕР 1. Вероятность того, что расход электроэнергии на протяжении одних суток не превысит установленной нормы, равна р= 0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.

РЕШЕНИЕ. Вероятность нормального расхода элек­троэнергии на протяжении каждых из 6 суток постоянна и равна р = 0,75. Следовательно, вероятность перерасхода электроэнергии в каждые сутки также постоянна и равна q = 1р = 1  0,75 = 0,25.

Искомая вероятность по формуле Бернулли равна:

ПРИМЕР 2. Стрелок производит по мишени три выстрела. Вероятность попадания в мишень при каждом выстреле равна р= 0,3. Найти вероятность того, что поражена: а) одна мишень; б) все три мишени; в) ни одной мишени; г) хотя бы одна мишень; д) менее двух мишеней.

РЕШЕНИЕ. Вероятность попадания в мишень при каждом выстреле постоянна и равна р =0,75. Следовательно, вероятность промаха равна q = 1 р = 1  0,3= 0,7. Общее число проведенных опытов n =3.

а) Вероятность поражения одной мишени при трех выстрелах равна:

б) Вероятность поражения всех трех мишеней при трех выстрелах равна:

в) Вероятность трех промахов при трех выстрелах равна:

г) Вероятность поражения хотя бы одной мишени при трех выстрелах равна:

д) Вероятность поражения менее двух мишеней, то есть или одной мишени, или ни одной:

  1. Локальная и интегральная теоремы муавра-лапласа

Если произведено большое число испытаний, то вычисление вероятностей по формуле Бернулли становится технически сложным, так как формула требует действий над огромными числами. Поэтому существуют более простые приближенные формулы для вычисления вероятностей при больших n . Эти формулы называются асимптотическими и определяются теоремой Пуассона, локальной и интегральной теоремой Лапласа.

Локальная теорема Муавра-Лапласа. А А произойдет m раз в n n (n →∞ ), приближенно равна:

где функция
а аргумент

Чем больше n , тем точнее вычисление вероятностей. Поэтому теорему Муавра-Лапласа целесообразно применять при npq 20.

f ( x ) составлены специальные таблицы (см. приложение 1). При использовании таблицы необходимо иметь в виду свойства функции f(x) :

    Функция f(x) является четной f( x)= f(x) .

    При х  ∞ функция f(x)  0. Практически можно считать, что уже при х >4 функция f(x) ≈0.

ПРИМЕР 3. Найти вероятность того, что событие А наступит 80 раз в 400 испытаниях, если вероятность появления события А в каждом испытании равна р= 0,2.

РЕШЕНИЕ. По условию n =400, m =80, p =0,2, q =0,8. Следовательно:

По таблице определим значение функции f (0)=0,3989.

Интегральная теорема Муавра-Лапласа. Если вероятность наступления события А в каждом испытании постоянна и отлична от 0 и 1, то вероятность того, что событие А произойдет от m 1 до m 2 раз в n испытаниях при достаточно большом числе n (n →∞ ), приближенно равна:

где
 интеграл или функция Лапласа,

Для нахождения значений функции Ф( x ) составлены специальные таблицы (например, см. приложение 2). При использовании таблицы необходимо иметь в виду свойства функции Лапласа Ф(x) :

    Функция Ф(x) является нечетной Ф( x)= Ф(x) .

    При х  ∞ функция Ф(x)  0,5. Практически можно считать, что уже при х >5 функция Ф(x) ≈0,5.

    Ф (0)=0.

ПРИМЕР 4. Вероятность того, что деталь не прошла проверку ОТК, равна 0,2. Найти вероятность того, что среди 400 деталей окажется непроверенных от 70 до 100 деталей.

РЕШЕНИЕ. По условию n =400, m 1 =70, m 2 =100, p =0,2, q =0,8. Следовательно:


По таблице, в которой приведены значения функции Лапласа, определяем:

Ф(x 1 ) = Ф(  1,25 )= Ф( 1,25 )=  0,3944; Ф(x 2 ) = Ф( 2,5 )= 0,4938.

Ранее в п. 1.4 введены понятия зависимых и независимых событий. С понятием независимых событий связано и имеет широкое применение понятие независимых опытов или испытаний.

Опыты α 1 , α 2 , … , α n называются независимыми, если любая комбинация их исходов является совокупностью независимых событий. Иначе, если в задаче проводится ряд многократно повторяющихся испытаний α 1 , α 2 , …, α n при неизменном комплексе условий и в каждом испытании некоторые событие А может наступить с некоторой вероятностью p = p (А ) не зависящей от других испытаний, и не наступить с вероятностью p (Ā ), то указанные испытания называются независимыми. Данная схема независимых испытаний носит название схемы Бернулли.

Схема названа в честь Якоба Бернулли – родоначальника семьи выдающихся швейцарских учёных. (Якоб Б., Иоганн Б., Николай Б., Даниил Б. и др.). Якоб Бернулли доказал так называемую теорему Бернулли – важный частный случай закона больших чисел (см. п. 3.11). Указанная теорема относится к рассматриваемой здесь последовательности независимых испытаний.

Примерами независимых испытаний являются: а) многократное (n раз) подбрасывание монеты; б) извлечение (n раз) одинаковых на ощупь шаров из урны с их последующим возвращением; в) любая совокупность независимых испытаний (опытов), в каждом из которых вероятность успешных исходов одинакова, например, серия выстрелов по мишени, выбор n деталей из их совокупности, изучение n анализов горной породы определённого свойства и т.д.

В схеме Бернулли наступление события А с вероятностью p = p (А ) условно называется успехом, а его ненаступление (противоположное событие Ā ) –неудачей. Вероятность неудачи в каждом опыте такого типа равна q = 1 – p .

На практике обычно возникают задачи со сложными событиями, в которых из n опытов, составляющих схему Бернулли, в m опытах (m < n ) событие А наступает (т.е завершается успехом), а в (n m ) опытах это событие не наступает (завершается неудачей). Пусть P n (k ) – обозначает вероятность того, что при производстве n опытов успех наступает в k опытах (успех реализуется k раз). Ставится следующая задача: пусть в n испыта-ниях, соответствующих схеме Бернулли, k испытаний завершились успехом. Требуется найти вероятность P n (k ) (читается: « P из n испытаний k успешных» ). Данная вероятность рассчитывается по формуле Бернулли, которой соответствует одноименная теорема.

Теорема Бернулли. Если вероятность p наступления события А в каждом из последовательности n испытаний α 1 , α 2 , … , α n постоянна, то вероятность того, что событие А наступит k раз и не наступит n k раз, вычисляется по формуле Бернулли:

P n (k ) = С n k p k q n-k , (2.1)

где q = 1- p .

Доказательство. Действительно, пусть события A į и Ā į – появление и непоявление соответственно события А в į -ом испытании α i (i = 1, 2, … , n ). Пусть также В k обозначает событие, состоящее в том, что в n независимых испытаниях событие А появилось k раз. При n = 3 и k = 2 событие В 2 выражается через элементарные события А į (į = 1, 2, 3) по формуле:

В 2 = А 1 А 2 Ā 3 + А 1 Ā 2 А 3 + Ā 1 А 2 А 3 .

В общем виде последняя формула будет такой

т.е каждый член суммы (2.2) соответствует появлению события А k раз и (n k ) раз непоявлений. Число всех комбинаций (слагаемых) в (2.2) равно числу способов выбора из n испытаний k испытаний, в которых событие А произошло, т.е числу сочетаний C n k . Вероятность каждой такой комбинации по теореме умножения вероятностей независимых событий равна p k × q n k , так как p (А į) = p , p (Ā į) = q , i = 1,2,…,n . Но комбинации в (2.2) являются несовместными событиями. Поэтому по теореме сложения вероятностей получим

Таким образом, имеет место формула Бернулли

P n (k) = C n k p k q n-k .

Что и требовалось доказать.

Замечание 1. Сформулированная выше теорема относится к случаю, когда в каждом испытании вероятность появления события А постоянна. Тогда для расчета вероятности P n (k ) справедлива формула Бернулли (2.1). Если же вероятности наступления события А в испытаниях α 1 , α 2 , … , α n разные, т.е. вероятности составляют значения p 1 , p 2 , … , p n , то тогда вместо (2.1) справедлива формула:

Замечание 6. Вероятность того, что в n опытах, проводящихся по схеме Бернулли, успех наступит от k 1 до k 2 раз , вычисляется по формулеP n (k )) для конкретных значений n и p . Так как аргумент k принимает лишь целые значения, график представляется в виде точек на плоскости (k , P n (k )). Для наглядности точки соединяются ломаной линией, и такой график называется полигоном распределения (рис.2.1). При p = 0,5, n = 6, как показано на рисунке 2.1, полигон симметричен относительно прямой x = np (если p близко к 0,5, то полигон близок к симметричному). При малых p полигон существенно асимметричен, и наивероятнейшими явля-ются частоты, близкие к нулю. На рисунке 2.2 изображен полигон распределения для p = 0,2 при числе испытаний n = 6. При больших p , близких к 1, наиболее вероятны максимальные значения. На рис. 2.3 показан полигон распределения, для p = 0,8 и n = 6.

Рис. 2.3.

Пусть дана функция f , которая в некоторой точке x 0 имеет конечную производную f (x 0). Тогда прямая, проходящая через точку (x 0 ; f (x 0)), имеющая угловой коэффициент f ’(x 0), называется касательной.

А что будет, если производная в точке x 0 не существует? Возможны два варианта:

  1. Касательная к графику тоже не существует. Классический пример - функция y = |x | в точке (0; 0).
  2. Касательная становится вертикальной. Это верно, к примеру, для функции y = arcsin x в точке (1; π /2).

Уравнение касательной

Всякая невертикальная прямая задается уравнением вида y = kx + b , где k - угловой коэффициент. Касательная - не исключение, и чтобы составить ее уравнение в некоторой точке x 0 , достаточно знать значение функции и производной в этой точке.

Итак, пусть дана функция y = f (x ), которая имеет производную y = f ’(x ) на отрезке . Тогда в любой точке x 0 ∈ (a ; b ) к графику этой функции можно провести касательную, которая задается уравнением:

y = f ’(x 0) · (x − x 0) + f (x 0)

Здесь f ’(x 0) - значение производной в точке x 0 , а f (x 0) - значение самой функции.

Задача. Дана функция y = x 3 . Составить уравнение касательной к графику этой функции в точке x 0 = 2.

Уравнение касательной: y = f ’(x 0) · (x − x 0) + f (x 0). Точка x 0 = 2 нам дана, а вот значения f (x 0) и f ’(x 0) придется вычислять.

Для начала найдем значение функции. Тут все легко: f (x 0) = f (2) = 2 3 = 8;
Теперь найдем производную: f ’(x ) = (x 3)’ = 3x 2 ;
Подставляем в производную x 0 = 2: f ’(x 0) = f ’(2) = 3 · 2 2 = 12;
Итого получаем: y = 12 · (x − 2) + 8 = 12x − 24 + 8 = 12x − 16.
Это и есть уравнение касательной.

Задача. Составить уравнение касательной к графику функции f (x ) = 2sin x + 5 в точке x 0 = π /2.

В этот раз не будем подробно расписывать каждое действие - укажем лишь ключевые шаги. Имеем:

f (x 0) = f (π /2) = 2sin (π /2) + 5 = 2 + 5 = 7;
f ’(x ) = (2sin x + 5)’ = 2cos x ;
f ’(x 0) = f ’(π /2) = 2cos (π /2) = 0;

Уравнение касательной:

y = 0 · (x − π /2) + 7 ⇒ y = 7

В последнем случае прямая оказалась горизонтальной, т.к. ее угловой коэффициент k = 0. Ничего страшного в этом нет - просто мы наткнулись на точку экстремума.

Поэтому возникает естественное желание свести уравнение порядка выше первого к уравнению более низкого порядка. В некоторых случаях это удаётся сделать. Рассмотрим их.

1. Уравнения вида y (n) =f(x) решаются последовательным интегрированием n раз
, ,… .
Пример . Решить уравнение xy""=1 . Можем записать , следовательно, y"=ln|x| + C 1 и, интегрируя ещё раз, окончательно получаем y=∫ln|x| + C 1 x + C 2

2. В уравнениях вида F(x,y (k) ,y (k +1) ,..,y (n))=0 (то есть не содержащих в явном виде неизвестной функции и некоторых её производных) порядок понижается с помощью замены переменной y (k) = z(x). Тогда y (k +1) =z"(x),…,y (n) = z (n - k) (x) и мы получаем уравнение F(x,z,z",..,z (n - k)) порядка n-k. Его решением является функция z = φ(x,C 1 ,C 2 ,…,C n) или, вспоминая, что такое z, получаем уравнение y (n- k) = φ(x,C 1 ,C 2 ,…,C n - k) рассмотренного в случае 1 типа.
Пример 1 . Решить уравнение x 2 y"" = (y") 2 . Делаем замену y"=z(x) . Тогда y""=z"(x) . Подставляя в исходное уравнение, получаем x 2 z"=z 2 . Разделяя переменные, получаем . Интегрируя, имеем , или, что тоже самое, . Последнее соотношение записывается в виде , откуда . Интегрируя, окончательно получаем
Пример 2 . Решить уравнение x 3 y"" +x 2 y"=1 .Делаем замену переменных: y"=z; y""=z"
x 3 z"+x 2 z=1. Делаем замену переменных: z=u/x; z"=(u"x-u)/x 2
x 3 (u"x-u)/x 2 +x 2 u/x=1 или u"x 2 -xu+xu=1 или u"x^2=1. Откуда: u"=1/x 2 или du/dx=1/x 2 или u = int(dx/x 2) = -1/x+c 1
Поскольку z=u/x, то z = -1/x 2 +c 1 /x. Поскольку y"=z, то dy/dx=-1/x 2 +c 1 /x
y = int(c 1 dx/x-dx/x 2) =c 1 ln(x) + 1/x + c 2 . Ответ: y = c 1 ln(x) + 1/x + c 2

3. Следующим уравнением, допускающим понижение порядка, является уравнение вида F(y,y",y"",…,y (n))=0 , не содержащее в явном виде независимой переменной. Порядок уравнения понижается с помощью замены переменной y"=p(y) , где p - новая искомая функция, зависящая от y. Тогда
= и так далее. По индукции имеем y (n) =φ(p,p",..,p (n-1)). Подставляя в исходное уравнение, понижаем его порядок на единицу.

Пример . Решить уравнение (y") 2 +2yy""=0 . Делаем стандартную замену y"=p(y) , тогда y″=p′·p . Подставляя в уравнение, получаем Разделяя переменные, при p≠0, имеем Интегрируя, получаем или, что то же самое, . Тогда или . Интегрируя последнее равенство, окончательно получаем При разделении переменных мы могли потерять решение y=C, которое получается при p=0, или, что то же самое, при y"=0, но оно содержится в полученном выше.

4. Иногда удаётся подметить особенность, позволяющую понизить порядок уравнения отличными от рассмотренных выше способами. Покажем это на примерах.

Примеры .
1. Если обе части уравнения yy"""=y′y″ разделить на yy″, то получим уравнение , которое можно переписать в виде (lny″)′=(lny)′. Из последнего соотношения следует, что lny″=lny+lnC , или, что то же самое, y″=Cy . Получилось уравнение на порядок ниже и рассмотренного ранее типа.
2. Аналогично для уравнения yy″=y′(y′+1) имеем , или (ln(y"+1))" = (lny)" . Из последнего соотношения следует, что ln(y"+1) = lny + lnC 1 , или y"=C 1 y-1. Разделяя переменные и интегрируя, получаем, ln(C 1 y-1) = C 1 x+C 2
Решить уравнения, допускающие понижение порядка можно с помощью специального сервиса