Построение сечений. Задачи на построение сечений в параллелепипеде. Использование свойств подобных треугольников

Существует 2 основных метода построения сечений многогранников:

Аксиоматический метод построения сечений

1. Метод следов

Пример 1.

На ребрах АА" и В"С" призмы АВСА"В"С" зададим соответственно точку P и Q. Построим сечение призмы плоскостью (PQR), точку R которой зададим в одной из следующих граней:
а) ВССВ"С";
б) А"В"С";
в) АВС

Решение.

а) 1) Так как точки Q и R лежат в плоскости (ВСС"), то в этой плоскости лежит прямая QR. Проведем ее. Это след плоскости (PQR) на плоскость(ВСС"). (рис.1)

2) Находим точки В"" и С", в которых прямая QR пересекает соответственно прямые ВВ" и СС". Точки В" и С" - это следы плоскости (PQR) соответственно на прямых ВВ" и СС".

3) Так как точки В"" и Р лежат в плоскости (АВВ"), то прямая В""Р лежит в этой плоскости. Проведем ее. Отрезок В**Р - след плоскости (PQR) на грани АВВ"А".

4) Так как точки Р и С лежат в плоскости (АСС"), то прямая РС"" лежит в этой плоскости. Проведем ее. Это след плоскости (PQR) на плоскости (АСС").

5) Находим точку V, в которой прямая РС"" пересекает ребро А"С". Это след плоскости (PQR) на ребре А"С".

6) Тачка как точки Q и V лежат в плоскости (А"В"С"), то прямая QV лежит в этой плоскости. Проведем прямую QV. Отрезок QV - след плоскости (PQR) на грани АВС. Итак, мы получили многоугольник QB""PV - искомое сечение.

б) 1) Так как точки Q и R лежат в плоскости (А"В"С"), то в этой плоскости лежит прямая QR. Проведем ее. Это след плоскости (PQR) на плоскости (А"В"С").(рис.2)

2) Находим точки D" и Е", в которых прямая QR пересекает соответственно прямые А"В" и B"С". Так как точка D" лежит на ребре А"В", отрезок QD" - след плоскости (PQR) на грани А"В"С".

3) Так как точки D" и P лежат в плоскости (АВВ"), то прямая D"P лежит в этой плоскости. Проведем ее. Это след плоскости (PQR) на плоскости (АВВ"), а отрезок D"P - след плоскости (PQR) на грани АВВ"А".

4) Так как точки Р и Е" лежат в плоскости (АСС"), то в этой плоскости лежит прямая РЕ". Проведем ее. Это след плоскости (PQR) на плоскости (АСС").

5) Находим точку С""=PE""CC". Так как точка С"" лежит на ребре СС", то отрезок РС"" - это след плоскости (PQR) на грани АСС"А".

6) Так как точки Q и С"" лежат в плоскости (ВСС"), то прямая QC"" лежит в этой плоскости. Проведем ее. Это след плоскости (PQR) на плоскости (ВСС"), а отрезок QC""- след плоскости (PQR) на грани ВСС"В". Итак, мы получили многоугольник QD"РС"" - это и есть искомое сечение.

в) 1) Из трех заданных точек Р, Q и R никакие две не лежат в какой-нибудь одной из плоскостей граней призмы, поэтому найдем основной след плоскости (PQR) (т. е. линию пересечения плоскости (PQR) с плоскостью (АВС), выбранной в качестве основной). Для этого сначала найдем проекции точек Р, Q и R на плоскость (АВС) в направлении, параллельном боковому ребру призмы. Так как точка Р лежит на ребре АА", то точка Р" совпадает с точкой А. Так как точка Q лежит в плоскости (ВСС"), то в этой плоскости через точку Q проведем прямую, параллельную прямой ВВ", и найдем точку Q", в которой проведенная прямая пересекает прямую ВС. Так как точка R по условию лежит в плоскости, выбранной в качестве основной, то точка R" совпадает с точкой R.(Рис.3)

2) Параллельными прямыми РР" и QQ" определяется плоскость. Проведем в этой плоскости прямые PQ и Р"Q" и найдем точку S=PQ пересекает P"Q". Так как точка S" лежит на прямой PQ, то она лежит в плоскости (PQR), и так как точка S" лежит на прямой Р"Q", то она лежит в плоскости (АВС). Таким образом, точка S" является общей точкой плоскостей (PQR) и (АВС). Это значит, что плоскости (PQR) и (АВС) пересекаются по прямой, проходящей через точку S".

3) Так как точка R совпадает с точкой R", то точка R - это еще одна общая точка плоскостей (PQR) и (АВС). Таким образом, прямая S"R - основной след плоскости (PQR). Проведем эту прямую. Как видим из рисунка, прямая S"R пересекает ребра АВ и ВС основания призмы соответственно в точках S" "и S""".

4) Так как точки S""" и Q лежат в плоскости (ВСС"), то прямая S""" Q лежит в этой плоскости. Проведем ее. Это след плоскости (PQR) на плоскости (ВСС"). А отрезок S""" Q, - след плоскости (PQR) на грани ВСС"В".

5) Аналогично находим отрезок S"" Р - след плоскости (PQR) на грани АВВ"А".

7) Находим точку F=PC"" пересекает A"С" и получаем затем отрезок PF - след плоскости (PQR) на грани АСС"А".

8) Точки Q и F лежат в плоскости А"В"C", поэтому прямая QF лежит в плоскости (А"В"C"). Проведем прямую QF, получим отрезок QF - след плоскости (PQR) на грани А"В"C". Итак, мы получили многоугольник QS"""S""PF - искомое сечение.

3 а м е ч а н и е . Покажем другой путь нахождения точки С"", при котором не находим точку пересечения прямой S""" Q с прямой С"С"". Будем рассуждать следующим образом. Если следом плоскости (PQR) на прямой СС" является некоторая точка V, то ее проекция на плоскость (АВС) совпадает с точкой С. Тогда точка S""""= V"P "пересекает VP лежит на основном следе S"R плоскости (PQR). Строим эту точку S"""" как точку пересечения прямых V"P" (это прямая СА) и S"R. А далее проводим прямую S""""Р. Она пересекает прямую СС" в точке V.

Пример 2.

На ребре МВ пирамиды МАВСD зададим точку Р, на ее грани MCD зададим точку Q. Построим сечение пирамиды плоскостью (PQR), точку R которой зададим:
а) на ребре МС;
б) на грани МАD;
в) в плоскости (МАС), вне пирамиды.

Решение.

a) Следом плоскости (PQR) на грани МВС является отрезок РR, а ее следом на грани MCD является отрезок RD", где точка D" - это точка пересечения прямой RQ с ребром МD. Ясно, что плоскость (PQR) имеет следы на гранях MAD и МАВ (так как с этими гранями плоскость (PQR) имеет общие точки). Найдем след плоскости (PQR) на прямой МА. Сделаем это следующим образом:

1) Построим точки Р", Q" и R" - проекции точек Р, Q и R из центра М на плоскость (АВС), принимаемую, таким образом, за основную плоскость. (Рис. 4)

3) Если плоскость (PQR) пересекает прямую МА в некоторой точке V, то точка V" совпадает с точкой А и точка S"""= VQ пересекает V"Q" лежит на прямой S" S"". Другими словами, в точке S""" пересекаются три прямые: VQ, V"Q"" и S" S"". Две последние прямые из этих трех на чертеже уже есть. Поэтому точку S""" мы построим как точку пересечения прямых V"Q" и SS"".

4) Проведем прямую QS""" (она совпадает с прямой VQ, так как прямая VQ должна проходить через точку S""", т. е. точки V, Q и S""" лежат на одной прямой).

5) Находим точку V, в которой прямая QS"" "пересекает прямую МА, Точка V - это след плоскости (PQR) на ребре МА. Далее ясно, что отрезки PV и VD" - следы плоскости (PQR) соответственно на гранях МАВ и MAD. Таким образом, многоугольник PRD"V - искомое сечение.

б) 1) Принимаем плоскость (АВС) за основную плоскость и строим точки P", Q" и R" - проекции соответственно точек Р, Q и R на плоскость (АВС). Центром этого внутреннего проектирования является точка М.(Рис.5.)

2) Строим прямую S"S"" - основной след плоскости (PQR).

3) Если плоскость (PQR) пересекает прямую МА в точке V, то точка V" - проекция точки V на плоскость (АВС) из центра М- совпадает с точкой А, а прямые S"S"", V"R" и прямая VR, точка V которой пока нами не построена, пересекаются в точке S""". Находим эту точку S"""=V"R" пересекается S"S"" . "", и находим точку V=RS""" пересекается MA. Дальнейшее построение ясно. Искомым сечением является многоугольник PVD"Т.

в)

(Рис.6.) Пусть точка R расположена в плоскости (МАС) так, как это показано на рисунке 6.

1) Принимаем плоскость (АВС) за основную плоскость и строим точки P", Q" и R" - проекции соответственно точек P, Q и R на плоскость (ABC). (центром проектирования является точка М.)

2) Строим прямую S"S"", - основной след плоскости (PQR).

3) Находим точку V - след плоскости (PQR) на прямой МА. Точка V" - проекция точки V на плоскость (АВС) из центра М- совпадает в этом случае с точкой А.

4) Находим точку S"""= P"V" пересекается S"S"", а затем и точку V =PS""" пересекается МА.

5) Получаем след РV плоскости (PQR) на плоскости (МАВ).

6) Находим точку T - след плоскости (PQR) на прямой МО. Ясно, что точка Т" в этом случае совпадает с точкой D. Для построения точки T строим точку S""""=Q"T" пересекается S"S"", а затем точку T = QS""" "пересекается MT".

7) Совокупность следов PV, VT, ТС", и С"P, т. е. многоугольник PVTC" - искомое сечение.

Комбинированный метод построения сечений

Суть комбинированного метода построения сечений многогранников состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с аксиоматическим методом.

Пример№1.

На ребрах AB и AD пирамиды MABCD зададим соответственно точки P и Q - середины этих ребер, а на ребре MC зададим точку R. Построим сечение пирамиды плоскостью, проходящей через точки P, Q и R.

Решение

(рисунок 14):

1). Ясно, что основным следом плоскости PQR является прямая PQ.

2). Найдем точку К, в которой плоскость МАС пересекает прямую PQ. Точки К и R принадлежат и плоскости PQR, и плоскости MAC. Поэтому, проведя прямую KR, мы получим линию пересечения этих плоскостей.

3). Найдем точку N=AC BD, проведем прямую MN и найдем точку F=KR MN.

4). Точка F является общей точкой плоскостей PQR и MDB, то есть эти плоскости пересекаются по прямой, проходящей через точку F. Вместе с тем так как PQ - средняя линия треугольника ABD, то PQ параллена BD, то есть прямая PQ параллельна и плоскости MDB. Тогда плоскость PQR, проходящая через прямую PQ, пересекает плоскость MDB по прямой, параллельной прямой PQ, то есть параллельной и прямой BD. Поэтому в плоскости MDB через точку F проведем прямую, параллельную прямой BD.

5). Дальнейшие построения понятны из рисунка. В итоге получаем многоугольник PQD"RB" - искомое сечение.

1. Построение сечения, проходящего через заданную прямую параллельную другой заданной прямой.

Пусть, например, требуется построить сечение многогранника плоскостью @, проходящей через заданную прямую р параллельную второй заданной прямой q. В общем случае решение этой задачи требует некоторых предварительных построений, которые можно выполнять по следующему плану:

1). Через вторую прямую q и какую-нибудь точку W первой прямой p проведем плоскость бетта (рис.

2). В плоскости бетта через точку W проведем прямую q" параллельную q.

3). Пересекающимися прямыми p и q". Определяется плоскость @. На этом предварительные построения заканчиваются и можно переходить к построению непосредственно сечения многогранника плоскостью @. В некоторых случаях особенности конкретной задачи позволяет осуществить и болле короткий план решения. Рассмотрим примеры.

Пример№2.

На ребрах BC и MA пирамиды MABC зададим соответственно точки P и Q. Построим сечение пирамиды плоскостью @, проходящей через прямую PQ параллельно прямой AR, точку R, которую зададим следующим образом: а). На ребре MB; б). Она совпадает с точкой В; в). В грани MAB.

Решение:

а)

.(рисунок Плоскость, проходящая через вторую прямую, то есть прямую AR, и точку Q, взятую на первой прямой, на изображении уже есть. Это плоскость MAB.

2). В плоскости MAB через точку Q проведем прямую QF параллельную AR.

3). Пересекающимися прямыми PQ и QF определяется плоскость @ (эта плоскость PQF) - плоскость искомого сечения. Построим это сечение методом следов.

4). Точка B совпадает с точкой F" - проекцией точки F на плоскость ABC (из центра М), а точка A совпадает с точкой Q" - проекция точки Q на эту плоскость. Тогда точка S"=FQ F"Q" лежит на основном следе секущей плоскости @. Так как точка P лежит на основном следе секущей плоскости, то прямая S"P - это основной след плоскости @, а отрезок S""P - след плоскости @ на грани ABC. Далее ясно, что точку P следует соединить с точкой F. В итоге получаем четырехугольник PFQS"" - искомое сечение.

б)

(рисунокПлоскость, проходящая через прямую AB и точку Р прямой PQ, на изображении уже построена. Это плоскость АВС. Продолжим построение по вышеизложенному плану.

2). В плоскости АВС через точку P проведем прямую PD, параллельную прямой AB.

3). Пересекающимися прямыми PQ и PD определяется плоскость альфа (это плоскость PQD) - плоскость искомого сечения. Построим это сечение.

4). Ясно, что следом плоскости альфа на грани МАС является отрезок DQ.

5). Дальнейшие построения выполним, принимая во внимание следующие соображения. Так как прямая PD параллельна прямой AB, то прямая PD параллельна плоскости МАВ. Тогда плоскость альфа, проходящая через прямую PD, пересекает плоскость МАВ по прямой, параллельной прямой PD, то есть и прямой АВ. Итак, в плоскости МАВ через точку Q проведем прямую QE параллельную АВ. Отрезок QE - это след плоскости альфа на грани МАВ.

6). Соединим точку Р с точкой Е. Отрезок РЕ - это след плоскости альфа на грани МВС. Таким образом, четырехугольник PEQD - искомое сечение. совпадает с точкой А, а точка L" совпадает с R"=MR BC. Тогда точка S"=LQ L"Q" лежит на основном следе секущей плоскости альфа. Этим основным следом является прямая S"P, а следом плоскости альфа на грани АВС является отрезок S""P. Далее прямая PL - это след плоскости альфа на плоскости МВС, а отрезок РN - след плоскости альфа на грани МВС. Итак, четырехугольник PS""QN - искомое сечение.

Пример 3.

На диагоналях АС и C"E" оснований призмы ABCDEA"B"C"D"E" зададим соответственно точки P и Q. Построим сечение призмы плоскостью альфа, проходящей через прямую PQ параллельно одной из следующих прямых: а). АВ; б). АС"; в). BC" Решение:

а)

(рисунок Плоскость. проходящая через прямую АВ - вторую заданную прямую и точку Р, взятую на первой прямой, уже построена. Это плоскость АВС.

2). В плоскости АВС через точку Р проведем прямую, параллельно прямой АВ, и найдем точки К и L, в которых эта прямая пересекает соответственно прямые ВС и АЕ. B"C" также параллельны между собой. Принимая во внимание, что KL параллельна AB и A"B" параллельна АВ, проведем в плоскости А"B"C" через точку Q прямую, параллельную прямой A"B", и найдем точки F и Т, в которых эта прямая пересекает соответственно прямые C"D" и A"E". Далее получаем отрезок TL - след плоскости альфа на грани AEE"A", точку S"=KL CD, прямую S"F - след плоскости альфа на плоскости CDD" , отрезок FC"" - след плоскости альфа на грани CDD"C" и, наконец, отрезок C""K - след плоскости альфа на грани BCC"B". В итоге получаем многоугольник KLTFC"" - искомое сечение.

б)

(рисунок Проведем плоскость через прямую AC" - вторую заданную прямую, и точку Р, взятую на первой прямой. Это плоскость ACC".

2). В плоскости ACC" через точку Р проведем прямую, параллельную прямой АС", и найдем точку C"", в которой эта прямая пересекает прямую CC".

3). Пересекающимися прямыми PQ и PC"" определяется плоскость альфа (плоскость C""PQ) - плоскость искомого сечения. Построим это сечение, например, методом следов. Одна точка, принадлежащая следу плоскости альфа на плоскость ABC, которую мы принимаем за основную, на чертеже уже есть. Это точка Р. Найдем еще одну точку этого следа.

4). Проекция точки C"" на плоскость АВС является точка С, а проекцией точки Q - точка Q" - точка пересечения прямой CE с прямой, проходящей в плоскости CEE" через точку Q параллельно прямой EE". Точка S"=C""Q CQ" - это вторая точка основного следа плоскости альфа. Итак, основным следом плоскости альфа является прямая S"P. Она пересекает стороны ВС и АЕ основания призмы соответственно в точках S"" и S""" . Тогда отрезок S""S""" - след секущей плоскости альфа на грани ABCDE. А отрезок S""C"" - след плоскости альфа на грани BCC"B". Нетрудно увидеть, что прямые C"" Q и EE" лежат в одной плоскости. Найдем точку E"" =С""Q EE". Тогда ясно получение дальнейших следов плоскости альфа: S"""S"", S"""T, TF и FC"". В итоге получаем многоугольник S""S"""TFC"" - искомое сечение.

в)

(рисунокЧерез вторую заданную прямую - прямую BC" - и, например, через точку Р, лежащую на первой заданной прямой, поведем плоскость. Сделаем это методом следов. Легко устанавливается, что основным следом этой плоскости BC"P является прямая ВР. Затем находим точку S"=BP CD и след S"C" плоскости BC"P и плоскости CDD".

2).В плоскости BC"P через точку Р проведем прямую, параллельную прямой BC". Точку пересечения проведенной прямой с прямой S"C" обозначим V.

3). Пересекающимися прямыми PQ и PV определяется плоскость альфа (плоскость PQV) - плоскость искомого сечения. Построим это сечение.

4). Находим точки Q" и V" - проекции соответственно точек Q и V на плоскость ABC, принимаемую нами за основную плоскость. Затем находим точку S""=QV Q"V". Это одна из точек основного следа плоскости альфа. И еще одна точка этого следа уже есть. Это заданная точка Р. Итак, прямая S""P - основной след плоскости альфа, а полученный при этом отрезок S"""S"""" - след плоскости альфа на грани АВСDE. Дальнейший ход построения ясен: S"""""=S""P CD, S"""""V, точки C""=S"""""V CC" и F=S"""""V C"D", затем FQ и точка T=FQ A"E" и, наконец, TS"""". В итоге получаем многоугольник S"""C""FTS"""" - искомое сечение.

Замечание: Наметим кратко ход решения примера 3,в, при котором на первой заданной прямой была взята точка Q, а не точка P (рисунок 22).

1). Строим плоскость BC"Q (это плоскость BC"E").

2). Плоскость BC"Q пересекает плоскость ABC по прямой BN параллельной C"E"(для построения можно воспользоваться тем, что BN параллельна СЕ).

3). В плоскости BC"Q через точку Q проводим прямую QM параллельную BC" (М=QM BN).

4). Строим сечение призмы плоскостью, определяемой пересекающимися прямыми PQ и QM. Это можно сделать в следующем порядке: MP, S"=MP AE и S""=МР ВС, S""""=MP CE, C""=S""""Q CC", S"""C"", F=S"""C"" C"D", FQ, T=FQ A"E", TS. Многоугольник S""C""FTS"- искомое сечение.

2. Построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым.

Пусть требуется построить сечение многогранника плоскостью, проходящей через заданную точку К параллельно двум заданным скрещивающимся прямым l и m. При background:#FFCCCC; border:outset #CC33FF 1.5pt">

1.Выберем некоторую точку W. (Эта точка может лежать на одной из заданных скрещивающихся прямых, может совпадать с точкой К.)

2.Через точку W проведем прямые l" и m". (Естественно, если точка W лежит на одной из прямых, например на прямой l, то прямая l" совпадает с прямой l.)

3. Пересекающимися прямыми l" и m" определяется плоскость бетта - плоскость вспомогательного сечения многогранника. Строим сечение многогранника плоскостью бетта.

4. Построим сечения многогранника плоскостью альфа, проходящей через точку K, параллельно плоскости бетта.

Рассмотрим примеры применения изложенного плана.

П р и м е р 4.

На ребрах AD и С"D" призмы ABCDA"В"С"D", зададим соответственно точки P и Q, а на ребре DD" зададим точку К. Построим сечение призмы плоскостью альфа, проходящей через точку К параллельно прямой PQ и одной из следующих прямых: а) АВ; б) А"В; в) BR, точку R которой зададим на ребре A"D".

Решение. a)

(Рис. 2Пусть точка W совпадает с точкой P.

2) В плоскости АВС через точку P проведем прямую, параллельную прямой АВ. Найдем точку Е, в которой проведенная прямая пересекает прямую ВС.

3) Пересекающимися прямыми PQ и PE определяется плоскость бетта - плоскость вспомогательного сечения. Построим сечение призмы плоскостью бетта. Прямая PE и точки С"" и D"" - следы плоскости бетта соответственно на прямых СС" и DD". Затем строим прямую D""Р и получаем точку F на ребре А"D". Таким образом, сечением призмы плоскостью бетта являет - я многоугольник РЕС""QF.

4) Строим теперь сечение призмы плоскостью альфа, проходящей через точку К параллельно плоскости бетта. В итоге получаем треугольник KLN - искомое сечение.

б)

(Рис. Пусть точка W совпадает с точкой Q. Чтобы через точку Q провести прямую, параллельную прямой А"В, сначала через прямую А"В и точку Q проведем плоскость гамма. Сделаем это так. Найдем точку Q" - проекцию точки Q на плоскость АВС и проведем прямую AQ". Ясно, что AQ" параллельно A"Q. Теперь через точку В в плоскости АВС проведем прямую l" параллельно AQ". Пересекающимися прямыми А"В и l" определяется плоскость гамма. В плоскости гамма через точку Q проведем прямую l"" параллельно A"В.

3) Пересекающимися прямыми PQ и l"", определяется плоскость бетта - плоскость вспомогательного сечения призмы. Построим это сечение. Находим для этого точку S"=l" пересекается l"", а затем прямую PS" - основной след плоскости бетта. Находим далее точку s""=PS" пересекается CD и проводим прямую S""Q - след плоскости бетта на плоскости CDD". Получаем точку D"" - след плоскости бетта на прямой DD". Точка D"" и точка Р лежат в плоскости ADD". Поэтому прямая PD""- след плоскости бетта на плоскости АDD", а отрезок PF - след плоскости бетта на грани ADD"A". Таким образом, сечением призмы плоскостью бетта является четырехугольник РS""QF. (Обратите внимание: QF параллельно PS"". И это, естественно, так. Ведь основания призмы лежат в параллельных плоскостях. Этим обстоятельством можно было воспользоваться при построении сечения призмы плоскостью бетта.)

4) Теперь строим сечение призмы плоскостью альфа, проходящей через точку К параллельно плоскости бетта. Это построение выполнить уже несложно. В итоге получаем треугольник KLN - искомое сечение.

в)

(Рис. В качестве точки W выберем точку Q.

2) Через прямую BR и точку Q проведем плоскость гамма. Плоскость гамма пересекает плоскость АВС по прямой l" параллельно QR. Для построения прямой l" строим точки R" и Q" - проекции соответственно точек R и Q на плоскость АВС - и проводим прямую Q"R", а затем в плоскости АВС через точку В проводим прямую l" параллельно Q"R". В плоскости гамма через точку Q проводим прямую l"" параллельно BR. Получим точку S"=l" пересекается l"".

3) Пересекающимися прямыми PQ и l"" определяется плоскость бетта - плоскость вспомогательного сечения призмы. Построим это сечение. Ясно, что прямая PS" является основным следом плоскости бетта. Находим далее точки S""= PS" пересекается CD, S"""= РS" пересекается BC и C"" = QS"" пересекается CC". Получим отрезки РS""", S"""C"" и C""Q- следы плоскости бетта соответственно на гранях ABCD, ВСС"В и CDD"С". Далее либо проведем в плоскости А"В"С" прямую, параллельную следу PS", и получим точку F, либо найдем точку D""=S""Q пересекается DD" и проведем прямую D""Р. Эта прямая пересечет прямую А"D" в точке F. Получаем, таким образом, еще два следа плоскости бетта: QF н FP. Итак, многоугольник PS"""C""QF - сечение призмы плоскостью бетта.

4) Теперь построим сечение призмы плоскостью альфа, проходящей через точку К параллельно плоскости бетта. В итоге получаем треугольник KLN - искомое сечение.

П р и м е р 5.

На ребрах МВ и МА пирамиды МАВСD зададим соответственно точки Р и К, и на отрезке АС зададим точку Q. Построим сечение пирамиды плоскостью альфа, проходящей через точку К параллельно прямой PQ и одной из следующих прямых: а) CD; б) МС; в) RV, точки R и V которой зададим соответственно на ребрах АВ и МС пирамиды.

Р е ш е н и е.

a)

(Рис. 2В плоскости ABC через точку Q проведем прямую, параллельную прямой CD, и. найдем точки S". S"" и S""", в которых эта прямая пересекает соответственно прямые BC, АD и АВ.

2) Пересекающимися прямыми PQ и S"S"" определяется плоскость бетта - плоскость вспомогательного сечения пирамиды. Построим это сечение. Основным следом плоскости бетта является прямая S"S"". Отрезок PS" - след плоскости бетта на грани МВС, прямая PS""" - ее след на плоскости МАВ, отрезок PA" - на грани МАВ, отрезок А"S""- на грани MAD.

б)

(Рис. 27.) Выполним построение заданного сечения в следующем порядке:

1) В плоскости МАС через
точку Q проведем прямую QA параллельно MC

2) Построим вспомогательное сечение пирамиды плоскостью, которая определяется . С этой целью найдем точку S"=PA" пересекается АВ, проведем прямую S"Q, являющуюся основным следом плоскости PQA", получим точки S""=S"Q пересекается AD и S"""=S"Q пересекается BC и соединим точку А" с точкой S"", а точку P с точкой S""". Четырехугольник PA"S""S""" - это вспомогательное сечение пирамиды. Плоскость этого сечения параллельна прямым PQ и МС, но не проходит через точку К.

3) Теперь построим сечение пирамиды плоскостью, проходящей через точку К параллельно плоскости PQA". В итоге получаем четырехугольник В"KFE - искомое сечение.

a)

(Рис. 28.) Выполним построение заданного сечения пирамиды, построив сначала вспомогательное сечение ее плоскостью, проходящей через прямую PQ параллельно прямой RV. Сделаем это в следующем порядке:

1) Построим точку S"=PV пересекается BC и проведем прямую S"R.

2) Пересекающимися прямыми S"V и S"R определяется плоскость. В этой плоскости через точку Р проведем прямую PS"" параллельно RV.

3) Пересекающимися прямыми PQ и PS"" определяется плоскость вспомогательного сечения пирамиды. Построим это сечение. Находим последовательно прямую S""Q - основной след плоскости вспомогательного сечения, затем точки Т"=S""Q пересекается ВС, Т""=S""Q пересекается АB и Т"""=S""Q пересекается CD, Проведем далее прямую Т"P и найдем точку Е= Т"P пересекается "MC. Точку P соединим с точкой Т"", а точку Е - с Т""". Четырехугольник PT""Т"""Е - вспомогательное сечение пирамиды. Плоскость этого сечения параллельна прямым PQ и RV, но не проходит через точку К. Теперь построим сечение пирамиды плоскостью, проходящей через точку К параллельно плоскости вспомогательного сечения. В итоге получаем четырехугольник КВ"С"D" - искомое сечение.

Нахождение площади сечения в многогранниках.

Задача №1.

Задача №2

Задача №3.

Задача №4.

Задача №5.

Задача №6.

Задача №7

Задача №8.

Использование свойств подобных треугольников.

Поэтому далее представлены несколько простейших задач, в которых подобные треугольники играют главную роль, - тем более, что их нужно еще и построить (и увидеть!!!) с помощью стандартного стереометрического приема: одну плоскость пересечь другой плоскостью и построить их линию пересечения по двум общим для плоскостей точкам.

Задача №1.

Задача №2

Задача №3

Задача №4

Задача №5

Для нахождения расстояния между скрещивающимися прямыми можно воспользоваться четырьмя основными способами:

1)Нахождение длины общего перпендикуляра двух скрещивающихся прямых, то есть отрезка с концами на этих прямых и перпендикулярного обеим.

2)Нахождение расстояния от одной из скрещивающихся прямых до параллельной ей плоскости, проходящей через другую прямую.

3)Нахождение расстояния между двумя параллельными плоскостями, проходящими через заданные скрещивающиеся прямые.

4)Нахождение расстояния от точки, - являющейся проекцией одной из скрещивающихся прямых на перпендикулярную ей плоскость, - до проекции другой прямой на ту же самую плоскость.

Задача №18

Задача №19

Представьте 4 варианта решения данной задачи и выберите самый рациональный из них. Обоснуйте свой выбор.

Задача №20

Задача №21

Задача №22

Нахождение расстояния и угла между скрещивающимися прямыми в многограннике.

Задача №1.

Задача №2.

Задача №3.

проходящей через боковое ребро и пересекающуюся с ним медиану основания, и плоскостью, проходящей через ту же медиану и середину любого другого бокового ребра.

Сечения.

Задача №1.

Задача №2.

Задача №3.

Два противоположных ребра тетраэдра перпендикулярны, а их длины равны а и b расстояние - между ними равно с. В тетраэдр вписан куб, четыре ребра которого перпендикулярны этим двум ребрам тетраэдра, а на каждой грани тетраэдра лежат ровно две вершины куба. Найдите ребро куба.

Задача №4.

Задача №5.

Задача №6.

Задача №7.

Задача №8.

Задача №9.

Отношение объемов частей многогранника.

Задача №1.

Задача №2.

Задача №3.

Задача №4.

Проекции и сечения правильных многогранников.

Задача №1.

окажите, что проекции додекаэдра и икосаэдра на плоскости, параллельные их граням, являются правильными многоугольниками.

Задача №2.

окажите, что проекция додекаэдра на плоскость, перпендикулярную прямой, проходящей через его центр и середину ребра, является шестиугольником (а не десятиугольником).

Задача №3.

а) окажите, что проекция икосаэдра на плоскость. перпендикулярную прямой, проходящей через его центр и вершину, является правильным 10-угольником. б). Докажите, что проекция додекаэдра на плоскость, перпендикулярную прямой, проходящей через его центр и вершину, является неправильным 12- угольником.

Задача №4.

уществует ли сечение куба, являющееся правильным т шетиугольником?

Задача №5.

уществует ли сечение октаэдра, являющееся правильным шестиугольником?

Задача №6.

уществует ли сечение додекаэдра, являющееся правильным шестиугольником?

Задача №7.

ве грани АВС и АВD икосаэдра имеют общее ребро АВ. Через вершину D проводится плоскость, параллельная плоскости АВС. Верно ли, что сечение икосаэдра этой плоскостью является правильным шестиугольником?

Ответы к задачам по темам:

4. Угол между плоскостями.

5. Сечения

6. Отношение объемов частей многогранника.

7. Проекции и сечения правильных многогранников.

1. Нахождение площади сечения в многогранниках.

Решение задачи

№1 №2 №3 №4 №5 №6 №7 №8

Задача №1.

https://pandia.ru/text/78/375/images/image040_59.gif" width="597" height="292 src=">

Задача №2.

https://pandia.ru/text/78/375/images/image042_56.gif" width="577" height="277 src=">

Задача №3.

https://pandia.ru/text/78/375/images/image044_53.gif" width="630" height="275 src=">

Задача №4.

https://pandia.ru/text/78/375/images/image046_49.gif" width="641" height="332 src=">

Задача №5.

https://pandia.ru/text/78/375/images/image048_46.gif" width="642" height="245 src=">

Задача №6.

https://pandia.ru/text/78/375/images/image050_46.gif" width="680" height="340 src=">

Задача №7.

https://pandia.ru/text/78/375/images/image052_47.gif" width="659" height="340 src=">left" style="margin-left: 6.75pt;margin-right:6.75pt">

2. Использование свойств подобных треугольников.

Решение задачи

№1 №2 №3 №4 №5

Задача №1.

https://pandia.ru/text/78/375/images/image055_46.gif" width="605" height="254">

2-ой случай

Задача №2.

https://pandia.ru/text/78/375/images/image058_41.gif" width="683" height="260 src=">

Задача №3.

https://pandia.ru/text/78/375/images/image061_42.gif" width="536" height="203">

https://pandia.ru/text/78/375/images/image063_41.gif" width="341" height="107 src=">MsoNormalTable">

Точка С принадлежит плоскости CB"A"D (так как CD" перпендикулярна C"D как диагонали квадрата и так как B"C" перпендикулярна плоскости CC"D"D, - из чего следует B"C" перпендикулярна СЕ, - то получаем СЕ перпендикулярна B"C" и СЕ перпендикулярна C"D). Затем проводим EF перпендикулярно B"D и тогда получаем B"D перпендикулярна CF (по теореме о трех перпендикулярах: CF по отношению к плоскости AB"C"D является наклонной, СЕ - перпендикуляром и EF - проекцией наклонной CF; то она перпендикулярна и самой наклонной CF). Так как EF и CF принадлежат соответственно обеим плоскостям, то угол фи (угол CFE) является искомым.

После этого обоснования следует несложная вычислительная часть.

"B"EF и D""C"EF), в результате чего перпендикуляры A""M и D""M, проведенные в обеих фигурах к их линии пересечения, попадут в одну точку М, причем - внутри, а не снаружи призмы, так как углы B"A""D и C"D""A - тупые (B"D и больше BD=AC=A""C"" и C"A больше AC=BD=B""D""). Далее, найдя диагонали и стороны ромбов, можно найти отрезки A""M и D""M с помощью, например, двух формул для площади ромба

Примечание: Безусловно, в этой и аналогичных задачах никакие размеры многогранника (например, "a") не нужны, поэтому при подборе численных значений параметра "k" для различных вариантов задачи содержание ее условия в соответствующем месте должно формулироваться, например, так: "... в призме, у которой высота во столько-то раз больше стороны основания...", и т. д.

3. Нахождение расстояния и угла между скрещивающимися прямыми в многограннике.

Решение задачи

№1 №2 №3 №4 №5

Задача №1.

MsoNormalTable">

№1 Решение задачи первым способом предполагает:
- непростое обоснование того, что искомый перпендикуляр (h скр.) с концами на двух данных скрещивающихся прямых располагается внутри куба (а не вне его);
- ориентировочное определение местоположения этого перпендикуляра;
- догадку о том, что для нахождения длины отрезка h скр. необходимо с помощью теоремы о трех перпендикулярах спроектировать его на смежные грани куба, которым принадлежат скрещивающиеся прямые (диагонали) а уже затем подойти к несложному решению:

2. Решение задачи вторым способом предполагает следующие действия:
- построение в кубе секущей плоскости, параллельной одной из прямых A"C"; так как АС параллельна A"C", то A"C" параллельна плоскости ACD" по признаку параллельности прямой плоскости;
- отыскание внутри куба прямой, перпендикулярной секущей плоскости; здесь требуется догадка и обоснование того, что такой прямой является главная диагональB"D (АС перпендикулярна ВД и, так как ВД является проекцией наклонной В"D на плоскость основания АВСД, то по теореме о трех перпендикулярах получаем АС перпендикулярна В"D ; аналогично устанавливается, что CD" перпендикулярна B"D и, так как получили перпендикулярность главной диагонали В"D двум непараллельным прямым АС и СD" , принадлежащим плоскости сечения АСD" , то по признаку перпендикулярности прямой и плоскости:B"D перпендикулярна плоскости ACD");

Построение еще одной секущей плоскости, проходящей через диагональ В"D и пересекающей вторую из скрещивающихся прямых A"C"; этой плоскостью удобно выбрать диагональное сечение BB"D"D этому признаку перпендикулярности двух плоскостей плоскости BB"D"D перпендикулярна плоскости ACD", так как плоскость BB"D"D проходит через прямую (B"D), перпендикулярную другой плоскости (ACD"). Далее строиться линия пересечения обоих плоскостей по 2 их общим точкам (D"O) и фиксируется пересечением этой линии диагональю B"D (точка N);
-и наконец, по теореме о том, что если плоскость перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой, из точки O" принадлежит A"C" проводим в плоскости сечения BB"D"D до пересечения с D"O отрезок O"M параллелен B"D; при этом будет O"M перпендикулярен плоскости ACD" и потому O"M = h скр.;
- затем в вычислительной части решения, рассмотрев сечение BB"D'D и в нем - прямоугольный треугольник OO'D', находим: Как видим, оба первых способа малопригодны для задач, представляющих хотя бы какую-то сложность

3. Решение задачи третьим способом предполагает :
- построение параллельных двух секущих плоскостей, содержащих две заданные скрещивающиеся прямые, - с помощью пересекающихся пар соответственно параллельных прямых (BC' параллельна AD' u AC параллельна A'C' => плоскость A'BC' параллельна плоскости ACD')
- отыскание и построение прямой, перпендикулярной одной из двух построенных секущих плоскостей (главная диагональ B'D перпендикулярна плоскости ACD' - доказательство приведено в предыдущем способе решения зада
- отыскание и построение точек пересечения указанной прямой (В'D) с обеими секущими параллельными плоскостями,- для чего необходимо построение любой третьей секущей плоскости(в данном случае, например, BB'D'D) содержащей указанную прямую(B'D), а затем - построение линий пересечения третьей секущей плоскости с первыми двумя (BO' u D'O); зафиксированные таким образом точки М и N т определяют отрезок МN=h скр.

И, наконец, в вычислительной части решения можно воспользоваться приемом из предыдущего способа решения или же прибегнуть к подобию треугольников:

4. Решение задачи четвертым способом предполагает:
-отыскание и построение такой секущей плоскости(в данном случае - BB'D'D), которая перпендикулярна одной из скрещивающихся прямых (A'C' перпендикулярен BB'D'D - так как A'C' перпендикулярен B'D' и DD' перпендикулярен плоскости A'B'C'D' => DD' перпендикулярен A'C', т. е. A'C' перпендикулярна двум непараллельным прямым, принадлежащим секущей плоскости) и на которую указанная прямая (A'C') проектируется в точку (O'); причем при выборе секущей плоскости желательно, чтобы хотя бы один из концов отрезка второй прямой принадлежал этой секущей плоскости;
- построение проекции второй прямой на эту секущую плоскость, - для чего из концов отрезка этой прямой (в данном случае из точки А) перпендикуляры на эту плоскость (в данном случае АО) проводятся параллельно первой из скрещивающихся прямых (АО параллельна A'C');
- после построения проекции D'O к ней в плоскости сечения BB'D'D проводится перпендикуляр O'M из первоначально полученной точки O' - проекции первой прямой на ту же секущую плоскость; получаем O'M = h скр.;
- и, наконец, в вычислительной части решения можно воспользоваться уже известным приемом нахождения высоты к гипотенузе прямоугольного треугольника (OO'D'):h скр

Задача №3.

В данной задаче для выбора способа решения определяющим является перпендикулярность прямой АС диагональной плоскости ВB'D'D (т. к. АС перпендикулярна ВD и АС перпендикулярна BB'), которой принадлежит другая прямая B'F, т. е. секущая плоскость BB'D'D удобна для выбора ее в качестве плоскости проекции. А далее следует несложная вычислительная часть:
1). Иэ подобия треугольника DFT и треугольника D'FB' находим DT = kd;
2). Из подобия треугольника NOT и треугольника BB'T находим ON:

Задача №4.

Данная задача представлена здесь для демонстрации применения второго способа (построение перпендикуляра от первой прямой к параллельной плоскости, содержащей вторую прямую) к простейшим ситуациям расположения скрещивающихся прямых в таком непростом многограннике, каким является правильная шестиугольная призма.

https://pandia.ru/text/78/375/images/image077_33.gif" width="186" height="87 src=">

Задача №5.

https://pandia.ru/text/78/375/images/image079_29.gif" width="347" height="326 src=">

5. Сечения.

Решение задачи

№1 №2 №3 №4 №5 №6

Задача №1.

По всяком случае, точки А, В и С лежат в одной плоскости, и поэтому можно рассмотреть сечение плоскостью, содержащей эти точки. Так как плоскость сечения проходит через точку касания сфер (сферы плоскости), и сечении получаются касающиеся окружности (окружность и прямая). Пусть О' и 0'' - центры первой и второй окружностей. Так как О'А || 0''В и точки O', С и 0'' лежат па одной прямой, угол АО'С = углу ВО''С. Поэтому угол АСО' = углу ВСО'', т. е. точки А, В и С лежат на одной прямой.

Задача №2.

Осевое сечение данного усеченного конуса является описанной трапецией АВСD с основаниями АD = 2R и ВС = = 2r. Пусть Р - точка касания вписанной окружности со стороной АВ, О - центр вписанной окружности. В треугольнике АВО сумма углов при вершинах А и В равна 90°, поэтому он прямоугольный. Следовательно, АР: РО - РО: ВР, т. е. РО'2 = АР*ВР. Ясно также, что АР = R и ВР = r. Поэтому радиус РО вписанной в конус сферы равен квадратному корню из произведения R и r, а значит, S = 4п(R2 + Rr+ r2). Выражая объем данного усеченного конуса по формулам, получаем, что площадь его полной поверхности равна 2п(R2 + Rr+ r2) = S/2 (нужно учесть, что высота усеченного конуса равна удвоенному радиусу сферы, около которой он описан).

Задача №3.

Общий перпендикуляр к данным ребрам делится параллельными им плоскостями граней куба на отрезки длиной у, х и г (х - длина ребра куба; отрезок длиной у прилегает к ребру а). Плоскости граней куба, параллельные данным ребрам, пересекают тетраэдр по двум прямоугольникам. Меньшие стороны этих прямоугольников равны ребру куба х. Так как стороны этих прямоугольников легко вычисляются, получаем х = bу/с и х = az/с. Следовательно, с=х+у+г=х+сх/b + еx/а, т. е. х=аЬс/(аb + bс + сa).

Задача №4.

Каждая сторона полученного многоугольника принадлежит одной из граней куба, поэтому число его сторон не превосходит 6. Кроме того, стороны, принадлежащие противоположным граням куба, параллельны, так как линии пересечения плоскости с двумя параллельными плоскостями параллельны. Следовательно, сечение куба не может быть правильным пятиугольником, так как у того нет параллельных сторон. Легко проверить, что правильный треугольник, квадрат и правильный шестиугольник могут быть сечениями куба.

Задача №5.

Рассмотрим некоторый круг, являющийся сечением данного тела, и проведем через его центр прямую l, перпендикулярную его плоскости. Эта прямая пересекает данное тело по некоторому отрезку АВ. Все сечения, проходящие через прямую l являются кругами с диаметром АВ.

Задача №6.

Рассмотрим произвольное сечение, проходящее через вершину А. Это сечение является треугольником АВС, причем его стороны АВ и АС являются образующими конуса, т. с. имеют постоянную длину. Поэтому площадь сечения пропорциональна синусу угла ВАС. Угол ВАС изменяется от 0° до ф,

MsoNormalTable">

Задача №2.

Рассмотрим куб, вершины которого расположены в вершинах додекаэдра. В нашей задаче речь идет о проекции на плоскость, параллельную грани этого куба. Теперь легко убедиться, что проекцией додекаэдра действительно является шестиугольник (рис. 70).

Задача №3.

а) Рассматриваемая проекция икосаэдра переходит в себя при повороте на З6° (при этом проекции верхних граней переходят в проекции нижних граней). Следовательно, она является правильным 10-угольнлком (рис. 71, а).

б) Рассматриваемая проекция додекаэдра является 12-угольником, переходящим в себя при повороте на 60° (рис. 71. б). Половина его сторон является проекциями ребер, параллельных плоскости проекции, а другая половина сторон - проекциями ребер, не параллельных плоскости проекции. Следовательно, этот 12-угольник неправильный.

MsoNormalTable">

Задача №4.

Существует. Середины указанных на рис. 72 ребер куба являются вершинами правильного шестиугольника. Это следует из того, что стороны этого шестиугольника параллельны сторонам правильного треугольника PQR, а их длины вдвое меньше длин сторон этого треугольника.

Задача №6.

Существует. Возьмем три пятиугольные грани о общей вершиной А и рассмотрим сечение плоскостью, пересекающей эти грани и параллельной плоскости, в которой лежат три попарно общие вершины рассматриваемых граней (рис. 74). Это сечение является шестиугольником с попарно параллельными противоположными сторонами. При повороте на 120° относительно оси, проходящей через вершину А и перпендикулярной секущей плоскости, додекаэдр и секущая плоскость переходят в себя. Поэтому сечение является выпуклым шестиугольником с углами 120°, длины сторон которого, чередуясь, принимают два значения. Для того чтобы этот шестиугольник был правильный, достаточно, чтобы эти два значения были равны. Когда секущая плоскость движется от одного своего крайнего положения до другого, удаляясь от вершины А, первое из этих значений возрастает от 0 до d, а второе убывает от d до а, где а - длина ребра додекаэдра. (d - длина диагонали грани (d больше а). Поэтому в некоторый момент эти значения равны, т. е. сечение является правильным шестиугольником.

Задача №7.

Нет, не верно. Рассмотрим проекцию икосаэдра на плоскость АВС. Она является правильным шестиугольником (см. рис.69). Поэтому рассматриваемое сечение было бы правильным шестиугольником, лишь если бы все 6 вершин, соединенных ребрами с точками А, В и С (и отличных от А, В и С), лежали в одной плоскости. Но, как легко убедиться, это неверно (иначе получилось бы, что все вершины икосаэдра расположены на трех параллельных плоскостях).

ЗАДАЧИ

2. Использование свойств подобных треугольников.

Решение задачи

№1 №2 №3 №4 №5

Задача №1.

https://pandia.ru/text/78/375/images/image055_46.gif" width="605" height="254">

2-ой случай

Задача №2.

https://pandia.ru/text/78/375/images/image058_41.gif" width="683" height="260 src=">

Задача №3.

https://pandia.ru/text/78/375/images/image060_43.gif" width="570" height="264 src=">

Задача №4.

https://pandia.ru/text/78/375/images/image063_41.gif" width="341" height="107 src=">right">

Сегодня еще раз разберем, как построить сечение тетраэдра плоскостью .
Рассмотрим самый простой случай (обязательный уровень), когда 2 точки плоскости сечения принадлежат одной грани, а третья точка - другой грани.

Напомним алгоритм построения сечений такого вида (случай: 2 точки принадлежат одной грани).

1. Ищем грань, которая содержит 2 точки плоскости сечения. Проводим прямую через две точки, лежащие в одной грани. Находим точки ее пересечения с ребрами тетраэдра. Часть прямой, оказавшаяся в грани, есть сторона сечения.

2. Если многоугольник можно замкнуть - сечение построено. Если нельзя замкнуть, то находим точку пересечения построенной прямой и плоскости, содержащей третью точку.

1. Видим, что точки E и F лежат в одной грани (BCD), проведем прямую EF в плоскости (BCD).
2. Найдем точку пересечения прямой EF c ребром тетраэдра BD, это точка Н.
3. Теперь следует найти точку пересечения прямой EF и плоскости, содержащей третью точку G, т.е. плоскости (ADC).
Прямая CD лежит в плоскостях (ADC) и (BDC), значит она пересекается с прямой EF, и точка К является точкой пересечения прямой EF и плоскости (ADC).
4. Далее находим еще две точки, лежащие в одной плоскости. Это точки G и K, обе лежат в плоскости левой боковой грани. Проводим прямую GK, отмечаем точки, в которых эта прямая пересекает ребра тетраэдра. Это точки M и L.
4. Осталось "замкнуть" сечение, т.е.соединить точки, лежащие в одной грани. Это точки M и H, и также L и F. Оба этих отрезка - невидимы, проводим их пунктиром.


В сечении получился четырехугольник MHFL. Все его вершины лежат на ребрах тетраэдра. Выделим получившееся сечение.

Теперь сформулируем "свойства" правильно построенного сечения:

1. Все вершины многоугольника, которое является сечением, лежат на ребрах тетраэдра (параллелепипеда, многоугольника).

2. Все стороны сечения лежат в гранях многогранника.
3. В каждой грани многоранника может находиться не более одной (одна или ни одной!) стороны сечения

ПОСТРОЕНИЕ СЕЧЕНИЙ И РАЗРЕЗОВ НА ЧЕРТЕЖАХ

Формирование чертежа детали производится путем последовательного добавления необходимых проекций, разрезов и сечений. Первоначально создается произвольный вид с указанной пользователем модели, при этом задается ориентация модели, наиболее подходящая для главного вида. Далее по этому и следующим видам создаются необходимые разрезы и сечения.

Главный вид (вид спереди) выбирается таким образом, чтобы он давал наиболее полное представление о формах и размерах детали.

Разрезы на чертежах

В зависимости от положения секущей плоскости различают следующие виды разрезов:

А) горизонтальные, если секущая плоскость располагается параллельно горизонтальной плоскости проекций;

Б) вертикальные, если секущая плоскость перпендикулярна горизонтальной плоскости проекций;

В) наклонные - секущая плоскость наклонена к плоскостям проекций.

Вертикальные разрезы подразделяются на:

· фронтальные - секущая плоскость параллельна фронтальной плоскости проекций;

· профильные - секущая плоскость параллельна профильной плоскости проекций.
В зависимости от числа секущих плоскостей разрезы бывают:

· простые - при одной секущей плоскости (рис.107);

· сложные - при двух и более секущих плоскостях (рис.108)
Стандартом предусмотрены следующие виды Сложных разрезов:

· ступенчатые, когда секущие плоскости располагаются параллельно (рис.108 а) и ломаные - секущие плоскости пересекаются (рис.108 б)

Рис.107 Простой разрез

А) б)

Рис.108 Сложные разрезы

Обозначение разрезов

В случае, когда в простом разрезе секущая плоскость совпадает с плоскостью симметрии предмета, разрез не обозначается (рис.107). Во всех остальных случаях разрезы обозначаются прописными буквами русского алфавита, начиная с буквы А, например А-А.

Положение секущей плоскости на чертеже указывают линией сечения – утолщенной разомкнутой линией. При сложном разрезе штрихи проводят также у перегибов линии сечения. На начальном и конечном штрихах следует ставить стрелки, указывающие направление взгляда, стрелки должны находиться на расстоянии 2-3 мм от наружных концов штрихов. С наружной стороны каждой стрелки, указывающей направление взгляда, наносят одну и ту же прописную букву.

Для обозначения разрезов и сечений в системе КОМПАС используется одна и та же кнопка Линия разреза, расположенная на странице Обозначения (рис.109).

Рис.109 Кнопка Линия разреза

Соединение половины вида с половиной разреза

Если вид и разрез представляют собой симметричные фигуры (рис.110), то можно соединять половину вида и половину разреза, разделяя их штрихпунктирой тонкой линией, являющейся осью симметрии. Часть разреза обычно располагают справа от оси симметрии, разделяющей часть вида с частью разреза, или снизу от оси симметрии. Линии невидимого контура на соединяемых частях вида и разреза обычно не показываются. Если с осевой линией, разделяющий вид и разрез, совпадает проекция какой-либо линии, например, ребра гранной фигуры, то вид и разрез разделяются сплошной волнистой линией, проводимой левее оси симметрии, если ребро лежит на внутренней поверхности, или правее, если ребро наружное.

Рис. 110 Соединение части вида и разреза

Построение разрезов

Построение разрезов в системе КОМПАС изучим на примере построения чертежа призмы, задание для которого изображено на рис.111.

Последовательность построения чертежа следующая:

1. По заданным размерам построим твердотельную модель призмы (рис.109 б). Сохраним модель в памяти компьютера в файле с именем «Призма».

Рис.112 Панель Линии

3. Для построения профильного разреза (рис.113) начертим линию разреза А-А на главном виде с помощью кнопки Линия разреза.


Рис.113 Построение профильного разреза

Направление взгляда и текст обозначения можно выбрать на панели управления командой внизу экрана (рис.114). Завершается построение линии разреза нажатием на кнопку Создать объект.

Рис.114 Панель управления командой построения разрезов и сечений

4. На панели Ассоциативные виды (рис.115) выберем кнопку Линия разреза, затем появившейся на экране ловушкой укажем линию разреза. Если все сделано верно (линия разреза должна быть обязательно построена в активном виде), то линия разреза окрасится в красный цвет. После указания линии разреза А-А на экране появится фантом изображения в виде габаритного прямоугольника.

Рис.115 Панель Ассоциативные виды

С помощью переключателя Разрез/сечение на Панели свойств выбирается тип изображения – Разрез (рис.116) и масштаб отображаемого разреза.

Рис.116 Панель управления командой построения разрезов и сечений

Профильный разрез построится автоматически в проекционной связи и со стандартным обозначением. При необходимости проекционную связь можно отключать переключателем Проекционная связь (рис.116). Для настройки параметров штриховки, которая будет использована в создаваемом разрезе (сечении) используется элементы управления на вкладке Штриховка.

Рис.117 Построение горизонтального разреза Б-Б и сечения В-В

Если выбранная секущая плоскость при построении разреза совпадает с плоскостью симметрии детали, то в соответствии со стандартом такой разрез не обозначается. Но если просто стереть обозначение разреза, то из-за того, что вид и разрез в памяти компьютера связаны между собой, то сотрется и весь разрез. Поэтому для того, чтобы удалить обозначение, вначале следует разрушить связь вида и разреза. Для этого щелчком левой кнопки мыши выделяется разрез, а затем щелчком правой кнопки мыши вызывается контекстное меню, из которого выбирается пункт Разрушить вид (рис.97). Теперь обозначение разреза можно удалить.

5. Для построения горизонтального разреза проведем через нижнюю плоскость отверстия на виде спереди линию разреза Б-Б. Предварительно обязательно двумя щелчками левой кнопки мыши вид спереди следует сделать текущим. Затем строится горизонтальный разрез (рис.117).

6. При построении фронтального разреза совместим часть вида и часть разреза, т.к. это симметричные фигуры. На линию разделяющую вид и разрез проецируется наружное ребро призмы, поэтому разграничим вид и разрез сплошной тонкой волнистой линией, проводимой правее оси симметрии, т.к. ребро наружное. Для построения волнистой линии используется кнопка Кривая Безье, расположенной на панели Геометрия, вычерчиваемая стилем Для линии обрыва (рис.118). Последовательно указывайте точки, через которые должна пройти кривая Безье. Закончить выполнение команды следует нажатием на кнопку Создать объект.

Рис.118 Выбор стиля линии для обрыва

Построение сечений

Сечением называется изображения предмета, которые получаются при мысленном рассечении предмета плоскостью. На сечении показывают только то, что расположено в секущей плоскости.

Положение секущей плоскости, с помощью которой образуется сечение, на чертеже указывают линией сечения, так же как для разрезов.

Сечения в зависимости от расположения их на чертежах разделяются на вынесенные и наложенные. Вынесенные сечения располагаются чаще всего на свободном поле чертежа и обводятся основной линией. Наложенные сечения располагают непосредственно на изображении предмета и обводят тонкими линиями (рис.119).

Рис.119 Построение сечений

Рассмотрим последовательность построения чертежа призмы с вынесенным наклонным сечением Б-Б (рис.117).

1. Сделаем вид спереди активным двойным щелчком левой кнопкой мыши по виду и начертим линию разреза с помощью кнопки Линия разреза. Выберем текст надписи В-В.

2. С помощью кнопки Линия разреза, расположенной на панели Ассоциативные виды (рис.115), появившейся ловушкой укажем линию секущей плоскости В-В. С помощью переключателя Разрез/сечение на Панели свойств следует выбрать тип изображения – Сечение (рис.116), масштаб отображаемого сечения выбирается из окна Масштаб.

Построенное сечение располагается в проекционной связи, что ограничивает его перемещение по чертежу, но проекционную связь можно отключать с помощью кнопки Проекционная связь.

На готовом чертеже следует прочертить осевые линии, при необходимости проставить размеры.

На этом уроке мы рассмотрим тетраэдр и его элементы (ребро тетраэдра, поверхность, грани, вершины). И решим несколько задач на построение сечений в тетраэдре, используя общий метод для построения сечений.

Тема: Параллельность прямых и плоскостей

Урок: Тетраэдр. Задачи на построение сечений в тетраэдре

Как построить тетраэдр? Возьмем произвольный треугольник АВС . Произвольную точку D , не лежащую в плоскости этого треугольника. Получим 4 треугольника. Поверхность, образованная этими 4 треугольниками, и называется тетраэдром (Рис. 1.). Внутренние точки, ограниченные этой поверхностью, также входят в состав тетраэдра.

Рис. 1. Тетраэдр АВСD

Элементы тетраэдра
А, B , C , D - вершины тетраэдра .
AB , AC , AD , BC , BD , CD - ребра тетраэдра .
ABC , ABD , BDC , ADC - грани тетраэдра .

Замечание: можно принять плоскость АВС за основание тетраэдра , и тогда точка D является вершиной тетраэдра . Каждое ребро тетраэдра является пересечением двух плоскостей. Например, ребро АВ - это пересечение плоскостей АВ D и АВС . Каждая вершина тетраэдра - это пересечение трех плоскостей. Вершина А лежит в плоскостях АВС , АВ D , А D С . Точка А - это пересечение трех означенных плоскостей. Этот факт записывается следующим образом: А = АВС АВ D АС D .

Тетраэдр определение

Итак, тетраэдр - это поверхность, образованная четырмя треугольниками.

Ребро тетраэдра - линия перечесения двух плоскостей тетраэдра.

Составьте из 6 спичек 4 равных треугольника. На плоскости решить задачу не получается. А в пространстве это сделать легко. Возьмем тетраэдр. 6 спичек - это его ребра, четыре грани тетраэдра и будут четырьмя равными треугольниками. Задача решена.

Дан тетраэдр АВС D . Точка M принадлежит ребру тетраэдра АВ , точка N принадлежит ребру тетраэдра В D и точка Р принадлежит ребру D С (Рис. 2.). Постройте сечение тетраэдра плоскостью MNP .

Рис. 2. Рисунок к задаче 2 - Построить сечение тетраэдра плоскостью

Решение :
Рассмотрим грань тетраэдра D ВС . В этой грани точки N и P принадлежат грани D ВС , а значит, и тетраэдру. Но по условию точки N, P принадлежат секущей плоскости. Значит, NP - это линия пересечения двух плоскостей: плоскости грани D ВС и секущей плоскости. Предположим, что прямые NP и ВС не параллельны. Они лежат в одной плоскости D ВС. Найдем точку пересечения прямых NP и ВС . Обозначим ее Е (Рис. 3.).

Рис. 3. Рисунок к задаче 2. Нахождение точки Е

Точка Е принадлежит плоскости сечения MNP , так как она лежит на прямой , а прямая целиком лежит в плоскости сечения MNP .

Также точка Е лежит в плоскости АВС , потому что она лежит на прямой ВС из плоскости АВС .

Получаем, что ЕМ - линия пересечения плоскостей АВС и MNP, так как точки Е и М лежат одновременно в двух плоскостях - АВС и MNP. Соединим точки М и Е , и продолжим прямую ЕМ до пересечения с прямой АС . Точку пересечения прямых ЕМ и АС обозначим Q .

Итак, в этом случае NPQМ - искомое сечение.

Рис. 4. Рисунок к задаче 2.Решение задачи 2

Рассмотрим теперь случай, когда NP параллельна BC . Если прямая NP параллельна какой-нибудь прямой, например, прямой ВС из плоскости АВС , то прямая NP параллельна всей плоскости АВС .

Искомая плоскость сечения проходит через прямую NP , параллельную плоскости АВС , и пересекает плоскость по прямой МQ . Значит, линия пересечения МQ параллельна прямой NP . Получаем, NPQМ - искомое сечение.

Точка М лежит на боковой грани А D В тетраэдра АВС D . Постройте сечение тетраэдра плоскостью, которое проходит через точку М параллельно основанию АВС .

Рис. 5. Рисунок к задаче 3 Построить сечение тетраэдра плоскостью

Решение:
Секущая плоскость φ параллельна плоскости АВС по условию, значит, эта плоскость φ параллельна прямым АВ , АС , ВС .
В плоскости АВ D через точку М проведем прямую PQ параллельно АВ (рис. 5). Прямая PQ лежит в плоскости АВ D . Аналогично в плоскости АС D через точку Р проведем прямую РR параллельно АС . Получили точку R . Две пересекающиеся прямые PQ и РR плоскости РQR соответственно параллельны двум пересекающимся прямым АВ и АС плоскости АВС , значит, плоскости АВС и РQR параллельны. РQR - искомое сечение. Задача решена.

Дан тетраэдр АВС D . Точка М - точка внутренняя, точка грани тетраэдра АВ D . N - внутренняя точка отрезка D С (Рис. 6.). Построить точку пересечения прямой NM и плоскости АВС .

Рис. 6. Рисунок к задаче 4

Решение:
Для решения построим вспомогательную плоскость D МN . Пусть прямая D М пересекает прямую АВ в точке К (Рис. 7.). Тогда, СК D - это сечение плоскости D МN и тетраэдра. В плоскости D МN лежит и прямая NM , и полученная прямая СК . Значит, если NM не параллельна СК , то они пересекутся в некоторой точке Р . Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС .

Рис. 7. Рисунок к задаче 4. Решение задачи 4

Дан тетраэдр АВС D . М - внутренняя точка грани АВ D . Р - внутренняя точка грани АВС . N - внутренняя точка ребра D С (Рис. 8.). Построить сечение тетраэдра плоскостью, проходящей через точки М , N и Р .

Рис. 8. Рисунок к задаче 5 Построить сечение тетраэдра плоскостью

Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС . В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС . Это точка К , она получена с помощью вспомогательной плоскости D МN , т.е. мы проводим D М и получаем точку F . Проводим СF и на пересечении MN получаем точку К .

Рис. 9. Рисунок к задаче 5. Нахождение точки К

Проведем прямую КР . Прямая КР лежит и в плоскости сечения, и в плоскости АВС . Получаем точки Р 1 и Р 2 . Соединяем Р 1 и М и на продолжении получаем точку М 1 . Соединяем точку Р 2 и N . В результате получаем искомое сечение Р 1 Р 2 NМ 1 . Задача в первом случае решена.
Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС . Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р 1 Р 2 , тогда прямая Р 1 Р 2 параллельна данной прямой MN (Рис. 10.).

Рис. 10. Рисунок к задаче 5. Искомое сечение

Теперь проведем прямую Р 1 М и получим точку М 1 . Р 1 Р 2 NМ 1 - искомое сечение.

Итак, мы рассмотрели тетраэдр, решили некоторые типовые задачи на тетраэдр. На следующем уроке мы рассмотрим параллелепипед.

1. И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М. : Мнемозина, 2008. - 288 с. : ил. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни)

2. Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений

3. Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М. : Дрофа, 008. - 233 с. :ил. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики

Дополнительные веб-ресурсы

2. Как построить сечение тетраэдра. Математика ().

3. Фестиваль педагогических идей ().

Сделай дома задачи по теме "Тетраэдр", как находить ребро тетраэдра, грани тетраэдра, вершины и поверхность тетраэдра

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил. Задания 18, 19, 20 стр. 50

2. Точка Е середина ребра МА тетраэдра МАВС . Постройте сечение тетраэдра плоскостью, проходящей через точки В, С и Е .

3. В тетраэдре МАВС точка М принадлежит грани АМВ, точка Р - грани ВМС, точка К - ребру АС. Постройте сечение тетраэдра плоскостью, проходящей через точки М, Р, К.

4. Какие фигуры могут получиться в результате пересечения плоскостью тетраэдра?

Цели урока: рассмотреть решение задач на построение сечений, если две точки сечения принадлежат одной грани.

Ход урока

Изучение новых понятий
Определение 1.
Секущая плоскость многогранника - любая плоскость, по обе стороны от которой имеются точки данного многогранника.
Определение 2. Сечение многогранника - это многоугольник, сторонами которого являются отрезки, по которым секущая плоскость пересекает грани многогранника.
Задание. Назовите отрезки, по которым секущая плоскость пересекает грани параллелепипеда (рис. 1). Назовите сечение параллелепипеда.

Основные действия при построении сечений

Теоретическая основа

Ответ

1. Как проверить: построено сечение или нет Определение сечения Это должен быть многоугольник, стороны которого принадлежат граням многогранника
2. До начала работы определить: можно ли по данным задачи построить сечение Способы задания плоскости Можно, если данные элементы задают однозначно плоскость, то есть даны три точки, не лежащие на одной прямой, точка и прямая и т.д.
3. В плоскости какой-то грани есть две точки секущей плоскости
Если две точки принадлежат плоскости, то вся прямая принадлежит плоскости Через эти точки провести прямую
4. В одной из параллельных граней есть сторона сечения, а в другой - точка сечения Свойство параллельных плоскостей Через эту точку провести прямую, параллельную данной
5. В одной грани есть точка сечения и известно, что секущая плоскость проходит через прямую, параллельную этой грани Признак параллельности прямой и плоскости. Свойство параллельных плоскостей Построить прямую пересечения плоскостей, параллельную данной прямой
6. Две точки сечения принадлежат одной грани, а третья точка лежит в смежной Аксиомы стереометрии Секущая плоскость пересекает грани по отрезкам OC и AB, которые называются следом секущей плоскости на гранях

Решение задач

Задача 1. Какой из четырехугольников, EFKM или EFKL, может быть сечением данного многогранника (рис. 2)? Почему?

Задача 2. Ученик изобразил сечение тетраэдра (рис. 3). Возможно ли такое сечение?

Решение . Нужно доказать, что N, M и H, L лежат в одной плоскости. Пусть точки N и M принадлежат задней грани, H и L - нижней грани, то есть точка пересечения NM и HL должна лежать на прямой, принадлежащей обеим граням, то есть AC. Продлим прямые NM и HL и найдем точку их пересечения. Эта точка не будет принадлежать прямой AC. Значит, точки N, M, L, H не образуют плоский многоугольник. Невозможно.

Задача 3. Построить сечение тетраэдра ABCS плоскостью, проходящей через точки K, L, N, где K и N - середины ребер SA и SB соответственно (рис. 4).

1. В какой грани можно построить стороны сечения?

2. Выбираем одну из точек, на которой оборвалось сечение.
Решение. Способ I. Выбираем точку L.
Определяем грань, в которой лежит выбранная точка и в которой надо построить сечение.

Определяем грань, в которой лежит прямая KN, не проходящая через выбранную точку L.

Находим линию пересечения граней ABC и ASB.

Каково взаимное расположения прямых KN и AB (рис. 5)?
[Параллельны.]

Что нужно построить, если секущая плоскость проходит через прямую, параллельную линии пересечения плоскостей?
[Через точку L провести прямую, параллельную AB. Эта прямая пересекает ребро CB в точке P.]
Соединяем точки, принадлежащие одной грани. KLPN - искомое сечение.
Способ II . Выбираем точку N (рис. 6).


Определяем грани, в которых лежат точка N и прямая KL.

Линией пересечения этих плоскостей будет прямая SC. Находим точку пересечения прямых KL и SC. Обозначим ее Y.
Соединяем точки N и Y. Прямая NY пересекает ребро CB в точке P.
Соединяем точки, принадлежащие одной грани.
KLNP - искомое сечение.
Объясните данное решение.
Один учащийся работает у доски, остальные в тетрадях.

Задача 4 . Построить сечение параллелепипеда, проходящее через точки M, P и H, H ` (A1B1C1) (рис. 7).

Решение. 1. Соедините точки, принадлежащие одной грани.
2. Какую прямую и точку выбираем для построения сечения?
3. Что определяем дальше?
4. Каково взаимное расположение выбранной прямой и линии пересечения граней (рис. 8)?

5. Как построить след секущей плоскости на грани B1C1D1A1, проходящий через точку H?
6. Соедините точки, принадлежащие одной грани.
7. Какую прямую и точку нужно выбрать для построения следа секущей плоскости на грани AA1D1D?
8. Каково взаимное расположение граней BB1C1C и AA1D1D?
9. Каким свойством необходимо воспользоваться для построения следа секущей плоскости на грани AA1D1D?
10. Назовите искомое сечение.

Задача 5. Построить сечение пирамиды SABCD, проходящее через точки M, P и H,
H` (ABC) (рис. 9).

Ответ: см. рисунок 10.

Задание на дом

Задача . Как изменятся построения, если точ-
ка H изменит свое положение? Построить сечения, используя разные варианты (рис. 11).