Интегральная теорема муавра лапласа таблица. Локальная теорема лапласа. Интегральная теорема Лапласа


Метод трапеций является одним из методов численного интегрирования. Он позволяет вычислять определенные интегралы с заранее заданной степенью точности.

Сначала опишем суть метода трапеций и выведем формулу трапеций. Далее запишем оценку абсолютной погрешности метода и подробно разберем решение характерных примеров. В заключении сравним метод трапеций с методом прямоугольников.

Навигация по странице.

Суть метода трапеций.

Поставим перед собой следующую задачу: пусть нам требуется приближенно вычислить определенный интеграл , где подынтегральная функция y=f(x) непрерывна на отрезке .

Разобьем отрезок на n равных интервалов длины h точками . В этом случае шаг разбиения находим как и узлы определяем из равенства .

Рассмотрим подынтегральную функцию на элементарных отрезках .

Возможны четыре случая (на рисунке показаны простейшие из них, к которым все сводится при бесконечном увеличении n ):


На каждом отрезке заменим функцию y=f(x) отрезком прямой, проходящей через точки с координатами и . Изобразим их на рисунке синими линиями:


В качестве приближенного значения интеграла возьмем выражение , то есть, примем .

Давайте выясним, что означает в геометрическом смысле записанное приближенное равенство. Это позволит понять, почему рассматриваемый метод численного интегрирования называется методом трапеций.

Мы знаем, что площадь трапеции находится как произведение полу суммы оснований на высоту. Следовательно, в первом случае площадь криволинейной трапеции приближенно равна площади трапеции с основаниями и высотой h , в последнем случае определенный интеграл приближенно равен площади трапеции с основаниями и высотой h , взятой со знаком минус. Во втором и третьем случаях приближенное значение определенного интеграла равно разности площадей красной и синей областей, изображенных на рисунке ниже.


Таким образом, мы подошли к сути метода трапеций , которая состоит в представлении определенного интеграла в виде суммы интегралов вида на каждом элементарном отрезке и в последующей приближенной замене .

Формула метода трапеций.

В силу пятого свойства определенного интеграла .

Если вместо интегралов подставить их приближенные значения, то получится :

Оценка абсолютной погрешности метода трапеций.

Абсолютная погрешность метода трапеций оценивается как
.

Графическая иллюстрация метода трапеций.

Приведем графическую иллюстрацию метода трапеций :

Примеры приближенного вычисления определенных интегралов методом трапеций.

Разберем на примерах применение метода трапеций при приближенном вычислении определенных интегралов.

В основном встречаются две разновидности заданий:

  • либо вычислить определенный интеграл методом трапеций для данного числа разбиения отрезка n ,
  • либо найти приближенное значение определенного интеграла с требуемой точностью.

Следует заметить, что при заданном n промежуточные вычисления следует проводить с достаточной степенью точности, причем, чем больше n , тем выше должна быть точность вычислений.

Если требуется вычислить определенный интеграл с заданной точностью, к примеру, до 0.01 , то промежуточные вычисления рекомендуем проводить на два-три порядка точнее, то есть, до 0.0001 - 0.00001 . Если указанная точность достигается при больших n , то промежуточные вычисления следует проводить с еще более высокой точностью.

Для примера возьмем определенный интеграл, значение которого мы можем вычислить по формуле Ньютона-Лейбница , чтобы можно было сравнивать этот результат с приближенным значением, полученным по методу трапеций.

Итак, .

Пример.

Вычислить определенный интеграл методом трапеций для n = 10 .

Решение.

Формула метода трапеций имеет вид . То есть, для ее применения нам достаточно вычислить шаг h по формуле , определить узлы и вычислить соответствующие значения подынтегральной функции .

Вычислим шаг разбиения: .

Определяем узлы и вычисляем значения подынтегральной функции в них (будем брать четыре знака после запятой):

Результаты вычислений для удобства представляем в виде таблицы:

Подставляем их в формулу метода трапеций:

Полученное значение совпадает до сотых со значением, вычисленным по формуле Ньютона-Лейбница.

Пример.

Вычислите определенный интеграл методом трапеций с точностью до 0.01 .

Решение.

Что мы имеем из условия: a = 1; b = 2 ; .

В этом случае первым делом находим количество точек разбиения отрезка интегрирования, то есть n . Мы это можем сделать, используя неравенство для оценки абсолютной погрешности . Таким образом, если мы найдем n , для которых будет выполняться неравенство , то формула трапеций при данных n даст нам приближенное значение определенного интеграла с требуемой точностью.

Найдем сначала наибольшее значение модуля второй производной функции на отрезке .

Вторая производная функции является квадратичной параболой , мы знаем из ее свойств, что она положительная и возрастающая на отрезке , поэтому . Как видите, в нашем примере процесс нахождения достаточно прост. В более сложных случаях обращайтесь к разделу . Если же найти очень сложно, то после этого примера мы приведем альтернативный метод действий.

Вернемся к нашему неравенству и подставим в него полученное значение:

Так как n – число натуральное (n - количество элементарных интервалов, на которые разбивается отрезок интегрирования), то можно брать n = 6, 7, 8, ... Возьмем n = 6 . Это позволит нам достичь требуемой точности метода трапеций при минимуме расчетов (хотя для нашего случая при n = 10 производить вычисления вручную удобнее).

Итак, n найдено, теперь действуем как в предыдущем примере.

Вычисляем шаг: .

Находим узлы сетки и значения подынтегральной функции в них:

Занесем в таблицу результаты расчетов:

Подставляем полученные результаты в формулу трапеций:

Вычислим исходный интеграл по формуле Ньютона-Лейбница, чтобы сравнить значения:

Следовательно, требуемая точность достигнута.

Следует отметить, что нахождение числа n из неравенства для оценки абсолютной погрешности является не очень простой процедурой, особенно для подынтегральных функций сложного вида. Поэтому логично прибегнуть к следующему методу.

Приближенное значение определенного интеграла, полученное по методу трапеций для n узлов, будем обозначать .

Выбираем произвольно число n , например n = 10 . Вычисляем по формуле метода трапеций исходный интеграл для n = 10 и для удвоенного числа узлов, то есть, для n = 20 . Находим абсолютную величину разности двух полученных приближенных значений . Если она меньше требуемой точности , то прекращаем вычисления и в качестве приближенного значения определенного интеграла берем значение , предварительно округлив его до требуемого порядка точности. В противном случае удваиваем количество узлов (берем n = 40 ) и повторяем действия.

Как вычислить определенный интеграл
по формуле трапеций и методом Симпсона?

Численные методы – достаточно большой раздел высшей математики и серьезные учебники по данной теме насчитывают сотни страниц. На практике, в контрольных работах традиционно предлагаются для решения некоторые задачи по численным методам, и одной из распространенных задач является – приближенное вычисление определенных интегралов . В этой статье я рассмотрю два метода приближенного вычисления определенного интеграла – метод трапеций и метод Симпсона .

Что нужно знать, чтобы освоить данные методы? Прозвучит забавно, но можно вообще не уметь брать интегралы. И даже вообще не понимать, что такое интегралы. Из технических средств потребуется микрокалькулятор. Да-да, нас ждут рутинные школьные расчёты. А еще лучше – закачайте мой калькулятор-полуавтомат для метода трапеций и метода Симпсона . Калькулятор написан в Экселе и позволит в десятки раз уменьшить время решения и оформления задач. Для экселевских чайников прилагается видеомануал! К слову, первая видеозапись с моим голосом.

Сначала зададимся вопросом, а зачем вообще нужны приближенные вычисления? Вроде бы можно найти первообразную функции и использовать формулу Ньютона-Лейбница, вычислив точное значение определенного интеграла. В качестве ответа на вопрос сразу рассмотрим демонстрационный пример с рисунком.

Вычислить определенный интеграл

Всё было бы хорошо, но в данном примере интеграл не берётся – перед вами неберущийся, так называемый интегральный логарифм . А существует ли вообще этот интеграл? Изобразим на чертеже график подынтегральной функции :

Всё нормально. Подынтегральная функция непрерывна на отрезке и определенный интеграл численно равен заштрихованной площади. Да вот только одна загвоздка – интеграл не берётся. И в подобных случаях на помощь как раз приходят численные методы. При этом задача встречается в двух формулировках:

1) Вычислить определенный интеграл приближенно, округляя результат до определённого знака после запятой . Например, до двух знаков после запятой, до трёх знаков после запятой и т.д. Предположим, получился приближенный ответ 5,347. На самом деле он может быть не совсем верным (в действительности, скажем, более точный ответ 5,343). Нашазадача состоит лишь в том , чтобы округлить результат до трёх знаков после запятой.

2) Вычислить определенный интеграл приближенно, с определённой точностью . Например, вычислить определённый интеграл приближенно с точностью до 0,001. Что это значит? Это значит, мы должны отыскать такое приближенное значение, которое по модулю (в ту или другую сторону) отличается от истины не более чем на 0,001.

Существуют несколько основных методов приближенного вычисления определенного интеграла, который встречается в задачах:

Отрезок интегрирования разбивается на несколько частей и строится ступенчатая фигура, которая по площади близка к искомой площади:

Не судите строго за чертежи, точность не идеальна – они лишь помогают понять суть методов.

Идея аналогична. Отрезок интегрирования разбивается на несколько промежуточных отрезков, и график подынтегральной функции приближается ломаной линией:

Таким образом, наша площадь (синяя штриховка) приближается суммой площадей трапеций (красный цвет). Отсюда и название метода. Легко заметить, что метод трапеций даёт значительно лучшее приближение, чем метод прямоугольников (при одинаковом количестве отрезков разбиения). И, естественно, чем больше более мелких промежуточных отрезков мы рассмотрим, тем будет выше точность. Метод трапеций время от времени встречается в практических заданиях, и в данной статье будет разобрано несколько примеров.

Метод Симпсона (метод парабол) . Это более совершенный способ – график подынтегральной функции приближается не ломаной линией, а маленькими параболками. Сколько промежуточных отрезков – столько и маленьких парабол. Если взять те же три отрезка, то метод Симпсона даст ещё более точное приближение, чем метод прямоугольников или метод трапеций.

Чертеж строить не вижу смысла, поскольку визуально приближение будет накладываться на график функции (ломаная линия предыдущего пункта – и то практически совпала).

Задача на вычисление определенного интеграла по формуле Симпсона – самая популярное задание на практике. И методу парабол будет уделено значительное внимание.

Как вычислить определенный интеграл методом трапеций?

Сначала формула в общем виде. Возможно, она будет не всем и не сразу понятна… да Карлссон с вами – практические примеры всё прояснят! Спокойствие. Только спокойствие.

Рассмотрим определенный интеграл , где – функция, непрерывная на отрезке . Проведём разбиение отрезка на равных отрезков:
. При этом, очевидно: (нижний предел интегрирования) и (верхний предел интегрирования). Точки также называют узлами .

Тогда определенный интеграл можно вычислить приближенно по формуле трапеций :
, где:
шаг ;
– значения подынтегральной функции в точках .

Пример 1

Вычислить приближенно определенный интеграл по формуле трапеций. Результаты округлить до трёх знаков после запятой.

а) Разбив отрезок интегрирования на 3 части.
б) Разбив отрезок интегрирования на 5 частей.

Решение:
а) Специально для чайников я привязал первый пункт к чертежу, который наглядно демонстрировал принцип метода. Если будет трудно, посматривайте на чертёж по ходу комментариев, вот его кусок:

По условию отрезок интегрирования нужно разделить на 3 части, то есть .
Вычислим длину каждого отрезка разбиения: . Параметр , напоминаю, также называют шагом .

Сколько будет точек (узлов разбиения)? Их будет на одну больше , чем количество отрезков:

Ну а общая формула трапеций сокращается до приятных размеров:

Для расчетов можно использовать обычный микрокалькулятор:

Обратите внимание, что, в соответствии с условием задачи, все вычисления следует округлять до 3-го знака после запятой .

Окончательно:

С геометрической точки зрения мы вычислили сумму площадей трёх трапеций (см. рис. выше) .

б) Разобьём отрезок интегрирования на 5 равных частей, то есть . Зачем это нужно? Чтобы Фобос-Грунт не падал в океан – увеличивая количество отрезков, мы увеличиваем точность вычислений.

Если , то формула трапеций принимает следующий вид:

Найдем шаг разбиения:
, то есть, длина каждого промежуточного отрезка равна 0,6.

При чистовом оформлении задачи все вычисления удобно оформлять расчетной таблицей:

В первой строке записываем «счётчик»

Как формируется вторая строка, думаю, всем видно – сначала записываем нижний предел интегрирования , остальные значения получаем, последовательно приплюсовывая шаг .

По какому принципу заполняется нижняя строка, тоже, думаю, практически все поняли. Например, если , то . Что называется, считай, не ленись.

В результате:

Ну что же, уточнение, и серьёзное, действительно есть! Если для 3 отрезков разбиения приближённое значение составило, то для 5 отрезков . Таким образом, с большой долей уверенности можно утверждать, что, по крайне мере .

Пример 2

Вычислить приближенно определенный интеграл по формуле трапеций с точностью до двух знаков после запятой (до 0,01).

Решение: Почти та же задача, но немного в другой формулировке. Принципиальное отличие от Примера 1 состоит в том, что мы не знаем , НА СКОЛЬКО отрезков разбивать отрезок интегрирования, чтобы получить два верных знака после запятой. Иными словами, мы не знаем значение .

Существует специальная формула, позволяющая определить количество отрезков разбиения, чтобы гарантированно достигнуть требуемой точности, но практике она часто трудноприменима. Поэтому выгодно использовать упрощенный подход.

Сначала отрезок интегрирования разбивается на несколько больших отрезков, как правило, на 2-3-4-5. Разобьем отрезок интегрирования, например, на те же 5 частей. Формула уже знакома:

И шаг, естественно, тоже известен:

Но возникает еще один вопрос, до какого разряда округлять результаты ? В условии же ничего не сказано о том, сколько оставлять знаков после запятой. Общая рекомендация такова: к требуемой точности нужно прибавить 2-3 разряда . В данном случае необходимая точность 0,01. Согласно рекомендации, после запятой для верности оставим пять знаков (можно было и четыре):

В результате:
, обозначим приближение через .

После первичного результата количество отрезков удваивают . В данном случае необходимо провести разбиение на 10 отрезков. И когда количество отрезков растёт, то в голову приходит светлая мысль, что тыкать пальцами в микрокалькулятор уже как-то надоело. Поэтому еще раз предлагаю закачать и использовать мой калькулятор-полуавтомат (ссылка в начале урока).

Для формула трапеций приобретает следующий вид:

В бумажной версии запись можно спокойно перенести на следующую строчку.

Вычислим шаг разбиения:

Результаты расчётов сведём в таблицу:


При чистовом оформлении в тетрадь длинную таблицу выгодно превратить в двухэтажную.

В результате:

Теперь вычислим расхождение между приближениями:

Здесь используем знак модуля, поскольку нас интересует абсолютная разность , а не какой результат больше, а какой – меньше.

Что касается дальнейших действий, то лично мне на практике встречалось 2 пути решения:

1) Первый способ – это «сравнение в лоб». Поскольку полученная оценка погрешности больше , чем требуемая точность:, то необходимо ещё раз удвоить количество отрезков разбиения до и вычислить уже . С помощью экселевского калькулятора готовый результат можно получить в считанные секунды: . Теперь снова оцениваем погрешность: . Полученная оценка меньше , чем требуемая точность: , следовательно, вычисления закончены. Осталось округлить последний (наиболее точный) результат до двух знаков после запятой и дать ответ.

2) Другой, более эффективный способ основан на применении так называемого правила Рунге , согласно которому мы ошибаемся в оценке определённого интеграла на самом деле не более чем на . В нашей задаче: , таким образом, надобность в вычислении отпадает. Однако за скорость решения в данном случае пришлось расплатиться точностью: . Тем не менее, такой результат приемлем, поскольку наш «лимит на ошибку» как раз и составляет одну сотую.

Что выбрать? Ориентируйтесь на вашу методичку или предпочтения преподавателя.

Ответ: с точностью до 0,01 ( при использовании правила Рунге) .

Пример 3

Вычислить приближенно определенный интеграл по формуле трапеций с точностью до 0,001.

Перед вами опять неберущийся интеграл (почти интегральный косинус). В образце решения на первом шаге проведено разбиение на 4 отрезка, то есть . Полное решение и примерный образец чистового оформления в конце урока.

Как вычислить определенный интеграл по формуле Симпсона?

Если вы искали на данной страничке только метод Симпсона, то настоятельно рекомендую сначала прочитать начало урока и просмотреть хотя бы первый пример. По той причине, что многие идеи и технические приемы будут схожими с методом трапеций.

И снова, начнём с общей формулы
Рассмотрим определенный интеграл , где – функция, непрерывная на отрезке . Проведём разбиение отрезка на чётное количество равных отрезков. Чётное количество отрезков обозначают через .

На практике отрезков может быть:
два :
четыре :
восемь :
десять :
двадцать :
Другие варианты не припоминаю.

Внимание! Число понимается как ЕДИНОЕ ЧИСЛО. То есть, НЕЛЬЗЯ сокращать, например, на два, получая . Запись лишь обозначает , что количество отрезков чётно . И ни о каких сокращениях речи не идёт

Итак, наше разбиение имеет следующий вид:

Термины аналогичны терминам метода трапеций:
Точки называют узлами .

Формула Симпсона для приближенного вычисления определенного интеграла имеет следующий вид:
, где:
– длина каждого из маленьких отрезков или шаг ;
– значения подынтегральной функции в точках .

Детализируя это нагромождение, разберу формулу подробнее:
– сумма первого и последнего значения подынтегральной функции;
– сумма членов с чётными индексами умножается на 2;
– сумма членов с нечётными индексами умножается на 4.

Пример 4

Вычислить приближенно определенный интеграл по формуле Симпсона с точностью до 0,001. Разбиение начать с двух отрезков

Интеграл, кстати, опять неберущийся.

Решение: Сразу обращаю внимание на тип задания – необходимо вычислить определенный интеграл с определенной точностью . Что это значит, уже комментировалось в начале статьи, а также на конкретных примерах предыдущего параграфа. Как и для метода трапеций, существует формула, которая сразу позволит определить нужное количество отрезков (значение «эн») чтобы гарантированно достичь требуемой точности. Правда, придётся находить четвертую производную и решать экстремальную задачу. Кто понял, о чём я, и оценил объем работы, тот улыбнулся. Однако здесь не до смеха, находить четвертую производную от такой подынтегральной функции будет уже не мегаботан, а клинический психопат. Поэтому на практике практически всегда используется упрощенный метод оценки погрешности.

Начинаем решать. Если у нас два отрезка разбиения , то узлов будет на один больше : . И формула Симпсона принимает весьма компактный вид:

Вычислим шаг разбиения:

Заполним расчетную таблицу:


Еще раз комментирую, как заполняется таблица:

В верхнюю строку записываем «счётчик» индексов

Во второй строке сначала пишем нижний предел интегрирования , а затем последовательно приплюсовываем шаг .

В третью строку заносим значения подынтегральной функции. Например, если , то . Сколько оставлять знаков после запятой? Действительно, в условии опять об этом ничего не сказано. Принцип тот же, что и в методе трапеций, смотрим на требуемую точность: 0,001. И прибавляем дополнительно 2-3 разряда. То есть, округлять нужно до 5-6 знаков после запятой.

В результате:

Первичный результат получен. Теперь удваиваем количество отрезков до четырёх: . Формула Симпсона для данного разбиения принимает следующий вид:

Вычислим шаг разбиения:

Заполним расчетную таблицу:


Таким образом:

Найдём абсолютное значение разности между приближениями:

Правило Рунге для метода Симпсона очень вкусное. Если при использовании метода средних прямоугольников и метода трапеций нам даётся «поблажка» в одну треть, то сейчас – аж в одну пятнадцатую:
, и точность здесь уже не страдает:

Но для полноты картины я приведу и «простецкое» решение, где придётся сделать дополнительный шаг: так как больше требуемой точности: , то необходимо еще раз удвоить количество отрезков: .

Формула Симпсона растёт, как на дрожжах:

Вычислим шаг:

И снова заполним расчетную таблицу:

Таким образом:

Заметьте, что здесь вычисления желательно уже расписать более подробно, поскольку формула Симпсона достаточно громоздка, и если сразу бУхнуть:
, то выглядеть сиё бухло будет как халтура. А при более детальной записи у преподавателя сложится благостное впечатление, что вы добросовестно стирали клавиши микрокалькулятора в течение доброго часа. Детальные вычисления для «тяжелых» случаев присутствуют в моём калькуляторе.

Оцениваем погрешность:

Погрешность меньше требуемой точности: . Осталось взять наиболее точное приближение , округлить его до трёх знаков после запятой и записать:

Ответ : с точностью до 0,001

Пример 5

Вычислить приближенно определенный интеграл по формуле Симпсона с точностью до 0,0001. Разбиение начать с двух отрезков

Это пример для самостоятельного решения. Примерный образец чистового оформления и ответ в конце урока.

В заключительной части урока рассмотрим еще пару распространенных примеров

Пример 6

Вычислить приближенное значение определенного интеграла с помощью формулы Симпсона, разбив отрезок интегрирования на 10 частей. Вычисления проводить с точностью до третьего знака после запятой.

Вычисление интегралов по формулам прямоугольников, трапеций и формуле Симпсона. Оценка погрешностей.

Методические указания по теме 4.1:

Вычисление интегралов по формулам прямоугольников. Оценка погрешности:

Решение многих технических задач сводится к вычислению определенных интегралов, точное выражение которых сложно, требует длительных вычислений и не всегда оправдано практически. Здесь бывает вполне достаточно их приближенного значения. Например, необходимо вычислить площадь, ограниченную линией, уравнение которой неизвестно, осью х и двумя ординатами. В этом случае можно заменить данную линию более простой, для которой известно уравнение. Площадь полученной таким образом криволинейной трапеции принимается за приближенное значение искомого интеграла. Геометрически идея способа вычислений определенного интеграла по формуле прямоугольников состоит в том, что площадь криволинейной трапеции А 1 АВВ 1 заменяется площадью равновеликого прямоугольника А 1 А 2 В 1 В 2 , которая по теореме о среднем равна

Где f(c) --- высота прямоугольника А 1 А 2 В 1 В 2 , представляющая собой значение подынтегральной функции в некоторой промежуточной точке c(a< c

Практически трудно найти такое значение с , при котором (b-a) f (c) в точности равнялось бы . Для получения более точного значения площадь криволинейной трапеции разбивают на n прямоугольников, высоты которых равны y 0 , y 1 , y 2 , …,y n -1 и основания .

Если суммировать площади прямоугольников, которые покрывают площадь криволинейной трапеции с недостатком, функция --- неубывающая, то вместо формулы используют формулу

Если с избытком, то

Значения находят из равенств . Эти формулы называются формулами прямоугольников и дают приближенный результат. С увеличением n результат становится более точным.

Пример 1. Вычислить по формуле прямоугольников

Разделим промежуток интегрирования на 5 частей. Тогда . При помощи калькулятора или таблицы найдем значения подынтегральной функции (с точностью до 4-х знаков после запятой):

По формуле прямоугольников (с недостатком)

С другой стороны по формуле Ньютона-Лейбница

Найдем относительную погрешность вычисления по формуле прямоугольников:

Вычисление интегралов по формулам трапеций. Оценка погрешности:

Геометрический смысл следующего способа приближенного вычисления интегралов состоит в том, что нахождение площади приблизительно равновеликой «прямолинейной» трапеции.

Пусть необходимо вычислить площадь А 1 АmBB 1 криволинейной трапеции, выражаемую формулой .

Заменим дугу AmB хордой AB и вместо площади криволинейной трапеции А 1 АmBB 1 вычислим площадь трапеции А 1 АBB 1 : , где AA 1 и ВВ 1 -- основания трапеции, а A 1 В 1 –ее высота.


Обозначим f(a)=A 1 A,f(b)=B 1 B. высота трапеции A 1 B 1 =b-a, площадь . Следовательно, или

Это так называемая малая формула трапеций .