Матрица матричный метод. Линейные уравнения. Решение систем линейных уравнений матричным методом. Где можно решить систему уравнений матричным методом онлайн

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

где A, B, C, D, E, F - числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

где a и b (a > b ) - длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a , О ) и (- a , О ), а ось ординат - в точках (b , О ) и (- b , О ). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат - малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность - частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a /b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия - эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось - это a = 5 , меньшая полуось - это b = 4 . Получаем каноническое уравнение эллипса:

Точки и , обозначенные зелёным на большей оси, где

называются фокусами .

называется эксцентриситетом эллипса.

Отношение b /a характеризует "сплюснутость" эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

Если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

Если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат - каноническое уравнение эллипса:

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c , нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c , определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если - произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и - расстояния до этой точки от фокусов , то формулы для расстояний - следующие:

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a .

Прямые, определяемые уравнениями

называются директрисами эллипса (на чертеже - красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и - расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Определение. Эллипсом называется геометрическое место точек плоскости, сумма расстояний каждой из которых от двух данных точек этой плоскости, называемых фокусами, есть постоянная величина (при условии, что эта величина больше расстояния между фокусами).

Обозначим фокусы через расстояние между ними - через , а постоянную величину, равную сумме расстояний от каждой точки эллипса до фокусов, через (по условию ).

Построим декартову систему координат так, чтобы фокусы оказались на оси абсцисс, а начало координат совпало с серединой отрезка (рис. 44). Тогда фокусы будут иметь следующие координаты: левый фокус и правый фокус . Выведем уравнение эллипса в выбранной нами системе координат. С этой целью рассмотрим произвольную точку эллипса. По определению эллипса сумма расстояний от этой точки до фокусов равна :

Пользуясь формулой для расстояния между двумя точками, получим следовательно,

Для упрощения этого уравнения запишем его в форме

Возведя затем обе части уравнения в квадрат, получим

или, после очевидных упрощений:

Теперь опять возводим обе части уравнения в квадрат, после чего будем иметь:

или, после тождественных преобразований:

Так как согласно условию в определении эллипса , то - число положительное. Введем обозначение

Тогда уравнение примет следующий вид:

По определению эллипса координаты любой его точки удовлетворяют уравнению (26). Но уравнение (29) является следствием уравнения (26). Следовательно, ему также удовлетворяют координаты любой точки эллипса.

Можно показать, что координаты точек, не лежащих на эллипсе, уравнению (29) не удовлетворяют. Таким образом, уравнение (29) есть уравнение эллипса. Оно называется каноническим уравнением эллипса.

Установим форму эллипса, пользуясь его каноническим уравнением.

Прежде всего обратим внимание на то, что это уравнение содержит только четные степени х и у. Это значит, что если какая-нибудь точка принадлежит эллипсу, то ему принадлежат также точка , симметричная с точкой относительно оси абсцисс, и точка симметричная с точкой относительно оси ординат. Таким образом, эллипс имеет две взаимно перпендикулярные оси симметрии, которые в выбранной нами системе координат совпадают с координатными осями. Оси симметрии эллипса мы в дальнейшем будем называть осями эллипса, а точку их пересечения - центром эллипса. Та ось, на которой расположены фокусы эллипса (в данном случае ось абсцисс), называется фокальной осью.

Определим форму эллипса сначала в I четверти. Для зтого разрешим уравнение (28) относительно у:

Очевидно, что здесь , так как у при принимает мнимые значения. При возрастании от 0 до а у уменьшается от b до 0. Частью эллипса, лежащей в I четверти, будет дуга, ограниченная точками В (0; b) и лежащими на осях координат (рис. 45). Воспользовавшись теперь симметрией эллипса, приходим к заключению, что эллипс имеет форму, изображенную на рис. 45.

Точки пересечения эллипса с осями называются вершинами эллипса. Из симметрии эллипса следует, что, кроме вершин , эллипс имеет еще две вершины (см. рис. 45).

Отрезки и соединяющие противоположные вершины эллипса, а также их длины , называются соответственно большой и малой осями эллипса. Числа а и b называются соответственно большой и малой полуосями эллипса.

Отношение половины расстояния между фокусами к большой полуоси эллипса называется эксцентриситетом эллипса и обозначается обычно буквой :

Так как , то эксцентриситет эллипса меньше единицы: Эксцентриситет характеризует форму эллипса. Действительно, из формулы (28) следует, Отсюда видно, что чем меньше эксцентриситет эллипса, тем меньше его малая полуось b отличается от большой полуоси а, т. е. тем меньше вытянут эллипс (вдоль фокальной оси).

В предельном случае при получится окружность радиуса а: , или . При этом и фокусы эллипса как бы сливаются в одной точке - центре окружности. Эксцентриситет окружности равен нулю:

Связь между эллипсом и окружностью может быть установлена и с другой точки зрения. Покажем, что эллипс с полуосями а и b можно рассматривать как проекцию окружности радиуса а.

Рассмотрим две плоскости Р и Q, образующие между собой такой угол а, для которого (рис. 46). Построим в плоскости Р систему координат , а в плоскости Q - систему Оху с общим началом координат О и общей осью абсцисс, совпадающей с линией пересечения плоскостей. Рассмотрим в плоскости Р окружность

с центром в начале координат и радиусом равным а. Пусть -произвольно выбранная точка окружности, - ее проекция на плоскость Q и - проекция точки М на ось Ох. Покажем, что точка лежит на эллипсе с полуосями а и b.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Матричный метод позволяет находить решения СЛАУ (система линейных алгебраических уравнений) любой сложности. Весь процесс решения СЛАУ сводится к двум основным действиям:

Определение обратной матрицы на основании главной матрицы:

Умножение полученной обратной матрицы на вектор-столбец решений.

Допустим, дано СЛАУ следующего вида:

\[\left\{\begin{matrix} 5x_1 + 2x_2 & = & 7 \\ 2x_1 + x_2 & = & 9 \end{matrix}\right.\]

Начнем решение данного уравнения с выписывания матрицы системы:

Матрица правой части:

Определим обратную матрицу. Найти матрицу 2-го порядка можно следующим образом: 1 - сама матрица должна быть невырожденной; 2 - ее элементы, которые находятся на главной диагонали, меняем местами, а у элементов побочной диагонали выполняем смену знака на противоположный, после чего выполняем деление полученных элементов на определитель матрицы. Получим:

\[\begin{pmatrix} 7 \\ 9 \end{pmatrix}=\begin{pmatrix} -11 \\ 31 \end{pmatrix}\Rightarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =\begin{pmatrix} -11 \\ 31 \end{pmatrix} \]

2 матрицы считаются равными, если равны их соответствующие элементы. В итоге имеем следующий ответ решения СЛАУ:

Где можно решить систему уравнений матричным методом онлайн?

Решить систему уравнений вы можете на нашем сайте . Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте.

В первой части мы рассмотрели немного теоретического материала, метод подстановки, а также метод почленного сложения уравнений системы. Всем, кто зашел на сайт через эту страницу рекомендую ознакомиться с первой частью. Возможно, некоторым посетителям покажется материал слишком простым, но по ходу решения систем линейных уравнений я сделал ряд очень важных замечаний и выводов, касающихся решения математических задач в целом.

А сейчас мы разберём правило Крамера, а также решение системы линейных уравнений с помощью обратной матрицы (матричный метод). Все материалы изложены просто, подробно и понятно, практически все читатели смогут научиться решать системы вышеуказанными способами.

Сначала мы подробно рассмотрим правило Крамера для системы двух линейных уравнений с двумя неизвестными. Зачем? – Ведь простейшую систему можно решить школьным методом, методом почленного сложения!

Дело в том, что пусть иногда, но встречается такое задание – решить систему двух линейных уравнений с двумя неизвестными по формулам Крамера. Во-вторых, более простой пример поможет понять, как использовать правило Крамера для более сложного случая – системы трех уравнений с тремя неизвестными.

Кроме того, существуют системы линейных уравнений с двумя переменными, которые целесообразно решать именно по правилу Крамера!

Рассмотрим систему уравнений

На первом шаге вычислим определитель , его называют главным определителем системы .

метод Гаусса .

Если , то система имеет единственное решение, и для нахождения корней мы должны вычислить еще два определителя:
и

На практике вышеуказанные определители также могут обозначаться латинской буквой .

Корни уравнения находим по формулам:
,

Пример 7

Решить систему линейных уравнений

Решение : Мы видим, что коэффициенты уравнения достаточно велики, в правой части присутствуют десятичные дроби с запятой. Запятая – довольно редкий гость в практических заданиях по математике, эту систему я взял из эконометрической задачи.

Как решить такую систему? Можно попытаться выразить одну переменную через другую, но в этом случае наверняка получатся страшные навороченные дроби, с которыми крайне неудобно работать, да и оформление решения будет выглядеть просто ужасно. Можно умножить второе уравнение на 6 и провести почленное вычитание, но и здесь возникнут те же самые дроби.

Что делать? В подобных случаях и приходят на помощь формулы Крамера.

;

;

Ответ : ,

Оба корня обладают бесконечными хвостами, и найдены приближенно, что вполне приемлемо (и даже обыденно) для задач эконометрики.

Комментарии здесь не нужны, поскольку задание решается по готовым формулам, однако, есть один нюанс. Когда используете данный метод, обязательным фрагментом оформления задания является следующий фрагмент: «, значит, система имеет единственное решение» . В противном случае рецензент может Вас наказать за неуважение к теореме Крамера.

Совсем не лишней будет проверка, которую удобно провести на калькуляторе: подставляем приближенные значения в левую часть каждого уравнения системы. В результате с небольшой погрешностью должны получиться числа, которые находятся в правых частях.

Пример 8

Ответ представить в обыкновенных неправильных дробях. Сделать проверку.

Это пример для самостоятельного решения (пример чистового оформления и ответ в конце урока).

Переходим к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными:

Находим главный определитель системы:

Если , то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет, нужно использовать метод Гаусса .

Если , то система имеет единственное решение и для нахождения корней мы должны вычислить еще три определителя:
, ,

И, наконец, ответ рассчитывается по формулам:

Как видите, случай «три на три» принципиально ничем не отличается от случая «два на два», столбец свободных членов последовательно «прогуливается» слева направо по столбцам главного определителя.

Пример 9

Решить систему по формулам Крамера.

Решение : Решим систему по формулам Крамера.

, значит, система имеет единственное решение.

Ответ : .

Собственно, здесь опять комментировать особо нечего, ввиду того, что решение проходит по готовым формулам. Но есть пара замечаний.

Бывает так, что в результате вычислений получаются «плохие» несократимые дроби, например: .
Я рекомендую следующий алгоритм «лечения». Если под рукой нет компьютера, поступаем так:

1) Возможно, допущена ошибка в вычислениях. Как только Вы столкнулись с «плохой» дробью, сразу необходимо проверить, правильно ли переписано условие . Если условие переписано без ошибок, то нужно пересчитать определители, используя разложение по другой строке (столбцу).

2) Если в результате проверки ошибок не выявлено, то вероятнее всего, допущена опечатка в условии задания. В этом случае спокойно и ВНИМАТЕЛЬНО прорешиваем задание до конца, а затем обязательно делаем проверку и оформляем ее на чистовике после решения. Конечно, проверка дробного ответа – занятие неприятное, но зато будет обезоруживающий аргумент для преподавателя, который ну очень любит ставить минус за всякую бяку вроде . Как управляться с дробями, подробно расписано в ответе для Примера 8.

Если под рукой есть компьютер, то для проверки используйте автоматизированную программу, которую можно бесплатно скачать в самом начале урока. Кстати, выгоднее всего сразу воспользоваться программой (еще до начала решения), Вы сразу будете видеть промежуточный шаг, на котором допустили ошибку! Этот же калькулятор автоматически рассчитывает решение системы матричным методом.

Замечание второе. Время от времени встречаются системы в уравнениях которых отсутствуют некоторые переменные, например:

Здесь в первом уравнении отсутствует переменная , во втором – переменная . В таких случаях очень важно правильно и ВНИМАТЕЛЬНО записать главный определитель:
– на месте отсутствующих переменных ставятся нули.
Кстати определители с нулями рационально раскрывать по той строке (столбцу), в которой находится ноль, так как вычислений получается заметно меньше.

Пример 10

Решить систему по формулам Крамера.

Это пример для самостоятельного решения (образец чистового оформления и ответ в конце урока).

Для случая системы 4 уравнений с 4 неизвестными формулы Крамера записываются по аналогичным принципам. Живой пример можно посмотреть на уроке Свойства определителя. Понижение порядка определителя – пять определителей 4-го порядка вполне решабельны. Хотя задача уже весьма напоминает ботинок профессора на груди у студента-счастливчика.

Решение системы с помощью обратной матрицы

Метод обратной матрицы – это, по существу, частный случай матричного уравнения (см. Пример №3 указанного урока).

Для изучения данного параграфа необходимо уметь раскрывать определители, находить обратную матрицу и выполнять матричное умножение. Соответствующие ссылки будут даны по ходу объяснений.

Пример 11

Решить систему с матричным методом

Решение : Запишем систему в матричной форме:
, где

Пожалуйста, посмотрите на систему уравнений и на матрицы. По какому принципу записываем элементы в матрицы, думаю, всем понятно. Единственный комментарий: если бы в уравнениях отсутствовали некоторые переменные, то на соответствующих местах в матрице нужно было бы поставить нули.

Обратную матрицу найдем по формуле:
, где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

Сначала разбираемся с определителем:

Здесь определитель раскрыт по первой строке.

Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключения неизвестных (методом Гаусса) .

Теперь нужно вычислить 9 миноров и записать их в матрицу миноров

Справка: Полезно знать смысл двойных подстрочных индексов в линейной алгебре. Первая цифра – это номер строки, в которой находится данный элемент. Вторая цифра – это номер столбца, в котором находится данный элемент:

То есть, двойной подстрочный индекс указывает, что элемент находится в первой строке, третьем столбце, а, например, элемент находится в 3 строке, 2 столбце