Фракталы в реальном мире объект исследования. Хаос и порядок: фрактальный мир. Фракталы и мир вокруг нас

Мартынов Даниил

Руководитель проекта:

Мартынова Людмила Юрьевна

Учреждение:

МОУ "Криушинская СОШ"

В процессе исследовательской работы по математике "Фракталы вокруг нас" учеником 8 класса была поставлена цель показать, что математика не бездушный предмет, она может выражать духовный мир человека и общества, путём создания своего собственного геометрического фрактала «Звезда ».


В исследовательской работе по математике "Фракталы вокруг нас" автор строит геометрический фрактал "Звезда" в рамках проекта и дает рекомендации по практическому применению созданного фрактала, пытается найти связь между фракталами и треугольниками Паскаля в процессе математического исследования.

В предложенном проекте по математике "Фракталы вокруг нас" автор приходит к умозаключению, что новые идеи фрактальной геометрии помогут изучить многие загадочные явления окружающей природы. Методы обработки изображений и распознавания образов, использующие новые понятия, дают возможность исследователям применить этот математический аппарат для количественного описания огромного количества природных объектов и структур.

Введение
1. Обоснование и построение геометрического фрактала "Звезда".
2. Нахождение связи между фракталами и треугольниками Паскаля.
3. Рекомендации по практическому применению созданного фрактала.
Заключение

Введение

Многие из моих одноклассников считают, что математика – точная и скучная наука, задачи, уравнения, графики, формулы…. Что здесь может быть интересного? Геометрия 21 века. Холодная, сложная, не интересная…


"Почему ее так называют? Одна из причин заключается в ее неспособности описать форму облака, горы, дерева или берега моря. Облака - это не сферы, горы - не конусы, линии берега - это не окружности, и кора не является гладкой, и молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности" Бенуа Мандельброт.

Своей исследовательской работой я постарался опровергнуть выше сказанное. Это стало возможно после открытия фракталов - самоподобных фигур, обладающих рядом интересных свойств, которые и позволили сравнивать фракталы с объектами природы.

Гипотеза – «Всё, что существует в реальном мире, является фракталом ».

Цель - показать, что математика не бездушный предмет, она может выражать духовный мир человека и общества, путём создания своего собственного геометрического фрактала «Звезда ».

Объект исследования - фракталы в математике и в реальном мире.

  1. Проанализировать и проработать литературу по теме исследования.
  2. Рассмотреть и изучить различные виды фракталов.
  3. Установить взаимосвязь между треугольником Паскаля, литературными произведениями.
  4. Придумать и создать собственный фрактал, составить программу для построения графического образа геометрического фрактала «Звезда ».
  5. Рассмотреть возможности практического применения созданного фрактала.

Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия.

Структура исследовательской работы включает в себя введение, две главы, заключение, список использованной литературы, приложения.

Во введении обоснована актуальность и новизна темы исследования, определены проблема, предмет, цель, задачи, этапы работы, теоретическая и практическая значимость работы.

В первой главе раскрывается вопрос об истории возникновения понятия фрактала, классификация фракталов, применение фракталов.

Во второй главе исследуется и доказывается, что созданная нами геометрическая фигура «Звезда » является фракталом, изменяя параметры созданного фрактала, мы получили целую галерею прекрасных орнаментов, которые могут быть использованы для практического применения: в производстве тканей, отделочных материалов, в валеологии.

Ставропольская краевая открытая научная конференция школьников

Секция: математика

Название работы: Исследование особенностей фрактальных моделей для практического применения

9614524388, vkel -72@ mail . ru

Место выполнения работы : ст Григорополисская

МОУ СОШ №2, 8 класс.

Научный руководитель: Кузнецова Елена

Ивановна, учитель математики и информатики

МОУ СОШ № 2

ст. Григорополисская, 2018

Введение______________________________________________________________3-4стр.

Глава 1.История возникновения фракталов.__________________________________5-6стр.

Глава 2. Классификация фракталов._______________________________________6-10стр.

Геометрические фракталы

Алгебраические фракталы

Стохастические фракталы

Глава 3."Фрактальная геометрия природы"_________________________________11-13стр.

Глава 4. Применение фракталов__________________________________________13-15стр.

Глава 5 Практические работы____________________________________________16-24стр.

Заключение____________________________________________________________25.стр

Список литературы и интернет ресурсов____________________________________26 стр.

Введение

Математика, если на нее правильно посмотреть, отражает не только истину, но и несравненную красоту.

Бертранд Рассел

Слово “фрактал” - это что-то, о чем много людей говорит в наши дни, от ученых до учеников средней школы. Оно появляется на обложках многих учебников математики, научных журналов и коробках с компьютерным программным обеспечением. Цветные изображения фракталов сегодня можно найти везде: от открыток, футболок до картинок на рабочем столе персонального компьютера. Итак, что это за цветные формы, которые мы видим вокруг?

Математика – древнейшая наука. Большинству людей казалось, что геометрия в природе ограничивается такими простыми фигурами, как линия, круг, многоугольник, сфера и т.д. Как оказалось многие природные системы настолько сложны, что использование только знакомых объектов обычной геометрии для их моделирования представляется безнадежным. Как, к примеру, построить модель горного хребта или кроны дерева в терминах геометрии? Как описать то многообразие биологических разнообразий, которое мы наблюдаем в мире растений и животных? Как представить всю сложность системы кровообращения, состоящей из множества капилляров и сосудов и доставляющей кровь к каждой клеточке человеческого тела? Представить строение легких и почек, напоминающие по структуре деревья с ветвистой кроной?

Фракталы - подходящие средства для исследования поставленных вопросов. Нередко то, что мы видим в природе, интригует нас бесконечным повторением одного и того же узора, увеличенного или уменьшенного во сколько-то раз. Например, у дерева есть ветви. На этих ветвях есть ветки поменьше и т.д. Теоретически, элемент «разветвление» повторяется бесконечно много раз, становясь все меньше и меньше. То же самое можно заметить, разглядывая фотографию горного рельефа. Попробуйте немного приблизить изображение горной гряды --- вы снова увидите горы. Так проявляется характерное для фракталов свойство самоподобия.

Для многих хаологов (ученых изучающих фракталы и хаос) – это не просто новая область познания, которая объединяет математику, теоретическую физику, искусство и компьютерные технологии - это революция. Это открытие нового типа геометрии, той геометрии, которая описывает мир вокруг нас и которую можно увидеть не только в учебниках, но и в природе и везде в безграничной вселенной .

В своей работе я тоже решил «прикоснуться» к миру прекрасного и определил для себя…

Цель работы : создание объектов, образы которых весьма похожи на природные.

Методы исследования : сравнительный анализ, синтез, моделирование.

Задачи :

    знакомство с понятием, историей возникновения и исследованиями Б.Мандельброта, Г. Коха, В. Серпинского и др.;

    знакомство с различными видами фрактальных множеств;

    изучение научно-популярной литературы по данному вопросу, знакомство с

научными гипотезами;

    нахождение подтверждения теории фрактальности окружающего мира;

    изучение применения фракталов в других науках и на практике;

    проведение эксперимента по созданию собственных фрактальных изображений.

Основополагающий вопрос работы:

Показать, что математика не сухой, бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом.

Предмет исследования : Фрактальная геометрия.

Объект исследования : фракталы в математике и в реальном мире.

Гипотеза : Все, что существует в реальном мире, является фракталом.

Методы исследования : аналитический, поисковый.

Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия.

Ожидаемые результаты: В ходе работы, я смогу расширить свои знания в области математики, увидеть красоту фрактальной геометрии, начать работу по созданию своих фракталов.

Итогом работы будет создание компьютерной презентации, бюллетеня и буклета.

Глава 1.История возникновения

Бенуа Мандельброт

Понятие «фрактал» придумал Бенуа Мандельброт. Слово происходит от латинского «fractus», означающего «сломанный, разбитый».

Фрактал (лат. fractus - дробленый, сломанный, разбитый) - термин, означающий сложную геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком.

Для математических объектов, к которым оно относится, характерны чрезвычайно интересные свойства. В обычной геометрии линия имеет одно измерение, поверхность - два измерения, а пространственная фигура трехмерна. Фракталы же - это не линии и не поверхности, а, если можно это себе представить, нечто среднее. С ростом размеров возрастает и объем фрактала, но его размерность (показатель степени) - величина не целая, а дробная, а потому граница фрактальной фигуры не линия: при большом увеличении становится видно, что она размыта и состоит из спиралей и завитков, повторяющих в малом масштабе саму фигуру. Такая геометрическая регулярность называется масштабной инвариантностью или самоподобием. Она-то и определяет дробную размерность фрактальных фигур.

Рекурсивная (или фрактальная) геометрия идет на смену Евклидовой. Новая наука способна описать истинную природу тел и явлений. Евклидова геометрия имела дело только с искусственными, воображаемыми объектами, принадлежащими трем измерениям. В реальность их способно превратить только четвертое измерение.

В основном фракталы классифицируют по трём группам:

    Алгебраические фракталы

    Стохастические фракталы

    Геометрические фракталы

Рассмотрим подробнее каждую из них.

Глава 2. Классификация фракталов. Геометрические фракталы

Бенуа Мандельброт предложил модель фрактала, которая уже стала классической и часто используется для демонстрации, как типичного примера самого фрактала, так и для демонстрации красоты фракталов, которая также привлекает исследователей, художников, просто интересующихся людей.

Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется "затравка" - аксиома - набор отрезков, на основании которых будет строиться фрактал. Далее к этой "затравке" применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем (по крайней мере, в уме) бесконечное количество преобразований - получим геометрический фрактал.

Фракталы этого класса самые наглядные, потому что в них сразу видна самоподобность при любых масштабах наблюдения. В двухмерном случае такие фракталы можно получить, задав некоторую ломаную, называемую генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры (а, точнее, при переходе к пределу) получается фрактальная кривая. При видимой сложности полученной кривой, её общий вид задается только формой генератора. Примерами таких кривых служат: кривая Коха (Рис.7), кривая Пeано (Рис.8), кривая Минковского.

Исследователь М.Броун зарисовал траекторию движения взвешенных частиц в воде и объяснил это явление так: беспорядочно движущиеся атомы жидкости ударяются о взвешенные частицы и тем самым приводят их в движение. После такого объяснения броуновского движения перед учеными встала задача найти такую кривую, которая бы наилучшим образом показывала движение броуновских частиц. Для этого кривая должна была отвечать следующим свойствам: не иметь касательной ни в одной точке. Математик Кох предложил одну такую кривую.

Кривая Коха является типичным геометрическим фракталом. Процесс её построения выглядит следующим образом: берём единичный отрезок, разделяем на три равные части и заменяем средний интервал равносторонним треугольником без этого сегмента. В результате образуется ломаная, состоящая из четырех звеньев длины 1/3. На следующем шаге повторяем операцию для каждого из четырёх получившихся звеньев и т. д…

Предельная кривая и есть кривая Коха.


Снежинка Коха. Выполнив аналогичные преобразование на сторонах равностороннего треугольника можно получить фрактальное изображение снежинки Коха.

Т
акже ещё одним несложным представителем геометрического фрактала является квадрат Серпинского. Строится он довольно таки просто: Квадрат делится прямыми, параллельными его сторонам, на 9 равных квадратов. Из квадрата удаляется центральный квадрат. Получается множество, состоящее из 8 оставшихся квадратов "первого ранга". Поступая точно так же с каждым из квадратов первого ранга, получим множесто, состоящее из 64 квадратов второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность или квадрат Серпинского.

Алгебраические фракталы

Это самая крупная группа фракталов. Алгебраические фракталы получили свое название за то, что их строят, используя простые алгебраические формулы.

Получают их с помощью нелинейных процессов в n -мерных пространствах. Известно, что нелинейные динамические системы обладают несколькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные структуры.

В качестве примера рассмотрим множество Мандельброта. Строят его с помощью комплексных чисел.

Участок границы множества Мандельброта, увеличенный в 200 раз.

Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки, имеющие черный цвет). Точки, принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки, лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

П



ример другого алгебраического фрактала – множество Жюлиа. Существует 2 разновидности этого фрактала. Удивительно, но множества Жюлиа образуются по той же самой формуле, что и множество Мандельброта. Множество Жюлиа было изобретено французским математиком Гастоном Жюлиа, по имени которого и было названо множество.

И
нтересный факт
, некоторые алгебраические фракталы поразительным образом напоминают изображения животных, растений и других биологических объектов, вследствие чего получили название биоморфов.

Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д.

Типичным представителем этой группы фракталов является «плазма».

Д

ля ее построения берется прямоугольник и для каждого его угла определяется цвет. Далее находится центральная точка прямоугольника и раскрашивается в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более "рваным" будет рисунок. Если посмотреть на этот фрактал в разрезе то мы увидим этот фрактал объемный, и имеет «шероховатость», как раз из-за этой «шероховатости» есть очень важное применение этого фрактала.

Допустим нужно описать форму горы. Обычные фигуры из Евклидовой геометрии тут не помогут, ведь они не учитывают рельеф поверхности. Но при совмещении обычной геометрии с фрактальной можно получить ту самую «шероховатость» горы.

Теперь поговорим о геометрических фракталах. .

Глава 3 "Фрактальная геометрия природы"

" Почему геометрию часто называют "холодной" и "сухой"? Одна из причин заключается в ее неспособности описать форму облака, горы, береговой линии или дерева". (Бенуа Мандельброт "Фрактальная геометрия природы").

Красота фракталов двояка: она услаждает глаз, о чем свидетельствует хотя бы обошедшая весь мир выставка фрактальных изображений, организованная группой бременских математиков под руководством Пайтгена и Рихтера. Позднее экспонаты этой грандиозной выставки были запечатлены в иллюстрациях к книге тех же авторов "Красота фракталов".

Что же касается соответствия реальному миру, то фрактальная геометрия описывает весьма широкий класс природных процессов и явлений, и поэтому мы можем вслед за Б.Мандельбротом с полным правом говорить о фрактальной геометрии природы. Новые - фрактальные объекты обладают необычными свойствами. Длины, площади и объемы одних фракталов равны нулю, других - обращаются в бесконечность.

Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. И вот их примеры:


Морские раковины


Молнии восхищают своей красотой. Фракталы, созданные молнией не произвольны и не регулярны


Фрактальная форма подвида цветной капусты (Brassica cauliflora). Это особый вид является особенно симметричным фракталом.

Папоротник так же является хорошим примером фрактала среди флоры.


Павлины всем известны своим красочным опереньем, в котором спрятаны сплошные фракталы.


Лёд, морозные узоры на окнах это тоже фракталы


О
т увеличенного изображения листочка , до ветвей дерева - во всём можно обнаружить фракталы

Фракталы есть везде и всюду в окружающей нас природе. Вся Вселенная построена по удивительно гармоничным законам с математической точностью. Разве можно после этого думать, что наша планета это случайное сцепление частиц? Едва ли.

Глава 4. Применение фракталов

Фракталы находят все большее и большее применение в науке. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Вот несколько примеров:

О
дни из наиболее мощных приложений фракталов лежат в компьютерной графике . Это фрактальное сжатие изображений.

В механике и физике фракталы используются благодаря уникальному свойству повторять очертания многих объектов природы. Фракталы позволяют приближать деревья, горные поверхности и трещины с более высокой точностью, чем приближения наборами отрезков или многоугольников (при том же объеме хранимых данных).

Т
акже фрактальную геометрию используют для проектировании антенных устройств . Впервые это было применено американским инженером Натаном Коэном, который жил тогда в центре Бостона, где была запрещена установка на зданиях внешних антенн. Также существуют множество гипотез по поводу применения фракталов – например, лимфатическая и кровеносная системы, лёгкие и многое другое тоже имеют фрактальные свойства.

Глава 5. Практические работы.

Сначала остановимся на фракталах «Ожерелье», «Победа» и «Квадрат».

Первое – «Ожерелье» (рис. 7). Инициатором данного фрактала является окружность. Эта окружность состоит из определенного числа таких же окружностей, но меньших размеров, а сама же она является одной из нескольких окружностей, представляющих собой такую же, но больших размеров. Так процесс образования бесконечен и его можно вести как в ту, так и в обратную сторону.

Второй фрактал – это «Победа» (рис.8). Такое название он получил потому, что внешне напоминает латинскую букву “V ”, то есть “victory ”-победа. Этот фрактал состоит из определенного числа маленьких “v ”, составляющих одну большую “V ”, причем в левой половине, которой маленькие ставятся так, чтобы их левые половины составляли одну прямую, правая часть строится так же. Каждая из этих “v ” строится таким же образом и продолжается это до бесконечности.

Третий фрактал – это «Квадрат» (рис. 9) . Каждая из его сторон состоит из одного ряда ячеек, по форме представляющих квадраты, стороны которых также представляют ряды ячеек и т.д.

Фрактал «Роза» (рис. 10), в силу внешнего сходства с данным цветком. В каждую окружность вписываются правильные шестиугольник, сторона которого равна радиусу описанной около него окружности.

Далее обратимся к правильному пятиугольнику, в котором проведём его диагонали. Затем в получившемся в при пересечении соответствующих отрезков пятиугольнике снова проведём диагонали. Продолжим данный процесс до бесконечности и получим фрактал «Пентаграмма» (рис. 12).

Эксперимент № 1 «Дерево»

Теперь, когда я понял что такое фрактал и как его строить, я попробовал создать свои собственные фрактальные изображения.

Для начала я создал фон для нашего будущего фрактала с разрешением 600 на 600. Дальше я нарисовал на этом фоне 3 линии - основу нашего будущего фрактала.


Итак, у меня получился полноценный фрактал! Основой этого фрактала является первые три линии, о которых я упоминал в начале исследовательской работы.

Фрактальное свойство - это мини ёлочки по бокам главной ёлки, у маленьких ёлок тоже есть свои маленькие ёлки и так до бесконечности. В этот раз нарисуем произвольные линии – основу нашего будущего фрактала.

П
осле большего количества повторений получается вот такая симпатичная ёлочка!

Эксперимент № 2

П
остроение фракталов методом рекурсии в среде PascalABC
.

Дерево Пифагора - разновидность фрактала, основанная на фигуре, известной как «Пифагоровы штаны». Если в классическом дереве Пифагора угол равен 45 градусам, то также можно построить и обобщённое дерево Пифагора при использовании других углов. Такое дерево часто называют обдуваемое ветром дерево Пифагора.

Если изображать только отрезки, соединяющие каким-либо образом выбранные "центры" треугольников, то получается обнаженное дерево Пифагора. Объединив описанные выше процедуры в одной программе, я получил фрактальный пейзаж.

Заключение

Данная работа является введением в мир фракталов. Я рассмотрел только самую малую часть того, какие бывают фракталы, на основе каких принципов они строятся.

Фрактальная графика - это не просто множество самоповторяющихся изображений, это модель структуры и принципа любого сущего. Вся наша жизнь представлена фракталами. Вся окружающая нас природа состоит из них. Нельзя не отметить широкое применение фракталов в компьютерных играх, с помощью фракталов создаются множество спецэффектов, различных сказочных и невероятных картинок и т.д. Также с помощью фрактальной геометрии рисуются деревья, облака, берега и вся другая природа. Фрактальная графика необходима везде, и развитие "фрактальных технологий" - это одна из немаловажных задач на сегодняшний день.

В будущем я планирую научиться строить алгебраические фракталы, когда более подробно изучу комплексные числа. Также хочу попробовать построить свои фрактальные изображение в языке программирования Паскаль с помощью циклов.

Следует отметить применение фракталов в компьютерных технологиях, помимо просто построения красивых изображений на экране компьютера. Фракталы в компьютерных технологиях применяются в следующих областях:

1. Сжатие изображений и информации

2. Сокрытие информации на изображении, в звуке,…

3. Шифрование данных с помощью фрактальных алгоритмов

4. Создание фрактальной музыки

5. Моделирование систем

В моей работе приведены далеко не все области человеческих знаний, где нашла свое применение теория фракталов. Хочу только сказать, что со времени возникновения теории прошло не более трети века, но за это время фракталы для многих исследователей стали внезапным ярким светом в ночи, которые озарил неведомые доселе факты и закономерности в конкретных областях данных. С помощью теории фракталов стали объяснять эволюцию галактик и развитие клетки, возникновение гор и образование облаков. При подготовке данной работы нам было очень интересно находить применения ТЕОРИИ на ПРАКТИКЕ. Потому что очень часто возникает такое ощущение, что теоретические знания стоят в стороне от жизненной реальности.

Фрактальная наука еще очень молода, и ей предстоит большое будущее. Красота фракталов далеко не исчерпана и еще подарит нам немало шедевров - тех, которые услаждают глаз, и тех, которые доставляют истинное наслаждение разуму.

10. Список литературы

    Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. РХД 2001 г.

    Витолин Д. Применение фракталов в машинной графике. // Computerworld-Россия.-1995

    Мандельброт Б. Самоаффинные фрактальные множества, «Фракталы в физике». М.: Мир 1988 г.

    Мандельброт Б. Фрактальная геометрия природы. - М.: «Институт компьютерных исследований», 2002.

    Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 1999 г.

    Пайтген Х.-О., Рихтер П. Х. Красота фракталов. - М.: «Мир», 1993.

Интернет ресурсы

http://www.ghcube.com/fractals/determin.html

http://fractals.nsu.ru/fractals.chat.ru/

http://fractals.nsu.ru/animations.htm

http://www.cootey.com/fractals/index.html

http://fraktals.ucoz.ru/publ

http://sakva .narod .ru

http://rusnauka.narod.ru/lib/author/kosinov_n/12/

http://www.cnam.fr/fractals/

http://www.softlab.ntua.gr/mandel/

http://subscribe.ru/archive/job.education.maths/201005/06210524.html

Приложение

рис. 7.Фрактал «Ожерелье» Рис.8. Фрактал «Победа»


Рис.9.Фрактал «Квадрат» Рис. 10. Фрактал «Роза»


Рис. 12. Фрактал «Пентаграмма» фрактал «Черная дыра»


ИССЛЕДОВАНИЕ МИРА ФРАКТАЛОВ

Васильева Марина Владимировна

студент 3 курса, факультет информатики СГАУ им. академика С.П. Королева, РФ, г. Самара

Тишин Владимир Викторович

научный руководитель, доцент, кафедра прикладной математики СГАУ

им. академика С.П. Королева, РФ, г. Самара

Введение

Мир фракталов - это удивительный, огромный и многообразный мир. Он очаровывает, покоряет, однако иногда в нем трудно разобраться. Фрактальные рисунки - это пик вдохновения мастера на пути к совершенному единству математики, информатики и искусства. Недавно геометрические модели природных объектов изображались с помощью комбинаций простых фигур, таких как прямые, треугольники, окружности, сферы, многогранники. Но с помощью набора этих известных фигур нелегко описать более сложные природные объекты, например, пористые материалы, формы облаков, кроны деревьев. Новые компьютерные средства, без которых не может обойтись современная наука, выводят математику на чрезвычайно высокий уровень. Когда изучаешь фракталы, понимаешь, что весьма затруднительно провести грань между математикой и информатикой, потому что они тесно переплелись, стремясь открыть неповторимые, уникальные модели. Фракталы приближают нас к пониманию некоторых природных процессов и явлений. Поэтому тема фракталов меня заинтересовала.

Передо мной возникла проблема: как построить фрактал, используя математические формулы.

Гипотеза: если изучить закономерности построения фракталов, то их можно смоделировать.

Методы исследования: анализ, синтез, моделирование.

Цель: построить фракталы с помощью компьютерных технологий.

Задачи: исследовать фракталы; изучить историю возникновения и применения фракталов.

Актуальность: я считаю - за фракталами будущее, они лучше передают наш изменчивый и сложный мир. Фракталы помогают изучить различные процессы и явления.

Результат исследования: разработка алгоритма построения фракталов.

Теоретическая и практическая значимость: использование алгоритма построения фракталов для изучения их свойств.

Понятие «фрактал»

Понятия «фрактал» и «фрактальная геометрия» появились в 70-80-х годах XX века. Они устойчиво закрепились в употреблении математиков и программистов. Слово «фрактал», что в переводе с латинского означает разбитый, поделённый на части, было предложено Бенуа Мандельбротом, американским математиком, в 1975 году, с целью обозначения нерегулярных самоподобных структур. Мандельброт дал такое определение: «фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому». Следует отметить, что свойство самоподобности отражает главную особенность природных объектов.

С точки зрения математики, фрактал - это, в первую очередь, множество дробной размерности. Известно, что размерность отрезка равна 1, квадрата - 2, куба и параллелепипеда - 3. Дробная размерность - это основное свойство фракталов.

С выходом книги Мандельброта «Фрактальная геометрия природы» в 1977 году связывают рождение фрактальной геометрии. В ней применены научные результаты учёных, среди них Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф, работавших в период 1875-1925 гг. в той же области. И только в наше время удалось объединить в единую систему эти работы.

Фрактальная геометрия является революцией в математике и математическом описании природы. Сам Бенуа Мандельброт, первооткрыватель фрактальной геометрии, пишет об этом так: «Облака - это не сферы, горы - это не конусы, линии берега - это не окружности, и кора не является гладкой, и молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах бесконечно».

Рассматривая фрактальные объекты в различном масштабе, можно легко обнаружить одни и те же основные элементы. Закономерности, которые повторяются, определяют дробную размерность необычной геометрической фигуры.

Классификация фракталов

Удобно прибегнуть к их общепринятой классификации, чтобы представить все многообразие фракталов. Фракталы делятся на геометрические, алгебраические и стохастические.

К геометрическим фракталам относятся: кривая Коха, кривая дракона, кривая Леви, кривая Минковского, треугольник Серпинского, ковер Серпинского, множество Кантора и дерево Пифагора.

Такого класса фракталы самые наглядные, так как в них сразу видна самоподобность. В двухмерном случае их можно получить с помощью ломаной, которая называется генератором, в трехмерном случае - поверхности. Каждый из отрезков, составляющих ломаную, за один шаг алгоритма, заменяется на ломаную-генератор, в соответствующем масштабе. Таким образом, получается фрактальная кривая в результате бесконечного повторения этой процедуры. При видимой сложности полученной кривой, её общий вид задается только формой генератора.

Алгебраические фракталы: множество Мандельброта, множество Жюлиа, бассейны Ньютона, биоморфы.

Алгебраические фракталы являются самыми многочисленными. Для построения алгебраических фракталов используются итерации нелинейных отображений, которые задаются простыми алгебраическими формулами. Двухмерные процессы считаются наиболее изученными. Следует отметить, что нелинейные динамические системы имеют несколько устойчивых состояний. От начального состояния зависит то состояние, в котором оказалась динамическая система после некоторого числа итераций. Возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры стала для математиков неожиданностью.

К стохастическим фракталам относятся плазма и рандомизированный фрактал.

Термин «стохастичность» происходит от греческого слова и обозначает «предположение».

Как бы ни была похожа на границу берега, кривая Коха не может быть в качестве её модели, потому что она всюду одинакова, самоподобна и, можно сказать, слишком «правильна». Все природные объекты создаются по капризу природы, в этом процессе всегда есть случайность. Стохастическими фракталами называются такие фракталы, при построении которых случайным образом в итеративной системе изменяются какие-либо параметры. При этом получаются очень похожие на природные объекты такие, как несимметричные деревья, изрезанные береговые линии. При моделировании рельефа местности и поверхности моря используются двумерные стохастические фракталы.

Применение фракталов

Главным применением фракталов является современная компьютерная графика. С их помощью можно создавать плоские множества и поверхности очень сложной формы, изменяя при этом параметры в заданных уравнениях.

Фрактальная геометрия является незаменимой при генерации искусственных облаков, горных ландшафтов, морей. Учёные нашли простой способ изображения сложных объектов, у которых образы напоминают природные формы.

Наиболее полезным использованием фракталов в компьютерной науке считается фрактальное сжатие данных. Основой такого вида сжатия служит то, что фрактальной геометрией достаточно хорошо описывается реальный мир. Картинки при этом сжимаются даже намного лучше, чем с помощью обычных методов. При увеличении картинки не наблюдается эффекта пикселизации, в этом заключается еще одно преимущество фрактального сжатия. При фрактальном сжатии после увеличения картинка часто выглядит даже лучше, чем до него.

Следует отметить, что фракталы применяются в шифрование данных с помощью фрактальных алгоритмов.

Для передачи данных на расстояние используются антенны, которые имеют фрактальные формы, что сильно уменьшает их вес и размеры.

Также с помощью фракталов можно моделировать сложные физические процессы, например, языки пламени. Фрактальные формы достаточно хорошо передают пористые материалы, имеющие очень сложную геометрическую структуру. Такие знания используются в науке о нефти.

Теория фракталов применяется и при изучении структуры Вселенной.

В биологии можно рассмотреть такие примеры, как биосенсорные взаимодействия и биения сердца, моделирование хаотических процессов. Фракталы используют в своих произведениях и художники, и дизайнера, и композиторы.

Алгоритмы построения фракталов

Рассмотрим множество Мандельброта. В математике множество Мандельброта - это фрактал, который определяется как множество точек на комплексной плоскости, итеративная последовательность не уходит в бесконечность и задана формулами z 0 =0, Z n +1 =Z n 2 +M. Чтобы построить данную последовательность точек, т. е. фрактал, перейдем от комплексной формы записи с помощью преобразований к удобным формулам для построения.

Если выражение Z n +1 =Z n 2 +M переформулировать в виде итеративной последовательности значений координат комплексной плоскости x и y, то есть, приняв Z = X + iY и М = p + iq (где i - мнимая единица), то получим алгоритм с формулами (1): X n +1 =X n 2 –Y n 2 +p; Y n +1 =2X n Y n +q, с параметрами p = – 0,5219;

Сначала полагаем X n = 0; Y n = 0, и по формулам (1) получаем на первом шаге вычислений: X n +1 =0 2 –0 2 –0,5219= – 0,5219; Y n +1 =2·0·0+0,4999.

Теперь полагаем X n = X n +1 = – 0,5219; Y n = Y n +1 = 0,4999, и по формулам (1) получаем на втором шаге: X n +1 = (–0,5219) 2 – (0,4999) 2 – 0,5219 = – 0,4994...;

Y n +1 = 2·(–0,5219)·(0,4999) + 0,4999 = – 0,0218....

Затем полагаем X n = X n +1 = – 0,4994...; Y n = Y n +1 = –0,0218, и опять по формулам (1) продолжаем дальше. То есть на каждом последующем шаге вычислений (итераций) предыдущие значения X n +1 и Y n +1 надо подставлять в формулы (1) в качестве новых значение X n и Y n .

В программе « Microsoft Excel» можно сделать 32000 подобных «шагов»-вычислений, а затем построить («точками») график функции Y n +1 = f(X n +1), который и будет похож на «пылающее солнце». Более того, меняя числовые значения параметров p и q, на том же графике можно увидеть и другие объекты; например, при p = – 0,5; q = 0,4999 вместо «солнца» получится «спиральная галактика».

Представлю алгоритм, который я составила, для построения в программе «Microsoft Excel» фракталов Мандельброта «пылающее солнце» и «спиральная галактика». На практике для достижения приемлемой точности достаточно 100 итераций.

Таблица 1 .

Алгоритм построения в программе “Microsoft Excel” фрактала Мандельброта «пылающее солнце» (для 100 итераций)

6.Записать в ячейку H1 переменную Y n +1 . 7.Ввести в ячейку А2 значение 0.

8.Ввести в ячейку В2 значение 0.

11.Ввести в ячейку D2 значение -0,5219.

Вставка->Диаграммы->Точечная->Точечная с гладкими кривыми

Таблица 2 .

Алгоритм построения в программе “Microsoft Excel” фрактала Мандельброта «спиральная галактика» (для 100 итераций)

1.Записать в ячейку А1 переменную X n

2.Записать в ячейку В1 переменную Y n .

3.Записать в ячейку D1 параметр р.

4.Записать в ячейку E1 параметр q.

5.Записать в ячейку G1 переменную X n +1 .

6.Записать в ячейку H1 переменную Y n +1 .

7.Ввести в ячейку А2 значение 0.

8.Ввести в ячейку В2 значение 0. .

9.Ввести в ячейку А3 формулу =G2.

10.Ввести в ячейку В3 формулу =H2.

11.Ввести в ячейку D2 значение -0,5.

12.Ввести в ячейку E2 значение 0,4999.

13.Ввести в ячейку G2 формулу =A2^2-B2^2+$D$2

14.Ввести в ячейку H2 формулу =2*A2*B2+$E$2

15.Растянуть ячейку А3 за правый нижний уголок до A101.

16.Растянуть ячейку В3 за правый нижний уголок до B101.

17.Растянуть ячейку G2 за правый нижний уголок до G101.

18.Растянуть ячейку H2 за правый нижний уголок до H101.

19.Выделить область значений от G2 до H101.

20.Для построения фигуры сделать следующее:

Вставка->Диаграммы->Точечная->Точечная с гладкими кривыми

Рассмотрим фрактал «кривая Гильберта», заданный формулой (2):

y (x ) = (cos 0,5 x ⋅ cos 200x + |x | 0,5 − 0,7)(4 − x 2) 0,01 . Найдем область допустих значений данного выражения. Под арифметическим квадратным корнем находится функция cos(x), значит, cos(x) ≥ 0.

Представлю алгоритм, который я составила, для построения в программе “Microsoft Excel” фрактала «кривая Гильберта» по данной формуле (2) в допустимой области значений, выбрав шаг равный 0,01.

Таблица 3 .

Алгоритм построения в программе “Microsoft Excel” фрактала «кривая Гильберта»

1.Записать в ячейку A1 переменную х.

2.Записать в ячейку B1 переменную у.

3.Записать в ячейку A2 значение -π/2, согласно области допустимых значений XЄ[-π/2; π/2],

4.Ввести в ячейку A3 формулу =A2+0,01.

5.Растянуть ячейку А3 за правый нижний уголок до ячейки А316 (до значения 1,57).

6.Ввести в ячейку В2 формулу

=((КОРЕНЬ(COS(A2)))*COS(200*A2)+КОРЕНЬ(ABS(A2))-0,7)*(4-A2*A2)^0,01

7.Растянуть ячейку В2 за правый нижний уголок до ячейки В316.

8.Выделить область значений от А2 до В316.

9.Для построения фигуры сделать следующее:

Вставка->Диаграммы->Точечная->Точечная с гладкими кривыми

Рассмотрим фрактал Мандельброта «кривая Дракона», заданный системами уравнений (3) и (4) соответственно:

Сначала полагаем X n = 0; Y n = 0. Задаем случайным образом параметр m, который меняется от 0 до 1. Если m > 0,5, то применяем систему уравнений (3) для построения фрактала, иначе - (4). Каждое новое значение получается из предыдущего в зависимости от случайного числа.

Представлю алгоритм, который я составила, для построения в программе “Microsoft Excel” фрактала Мандельброта «кривая Дракона».

Таблица 4 .

Алгоритм построения в программе “Microsoft Excel” фрактала Мандельброта «кривая Дракона»

1. Записать в ячейку А1 номер n.

2. Записать в ячейку В1 случайную величину m.

3. В ячейку С1 записать х.

4. В ячейку D1 записать у.

5. В ячейку А2 записать 1.

6. В ячейку А3 ввести формулу =A2+1

7. Растянуть А3 до ячейки А 11363

8. В ячейку В2 записать функцию случайного числа =СЛЧИС()

9. Растянуть ячейку В2 до В 11363

10. Ввести в ячейку С2 значение 0

11. Ввести в ячейку С3 формулу =ЕСЛИ(B3>0,5;-0,4*C2-1;0,76*C2-0,4*D2)

12. Растянуть ячейку С3 до ячейки С 11363

13. Ввести в ячейку D2 значение 0.

14. Ввести в ячейку D3 формулу =ЕСЛИ(B3>0,5;-0,4*D2+0,1;0,4*C2+0,76*D2)

15. Растянуть ячейку D3 до ячейки D11363

16. Выделить ячейки от С2 до D11363

17. Для построения фигуры сделать следующее:

Вставка->Диаграммы->Точечная

Заключение

Компьютер можно характеризовать как новое средство познания. Благодаря ему, можно увидеть связи и значения, которые до сих пор были скрыты от нас.

Выполняя исследовательскую работу, я убедилась в том, что область применения фракталов чрезвычайно велика. Их помощь необходима, например, когда требуется задать линии и поверхности очень сложной формы с помощью нескольких коэффициентов.

Можно сказать, что фактически найден способ легкого, удобного представления сложных неевклидовых объектов, образы которых похожи на природные.

Фракталы позволяют посмотреть на математику совсем с другой стороны, открывают нам глаза. Казалось бы, производятся обычные расчёты с обычными цифрами, однако это даёт нам по-своему уникальные, неповторимые результаты, которые позволяют почувствовать себя творцом природы. Фракталы дают понять, что математика - это тоже наука о прекрасном.

Список литературы:

1.Бенуа Мандельброта. «The Fractal Geometry of Nature», 1977.

2.Мандельброт Б. Фрактальная геометрия природы. М.: Институт компьютерных исследований, 2002. - 656 с.

3.Морозов А.Д. Введение в теорию фракталов. Москва-Ижевск: Институт компьютерных исследований, 2002. - 160 с.

4.О фракталах. [Электронный ресурс] - Режим доступа. - URL: http://elementy.ru/posters/fractals

5.Перерва Л.М., Юдин В.В. П 27 Фрактальное моделирование: учебное пособие / под общ. ред. В.Н. Гряника. Владивосток: Изд-во ВГУЭС, 2007. - 186 с.

Христолюбова Ангелина

Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Изобретенная вакцина может спасти миллионы людей, создание оружия, наоборот, эти жизни отнимает. Совсем недавно (в масштабе человеческой эволюции) мы научились «укрощать» электричество - и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

гимназия №2 г. Сальска

«Кафедра естественно-математических дисциплин»

Исследовательская работа

тема: « Фракталы в нашей жизни ».

Христолюбова Ангелина Михайловна,

ученица 8 «Б» класса.

Руководитель:

Кузьминчук Елена Сергеевна,

учитель математики и информатики.

г. Сальск

2015 г.

Введение

Классификация фракталов

Применение фракталов

Заключение.

Список литературы.

Приложения.

Введение

Блох больших кусают блошки

Блошек тех – малютки-крошки,

Как говорят, ad infinitum.

Джонатан Свифт

Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Изобретенная вакцина может спасти миллионы людей, создание оружия, наоборот, эти жизни отнимает. Совсем недавно (в масштабе человеческой эволюции) мы научились «укрощать» электричество - и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь.

Одно из таких «незаметных» открытий - фракталы. Вам наверняка доводилось слышать это запоминающееся слово, но знаете ли вы, что оно означает и как много интересного скрыто в этом термине?

В каждом человеке заложена природная любознательность, стремление познавать окружающий его мир. И в этом стремлении человек старается придерживаться логики в суждениях. Анализируя процессы, происходящие вокруг него, он пытается найти логичность происходящего и вывести некоторую закономерность. Самые большие умы на планете заняты этой задачей. Грубо говоря, ученые ищут закономерность там, где ее быть не должно. Тем не менее, даже в хаосе можно найти связь между событиями. И эта связь - фрактал.

Сегодня вряд ли можно найти человека, занимающегося или интересующегося наукой, который не слышал бы о фракталах. Глядя на них трудно поверить, что это не творения природы и за ними скрываются математические формулы. Фракталы поразительно напоминают объекты живой и неживой природы вокруг нас. Словом они "как настоящие". Скорее всего, именно поэтому, однажды увидев, человек уже не может их забыть.

Любопытную мысль приводит в своей книге "Фрактальная геометрия природы" американский математик Бенуа Мандельброт: "Почему геометрию часто называют холодной и сухой? Одна из причин заключается в том, что она неспособна достаточно точно описать форму облака, горы, дерева или берега моря. Облака – это не сферы, линии берега – это не окружности, и кора не является гладкой, а молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах всегда бесконечно. Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные – задачи исследования морфологии аморфного. Математики, однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать".

Все, что существует в реальном мире, является фракталом – это и есть наша гипотеза , а цель данной работы показать, что математика не бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом.

Объектом исследования выступают фракталы в математике и в реальном мире. В процессе работы нами были выделены следующие задачи исследования :

  1. Проанализировать и проработать литературу по теме исследования.
  2. Рассмотреть и изучить различные виды фракталов.
  3. Дать представление о фракталах, встречающихся в нашей жизни.

Актуальность заявленной темы определяется, в первую очередь, предметом исследования , в качестве которого выступает фрактальная геометрия.

Структура исследовательской работы определялась логикой исследования и поставленными задачами. Она включает в себя введение, две главы, заключение, список использованной литературы, приложения.

История появления понятия «фрактал»

Первые идеи фрактальной геометрии возникли в 19 веке.

Георг Кантор (Cantor, 1845-1918) - немецкий математик, логик, теолог, создатель теории бесконечных множеств, с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек. Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. Получалась, так называемая, Пыль Кантора (приложения 1, 2).

Джузеппе Пеано (Giuseppe Peano; 1858-1932) - итальянский математик изобразил особую линию. Он брал прямую и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длина исходной линии. Далее он делал то же самое с каждым отрезком. И так до бесконечности. Уникальность такой линии в том, что она заполняет всю плоскость. Позднее аналогичное построение было осуществлено в трехмерном пространстве (приложения 3, 4).

Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту (приложение 5).

Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный». Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе.

Определение фрактала, данное Мандельбротом, звучит так: «Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому».

Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств. В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM. В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача - понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным.

Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность - графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась.

При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками. Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден.

Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров – завихрений.

Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений.

Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа (Gaston Maurice Julia) (приложение 6).

Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных.

Классификация фракталов

Фракталы делятся на группы. Самые большие группы это:

Геометрические фракталы;

Алгебраические фракталы;

Применение фракталов

Заключение.

Помимо той полезной роли, которую играет фрактальная геометрия при описании сложности природных объектов, она предлагает ещё хорошую возможность популяризации математических знаний. Понятия фрактальной геометрии наглядны и интуитивны. Её формы привлекательны с эстетической точки зрения и имеют разнообразные приложения. Поэтому фрактальная геометрия, возможно, поможет опровергнуть взгляд на математику как на сухую и недоступную дисциплину и станет дополнительным стимулом для учащихся в освоении этой интересной и увлекательной науки.

Даже сами учёные испытывают почти детский восторг, наблюдая за быстрым развитием этого нового языка - языка фракталов.

Во всем, что нас окружает, мы часто видим хаос, но на самом деле это не случайность, а идеальная форма, разглядеть которую нам помогают фракталы. Природа - лучший архитектор, идеальный строитель и инженер. Она устроена очень логично, и если где-то мы не видим закономерности, это означает, что ее нужно искать в другом масштабе. Люди все лучше и лучше это понимают, стараясь во многом подражать естественным формам. Инженеры проектируют акустические системы в виде раковины, создают антенны с геометрией снежинок и так далее. Уверены, что фракталы хранят в себе еще немало секретов, и многие из них человеку еще лишь предстоит открыть.

В результате проведенного исследования удалось выяснить, что встречались с фракталами 42,5% опрошенных, знают, что такое фрактал 15% опрошенных, хотели бы узнать, что такое фрактал 62,5% опрошенных обучающихся и учителей МБОУ гимназии №2 г. Сальска.

После того как были открыты фракталы, для многих стало очевидно, что старые, добрые формы евклидовой геометрии сильно проигрывают большинству природных объектов из-за отсутствия в них некоторой нерегулярности, беспорядка и непредсказуемости. Возможно, что новые идеи фрактальной геометрии помогут изучить многие загадочные явления окружающей природы.

Нам удалось показать, все, что существует в реальном мире, является фракталом. Мы убедились, что тому, кто занимается фракталами, открывается прекрасный, удивительный мир, в котором царят математика, природа и искусство. Мы надеемся, что после знакомства с нашей работой, вы, как и мы, убедитесь в том, что математика прекрасна и удивительна.

Список литературы.

  1. Красота математических поверхностей. - М.: Куб, 2005;
  2. Леонтьев В.П., Новейшая энциклопедия Интернет. - М.: ОЛМА-ПРЕСС, 2003;
  3. Мандельброт Б. Фрактальная геометрия природы. - М.: «Институт компьютерных исследований», 2002;
  4. Маршак С.Я. , Изд.: Художественная литература.1985;
  5. Шляхтина С.,«В мире фрактальной графики». - СПб., Компьютер Price, 2005;
  6. Газета «Информатика», № 24, 2008;
  7. Пайтген Х.-О., Рихтер П. Х. Красота фракталов. - М.: «Мир», 1993;
  8. Кроновер Р. М. Фракталы и хаос в динамических системах. Основы теории;
  9. Мандельброт Б. Самоаффинные фрактальные множества, «Фракталы в физике». М.: Мир 1988 г.;
  10. Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 1999 г.;
  11. http://elementy.ru;
  12. http://ru.wikipedia.org;
  13. http://www.deviantart.com;
  14. http://fractals.nsu.ru;
  15. http://fraktals.ucoz.ru;
  16. http://www.bsu.burnet.ru/library/berson/index.html;
  17. http://www.uni-dubna.ru/kafedr/mazny/page11.htm;
  18. http://robots.ural.net/fractals/;
  19. http://fract.narod.ru;
  20. http://sakva.narod.ru/fractals.htm#History;
  21. http://oco.newmail.ru/fractals.htm;
  22. http://www.ghcube.com/fractals;
  23. http://www.fractalus.com/galleries/.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Тема : Фракталы - особые объекты живого и неживого мира

Хабаровск ТОГУ 2015

  • Оглавление
  • фрактал геометрический фрактальный графика
  • История фракталов
  • Классификация фракталов
  • Геометрические фракталы
  • Алгебраические фракталы
  • Применение фракталов
  • Фракталы и мир вокруг нас
  • Фрактальная графика
  • Применение фракталов
  • Естественные науки
  • Радиотехника
  • Информатика
  • Экономика и финансы

История фракталов

Очень часто мы встречаемся с особыми объектами, но мало кто знает, что это и есть фракталы. Фракталы - уникальные объекты, порожденные непредсказуемыми движениями хаотического мира. Они встречаются как в малых объектах, например, клеточная мембрана, и огромных, таких как Солнечная система и Галактика. В повседневной жизни мы можем увидеть фракталы на рисунке обоев, на ткани, заставке рабочего стола на компьютере, а в природе - это растения, морские животные, природные явления.

Учёные, с древних времен, зачарованы фракталами, программисты и специалисты в области компьютерной графики также любят эти объекты. Открытие фракталов стало революцией в человеческом восприятии мира и открытием новой эстетики искусства и науки.

Так что же такое фракталы? Фрактал - геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре в целом.

Термин фрактал был предложен в 1975г. Бенуа Мандельбротом для обозначения нерегулярных, самоподобных структур, которыми он занимался. Рождением фрактальной геометрии является выход его книги “The Fractal Geometry of Nature” в 1977г. Его работы базировались на трудах ученых Пуанкаре, Фату, Жюлиа, Кантора и Хаусдорфа, работавших в 1875 ? 1925 годах в этой же области. Но удалось объединить их работы в единую систему только в наше время.

Понятие «фрактал» образовано от латинского «fractus» ? состоящий из фрагментов. Одно из определений звучит так: «Фракталом называется структура, состоящая из частей, которые, в каком?то смысле подобны целому».

Бенуа Мандельброт в своих работах привел яркие примеры применения фракталов для объяснения некоторых природных явлений. Он уделил большое внимание интересному свойству, которым обладают многие фракталы. Дело в том, что часто фрактал можно разбить на сколь угодно малые части так, что каждая часть окажется просто уменьшенной копией целого. Иначе говоря, если мы будем смотреть на фрактал в микроскоп, то с удивлением увидим ту же самую картину, что и без микроскопа. Это свойство самоподобия резко отличает фракталы от объектов классической геометрии.

Для современных учёных изучение фракталов? не просто новая область познания. Это открытие нового типа геометрии, которая описывает мир вокруг нас и которую можно увидеть не только в учебниках, но и в природе, и в безграничной Вселенной. В настоящее время Мандельброт и другие учёные расширили область фрактальной геометрии так, что она может быть применима практически ко всему в мире, от предсказания цен на рынке ценных бумаг до совершения новых открытий в теоретической физике.

Классификация фракталов

Существуют различные классификации фракталов.

Основной классификацией фракталов является разделение на геометрические и алгебраические.

Геометрические фракталы обладают точным самоподобием, а алгебраические - приближённым самоподобием.

Существует также разделение на природные и рукотворные фракталы.

К рукотворным относятся фракталы, которые были придуманы учёными, они при любом масштабе обладают фрактальными свойствами. На природные фракталы накладывается ограничение на область существования -- то есть максимальный и минимальный размер, при которых у объекта наблюдаются фрактальные свойства.

Самыми простыми фракталами являются геометрические фракталы.

Геометрические фракталы

Геометрические фракталы по-другому называют классическими, детерминированными или линейными. Они являются самыми наглядными, так как обладают так называемой жесткой самоподобностью, не изменяющейся при изменении масштаба. Это значит, что, независимо от того, насколько вы приближаете фрактал, вы видите всё тот же узор.

В двухмерном случае такие фракталы можно получить, задав некоторую ломаную, называемую генератором. За один шаг алгоритма каждый из отрезков данной ломаной (инициатора) заменяется на ломаную-генератор в соответствующем масштабе. В результате бесконечного повторения этой процедуры получается фрактальная кривая. Несмотря на кажущуюся сложность этой кривой, её форма определяется лишь формой генератора.

Наиболее известные геометрические фракталы: кривая Коха, кривая Минковского, кривая Леви, кривая дракона, салфетка и ковер Серпинского, пятиугольник Дюрера.

Построение некоторых геометрических фракталов

1). Кривая Коха.

Она была изобретена в 1904 году немецким математиком по имени Хельге фон Кох. Для её построения берется единичный отрезок, делится на три равные части и среднее звено заменяется равносторонним треугольником без этого звена. На следующем шаге повторяем операцию для каждого из четырёх получившихся отрезков. В результате бесконечного повторения данной процедуры получается фрактальная кривая.

2). Салфетка Серпинского.

В 1915 году польский математик Вацлав Серпинский придумал занимательный объект. Для его построения берётся сплошной равносторонний треугольник. На первом шаге из центра удаляется перевернутый равносторонний треугольник. На втором шаге удаляется три перевернутых треугольника из трёх оставшихся треугольников и т.д. По теории конца этому процессу не будет, и в треугольнике не останется живого места, но и на части он не распадется - получится объект, состоящий из одних только дырок.

3). Дракон Хартера-Хэйтуэя.

Дракон Хартера, также известный как дракон Хартера-Хейтуэя, впервые исследовали физикии NASA ? Джон Хейтуэй, Вильям Хартер и Брюс Бенкс. Он был описан в 1967 году Мартином Гарднером в колонке «Математические игры» журнала «Scientific American».

Каждый из отрезков прямой на следующем шаге заменяется на два отрезка, образующих боковые стороны равнобедренного прямоугольного треугольника, для которого исходный отрезок являлся бы гипотенузой. В результате отрезок как бы прогибается под прямым углом. Направление прогиба чередуется. Первый отрезок прогибается вправо (по ходу движения слева направо), второй - влево, третий - опять вправо и т.д.

Примеры геометрических фракталов

Кривая Коха Салфетка Серпинского

Дракон Хартера-Хэйтуэя

Вторая большая группа фракталов - алгебраические. Свое название они получили за то, что их строят на основе алгебраических формул.

Алгебраические фракталы

Сложные (алгебраические) фракталы невозможно создать без помощи компьютера. Для получения красочных результатов этот компьютер должен обладать мощным математическим сопроцессором и монитором с высоким разрешением. Свое название они получили за то, что их строят на основе алгебраических формул. В результате математической обработки данной формулы на экран выводится точка определенного цвета. Результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются хотя и не без деформаций, эффекты самоподобия на различных масштабных уровнях. Практически каждая точка на экране компьютера как отдельный фрактал.

Наиболее известные алгебраические фракталы: множества Мандельброта и Жюлиа, бассейны Ньютона.

Алгебраические фракталы обладают приближенным самоподобием. Фактически, если вы увеличите маленькую область любого сложного фрактала, а затем проделаете то же самое с маленьким участком этой области, то эти два увеличения будут значительно отличаться друг от друга. Два изображения будут очень похожи в деталях, но они не будут полностью идентичными.

АЛГЕБРАИЧЕСКИЕ ФРАКТАЛЫ

Приближения множества Мандельброта

Фракталы находят всё большее и большее применение в науке. Основная причина в том, что они описывают реальный мир лучше, чем традиционная физика и математика.

Применение фракталов

1). Теория хаоса: фракталы всегда ассоциируются со словом хаос. Теория хаоса определяется как учение о сложных нелинейных динамических системах. Хаос - это отсутствие предсказуемости. Он возникает в динамических системах, когда для двух очень близких начальных значений система ведет себя совершенно по-разному. Пример хаотичной динамической системы - погода. Примерами подобных систем являются турбулентные потоки, биологические популяции, общество и его подсистемы: экономические, политические и другие социальные системы. Одной из центральных концепций в этой теории является невозможность точного предсказания состояния системы. Теория хаоса сосредотачивает внимание не на беспорядке системы (наследственной непредсказуемости системы), а на унаследованном ей порядке (общем в поведении похожих систем). Таким образом, наука о хаосе - это система представлений о различных формах порядка, где случайность становится организующим принципом.

2). Экономика: анализ рынка ценных бумаг.

3). Астрофизика: описание процессов кластеризации галактик во Вселенной.

4). Геология: изучение шероховатости минералов;

5). Картография: изучение форм береговых линий; изучение разветвленной сети речных русел.

6). Механика жидкостей и газов, физика поверхностей:

- динамика и турбулентность сложных потоков.

- моделирование языков пламени;

7). Биология и медицина:

- моделирование популяций животных и миграции птиц;

- моделирование эпидемий;

- анализ строения кровеносной системы;

- рассмотрение сложных поверхностей клеточных мембран;

- описание процессов внутри организма, например, биения сердца.

8). Фрактальные антенны: использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка на зданиях внешних антенн. Он вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, а затем присоединил к приёмнику. Оказалось, что такая антенна работает не хуже обычной. И хотя физические принципы работы такой антенны не изучены до сих пор, это не помешало Коэну основать собственную компанию и наладить их серийный выпуск.

9). Сжатие изображений: достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Другое преимущество фрактального сжатия в том, что при увеличении картинки, не наблюдается эффекта пикселизации (увеличения размеров точек до размеров, искажающих изображение). При фрактальном сжатии, после увеличения, картинка часто выглядит даже лучше, чем до него.

10). Компьютерная графика: компьютерная графика переживает сегодня период интенсивного развития. Она оказалась способна воссоздать на экране монитора бесконечное разнообразие фрактальных форм и пейзажей, погружая зрителя в удивительное виртуальное пространство. В настоящие время при помощи сравнительно простых алгоритмов появилась возможность создавать трёхмерные изображения фантастических ландшафтов и форм, которые способны преобразовываться во времени в ещё более захватывающие картины. Склонность фракталов походить на горы, цветы и деревья эксплуатируется некоторыми графическими редакторами (например, фрактальные облака из 3D studio MAX, фрактальные горы в World Builder). Фрактальные модели сегодня широко применяют в компьютерных играх, создавая в них обстановку, которую уже трудно отличить от реальности.

Конец ХХ века ознаменовался не только открытием поразительно красивых и бесконечно разнообразных структур, названных фракталами, но и осознанием фрактального характера природы. Окружающий нас мир очень разнообразен, и его объекты не укладываются в жёсткие рамки евклидовых линий и поверхностей.

Фракталы и мир вокруг нас

« Красота всегда относительна...Не следует полагать, что берега океана и впрямь бесформенны только потому, что их форма отлична от правильной формы построенных нами причалов; форму гор нельзя считать неправильной на основании того, что они не являются правильными конусами или пирамидами; из того, что расстояния между звёздами неодинаковы, ещё не следует, что их разбросала по небу неумелая рука. Эти неправильности существуют только в нашем воображении, на самом деле они таковыми не являются и никак не мешают истинным проявлениям жизни на Земле, ни в царстве растений и животных, ни среди людей». Эти слова английского учёного XVII в. Ричарда Бентли свидетельствуют о том, что идея объединить формы берегов, гор и небесных объектов и противопоставить их евклидовым построениям возникла в умах людей уже очень давно.

Галилео Галилей сказал, что «великая книга Природы написана на языке геометрии». Сейчас с уверенностью можно утверждать, что она написана на языке фрактальной геометрии.

То, что мы наблюдаем в природе, часто интригует нас бесконечным повторением одного и того же узора, увеличенного или уменьшенного во сколько угодно раз. Причудливые формы береговых линий и замысловатые изгибы рек, изломанные поверхности горных хребтов и очертания облаков, раскидистые ветви деревьев и коралловые рифы, робкое мерцание свечи и вспененные потоки горных рек - все это фракталы. Одни из них, типа облаков или бурных потоков, постоянно меняют свои очертания, другие, подобно деревьям или горным массивам, сохраняют свою структуру неизменной. Общим для всех типов фрактальных структур является их самоподобие - основное свойство, обеспечивающее выполнение во фракталах основного закона - закона единства в многообразии мироздания.

Фрактальными структурами также являются системы и органы человека. Так, например, кровеносные сосуды многократно разветвляются, т.е. имеют фрактальную природу. Электрическая активность сердца - фрактальный процесс. Кардиологи обнаружили, что спектральные характеристики сердечных сокращений подчиняются фрактальным законам, как землетрясения и экономические феномены. В тканях пищеварительного тракта одна волнистая поверхность встроена в другую. Легкие также представляют пример того, как большая площадь «втиснута» в маленькое пространство. В действительности, вся структура человеческого тела имеет фрактальную природу; это уже признано учеными. Принцип единого простого, задающего разнообразное сложное, заложен в геноме человека, когда одна клетка живого организма содержит информацию обо всем организме в целом.

Фрактальные структуры в природе

Приведем несколько образцов фото:

Как сказал биолог Джон Холдейн, “мир устроен не только причудливей, чем мы думаем, но и причудливей, чем мы можем предполагать”. Фракталы - не изобретения Мандельброта. Они существуют объективно. В природных формах и процессах, в науке и искусстве, которые этот мир отображают и познают. Именно “за изменение нашего взгляда на мир благодаря идеям фрактальной геометрии” Бенуа Мандельброту в 1993 году была присуждена почётная премия Вольфа в области физики.

В настоящее время большой популярностью пользуются фрактальные картины. Они производят совершенно фантастическое впечатление. Множество тонких линий, образующих одно целое, или же необычные элементы, сплетающиеся в единую картину. Вспышки яркого света и умеренные сглаженные линии. Фрактал кажется живым. Он горит, пылает, он завлекает, и Вы не можете отвести от него глаз, изучая даже самые крохотные и незначительные детали.

Фрактальная графика

Фрактальные картины в интерьере

Применение фракталов

Естественные науки

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.

Радиотехника

Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Коэн основал собственную компанию и наладил их серийный выпуск.

Информатика

Сжатие изображений

Фрактальное дерево

Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.

Компьютерная графика

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений.

Децентрализованные сети

Система назначения IP-адресов в сети Netsukuku (эта сеть является проектом создания распределённой самоорганизующейся одноранговой сети, способной обеспечить взаимодействие огромного количества узлов при минимальной нагрузке на центральный процессор и память) использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.

Экономика и финансы

А. А. Алмазов в своей книге «Фрактальная теория. Как поменять взгляд на рынки» предложил способ использования фракталов при анализе биржевых котировок, в частности -- на рынке Форекс.

Всякий раз, рассматривая фракталы, задумываешься, как прекрасен реальный мир и мир математики, и о том, что математика действительно является языком, который способен описать практически всё, что существует во Вселенной.

Библиографический список

1. Мандельброт Б. Фрактальная геометрия природы. М.: “Институт компьютерных исследований”, 2002. 656 с.

2. Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 1999 г. 140 с.

3. Пайтген Х.-О., Рихтер П. Х. Красота фракталов. М.: “Мир”, 1993. - 176 с.

4. Тихоплав В.Ю., Тихоплав Т.С. Гармония хаоса, или фрактальная реальность. С.-Петербург: ИД “Весь”, 2003. 340 с.

5. Федер Е. Фракталы. М: “Мир”, 1991. 254 с.

6. Шредер М. Фракталы, хаос, степенные законы. Миниатюры из бесконечного рая. Ижевск: “РХД”, 2001. 528 с.

Список сайтов о фракталах

1. http://www.fractals.nsu.ru.

2. http://www.fractalworld.xaoc.ru.

3. http://www.multifractal.narod.ru.

4. http://algolist.manual.ru.

Размещено на Allbest.ru

Подобные документы

    Рассмотрение фрактальной размерности как одной из характеристик инженерной поверхности. Описание природных фракталов. Измерение длины негладкой (изломанной) линии. Подобие и скейлинг, самоподобие и самоаффинность. Соотношение "периметр-площадь".

    контрольная работа , добавлен 23.12.2015

    История появления теории фракталов. Фрактал – самоподобная структура, чье изображение не зависит от масштаба. Это рекурсивная модель, каждая часть которой повторяет в своем развитии развитие всей модели в целом. Практическое применение теории фракталов.

    научная работа , добавлен 12.05.2010

    Классические фракталы. Самоподобие. Снежинка Коха. Ковер Серпинского. L-системы. Хаотическая динамика. Аттрактор Лоренца. Множества Мандельброта и Жюлиа. Применение фракталов в компьютерных технологиях.

    курсовая работа , добавлен 26.05.2006

    Признаки некоторых четырехугольников. Реализация моделей геометрических ситуаций в средах динамической геометрии. Особенности динамической среды "Живая геометрия", особенности построения в ней моделей параллелограмма, ромба, прямоугольника и квадрата.

    курсовая работа , добавлен 28.05.2013

    Геометрическая картина мира и предпосылки возникновения теории фракталов. Элементы детерминированной L-системы: алфавит, слово инициализации и набор порождающих правил. Фрактальные свойства социальных процессов: синергетика и хаотическая динамика.

    курсовая работа , добавлен 22.03.2014

    Изучение проявлений геометрических законов в живой природе и использования их в образовательной практической деятельности. Описание геометрических законов и сущность геометрических построений. Графическое образование и его место в современном мире.

    дипломная работа , добавлен 24.06.2010

    Определение понятия модели, необходимость их применения в науке и повседневной жизни. Характеристика методов материального и идеального моделирования. Классификация математических моделей (детерминированные, стохастические), этапы процесса их построения.

    реферат , добавлен 20.08.2015

    Исследование понятия симметрии, соразмерности, пропорциональности и одинаковости в расположении частей. Характеристика симметрических свойств геометрических фигур. Описания роли симметрии в архитектуре, природе и технике, в решении логических задач.

    презентация , добавлен 06.12.2011

    История математизации науки. Основные методы математизации. Пределы и проблемы математизации. Проблемы применения математических методов в различных науках связаны с самой математикой (математическое изучение моделей), с областью моделирования.

    реферат , добавлен 24.05.2005

    Понятие и история исследования золотого сечения. Особенности его отражения в математике, природе, архитектуре и живописи. Порядок и принципы построения, структура и сферы практического применения золотого сечения, математическое обоснование и значение.