За что отвечают хромосомы человека. Строение и наборы хромосом человека в клетке

Мы найдём ответ на этот вопрос, а также определим, какую важность они имеют для живых организмов. Каков механизм их размещения и построения?

Небольшое отступление

Хромосомы являются важной частью генного механизма. Они выступают в качестве хранилища ДНК. Некоторые вирусы имеют одноцепочные молекулы, но в большинстве случаев они двуцепочные и являются линейными или замкнутыми в кольцо. Но размещается ДНК в хромосомах исключительно в клеточных организмах. То есть это хранилище в вирусах не используется в обычном понимании, поскольку сам микроорганизм выступает в такой роли. При свертывании в спираль молекулы размещаются более компактно. Хромосомы состоят из хроматина. Это специальное волокно, которое образуется, когда эукариотическая ДНК обматывает специальные белковые частицы, называемые гистонами. Они располагаются через определённый интервал, поэтому структура получается стабильной.

О хромосомах

Они являются основными структурными элементами клеточного ядра. Благодаря наличию способности самовоспроизведения, хромосомы могут обеспечивать генетическую связь между поколениями. Следует отметить разницу их длины у разных животных и людей: их размер может колебаться от долей к десяткам микрон. В качестве химической основы построения используются нуклеопротеиды, что формируются из таких белков, как протамины и гистоны. Хромосомы непрерывно находятся в И это относится ко всем возможным высшим формам жизни. Так, приведённое утверждение про то, где находятся хромосомы в животной клетке, с точно такой же уверенностью можно отнести и к растениям. Выгляните в окно. Какие деревья можете увидеть за ним? Липу, дуб, берёзу, орех? Или, может, кусты смородины и малины? Отвечая на вопрос о том, где находятся хромосомы у растений, что были перечислены, можно сказать, что они там же, где и в животных организмах, - в

Расположение хромосом в клетке: как делается выбор

Многоклеточный эукариот является обладателем Он составляется из генома отца и матери. Благодаря процессу мейоза они конъюгируют между собой. Это обеспечивает протекание процесса обмена участками - кроссинговера. Возможным в данных случаях является спаривание Это необходимо, чтобы обеспечить функционирование генов в клетках, что не делятся, а находятся в покоящемся состоянии. Вытекающим из этого является следствие, что хромосомы находятся в ядре и для продолжения функций делений они не должны покидать его пределы. Конечно, найти нуклеотидные остатки в самой клетке не составит труда. Но в большинстве случаев это или геном в митохондриях, или отдельные части целого, что откололись и сейчас в «свободном плавании». Встретить полноценную хромосому за пределами ядра очень сложно. А если такое и происходит, то исключительно из-за физических повреждений.

Хромосомный набор

Так называют всю совокупность хромосом, которые есть в ядре клетки. У каждого биологического вида есть свой постоянный и характерный для него набор, который закрепился во время эволюции. Он может быть двух типов: одиночный (или гаплоидный, встречается в животных) и двойной (или диплоидный). Наборы разнятся количеством хромосом, что в них присутствуют. Так, у лошадей их количество равняется двум. А вот у простейших и некоторых споровых растениях их количество может достигать тысяч. Кстати, если говорить про то, где находятся хромосомы у бактерий, то следует отметить, что у них они тоже, как правило, находятся в ядре, но не исключено и то, что они будут «свободно» плавать в цитоплазме. Но это относится исключительно к одноклеточным. Причем разнятся они не только количеством, но и размером. У человека в наборе имеется 46 хромосом.

Морфология хромосом

Она напрямую связана с их спирализацией. Так, когда они находятся в стадии интерфазы, то они наиболее развернуты. Но при начале процесса деления хромосомы начинают интенсивно укорачиваться путём проведения своей спирализации. Наибольшая степень этого состояния припадает на стадию метафазы. На ней формируются относительно короткие и плотные структуры. Метафазная хромосома формируется из двух хроматид. Они в свою очередь состоят из так называемых элементарных нитей (хромонем).

Индивидуальные хромосомы

Их различают в зависимости от места нахождения центромеры (первичная перетяжка). Если эта составляющая теряется, то хромосомы теряют способность к делению. И вот первичная перетяжка делит хромосому на два плеча. Также могут образовываться вторичные (в этом случае полученный результат называют спутником). Каждый вид организмов обладает своими специфическими (численно, по размеру или форме) наборами хромосом. Если он двойной, то его обозначают как кариотип.

Хромосомная теория наследственности

Впервые эти носители были описаны И.Д. Чистяковым в 1874 году. В 1901-м Уилсон обратил внимание на присутствие параллелизма в их поведении. Затем он сфокусировался на Менделеевских факторах наследственности в мейозе и при оплодотворении и пришел к выводу, что гены расположены в хромосомах. На протяжении 1915-1920 годов Морганом и его сотрудниками это положение было доказано. Они локализировали несколько сотен генов в хромосомах дрозофилы, создав первую генетическую карту. Данные, полученные в это время, легли в основу всего последующего развития науки в данном направлении. Также на основании этой информации была разработана хромосомная теория наследственности, по которой преемственность клеток и целых организмов обеспечивается благодаря именно этим носителям.

Химический состав

Исследования продолжались, и во время биохимических и цитохимических экспериментов в 30-50 годах прошлого столетия было установлено, из чего они скомпонованы. Их состав такой:

  1. Основные белки (протамины и гистоны).
  2. Негистонные белки.
  3. Переменные компоненты. В их качестве могут выступать РНК и кислый белок.

Хромосомы сформированы из дезоксирибонуклеопротеидных нитей. Они могут соединяться в пучки. В 1953 году было открыто строение и разобран механизм её авторепродукции. Знания, полученные о нуклеиновом коде, послужили основой для возникновения новой науки - генетики. Сейчас мы не только знаем, где в клетке находятся хромосомы, но также имеем представление, из чего они составляются. Когда в обычных бытовых разговорах говорят про наследственный аппарат, то обычно подразумевают одну ДНК, но вы-то теперь знаете, что она является только его составляющей.

Половые хромосомы

Гены, которые отвечают за пол млекопитающего (и человека в том числе), находятся в специальной паре. Могут быть и другие случаи организации, в которых всё определяется соотношением каждого вида половых хромосом. Животные, обладающие таким типом определения, называются аутосомами. У человека же (и других млекопитающих тоже) женский пол определяется одинаковыми хромосомами, которые обозначаются как Х. Для мужского используется Х и У. А как же происходит выбор, какого пола будет ребёнок? Первоначально созревает женский носитель (яйцеклетка), в котором размещена Х. А пол определяется всегда по содержимому сперматоцитов. Они в равной пропорции (плюс/минус) содержат и Х, и У-хромосомы. От носителя, который первым совершит оплодотворение, и зависит пол будущего ребёнка. И в результате может возникнуть или женщина (ХХ), или мужчина (ХУ). Итак, мы не только выяснили, где находятся хромосомы у человека, но также разобрались с особенностями их размещения и комбинирования при создании нового организма. Стоит заметить, что этот процесс является несколько облегченным у более простых форм жизни, поэтому, знакомясь с тем, что у них и как протекает, вы можете заметить небольшие отличия от описанной здесь модели.

Функционирование

Хромосомная ДНК может быть представлена как матрица, которая работает, чтобы синтезировать специфические молекулы информационной РНК. Но этот процесс может протекать только при условии деспирализации определённого участка. Говоря про возможность работы гена или целой хромосомы, следует отметить, что для их функционирования могут понадобиться определённые условия. Вы, наверное, слышали про инсулин? Ген, отвечающий за его выработку, есть во всём человеческом теле. Но вот активироваться и работать он может исключительно при нахождении в нужных клетках, которые создают поджелудочную железу. И таких случаев довольно много. Если говорить об исключении из метаболизма целой хромосомы, то тут можно вспомнить про образование тела полового хроматина.

Хромосомы человека

В 1922 году Пейтнером была выдвинута гипотеза о том, что человек имеет 48 хромосом. Конечно, это было сказано не на пустом месте, а основываясь на определённых данных. Но в 1956 году учеными Тиром и Леваном при использовании новейших методов исследования генома человека было установлено, что на самом деле человек имеет только 46 хромосом. Они же и дали описание нашего кариотипа. Нумерация пар идёт от единицы до двадцати трех. Хотя последней паре часто не присваивают число, а отдельно называют, из чего она состоит.

Заключение

Итак, мы определили на протяжении статьи, какую роль имеют хромосомы, где они размещены и как строятся. Конечно, главное внимание получил геном человека, но были рассмотрены и животные, а также растения. Мы знаем, где в клетке находятся хромосомы, особенности их расположения, а также возможные трансформации, которые с ними могут происходить. Если говорить про геном, то помните, что он может быть и в других частях, а не только ядре. Но вот на то, какими будут дочерние объекты, влияет именно то, что имеется в хромосомах. Причем от количества оных не сильно зависят особенности организма. Итак, рассказав о том, где находятся хромосомы в растительной клетке и организмах животных, считаем, что наша задача была выполнена.



Добавить свою цену в базу

Комментарий

Влияние на жизнь человека набора внешних факторов, способствует к генетическому изменению кода и как следствие, способности давать здоровое потомство. Статистика указывает на то, что около 1% всех младенцев, пришедших в этот мир, имеют серьезные нарушения в структуре хромосомного набора . 30% новорожденных имеют врожденные пороки и отклонения в кариотипе. Данная статья призвана указать на отличия в наборах хромосом у здорового человека, у человека с синдромом Дауна, и сравнить общие показатели с набором хромосом у приматов, в частности обезьян.

Набор хромосом, как основная часть наследственного кода человека

Хромосома являет собой мелкую частичку внутри ядра клетки, которая несет в себе информацию о генетической предрасположенности конкретного индивида . Состоящая из набора нуклеиновых кислот и комплекса белков, данная генетический единица позволяет внутри себя хранить, передавать и воссоздавать генетическую информацию. Впервые доказать существование данного элемента ядра удалось группе американских ученых, под курирование Т. Моргана. Первые опыты и публичные эксперименты были проведены в начале XX века, когда объектом для исследований послужила плодовая мушка. В 1915 году были зафиксированы общие положения хромосомной теории наследственности. Благодаря данному открытию, за открытие роли хромосом в наследственности ученый Т. Морган получил Нобелевскую премию по физиологии и медицине.

… неизбежно должно было возникнуть стремление определить где, когда и как осуществляется процесс расщепления и воссоединения, и неизбежно должна была явиться попытка согласовать эти явления с удивительными процессами в половых клетках, имеющих такое всеобщее распространение

Томас Морган, «Структурные основы наследственности».

Хромосома состоит из ДНК и белковой массы, которая достигает в общей сложности порядка 63% ее общей массы . Поверх которых намотана генетическая нить. В основе всей наследственности любого живого существа, обладающего клеточной структурой с ядрами, служит материал ДНК. Именно он отвечает за причинно – наследственные связи. Наука, изучающая строение и поведение хромосом называется цитогенетика . Процесс становления и выбора генов, ключевых элементов генетического кода, зависит от материала родителей, и передается во время зачатия.

Хромосомный набор здорового человека

Здоровый человек имеет набор из 23 пар хромосом . Каждая из таких пар отвечает за определенный ген. Общее количество хромосом человека равняется 46. Каждая хромосома в индивидуальном порядке передается нам от каждого из родителей: одна от отца, и другая от матери. Исключением является заключительная, 23 пара хромосом. Она отвечает за пол человека. Женское начало определяется как ХХ, а мужское как XY. Находясь в паре, хромосомы определяют диплоидный набор. В половых клетках они разделены, и объединяются в процессе оплодотворения.

Что бы собрать воедино совокупность признаков хромосом, в пределах одной клетки, ученные вывели название кариотип . Побочные воздействия и нарушения кариотипов приводят к возникновению заболеваний на разных этапах жизнедеятельности.

Количество хромосом у человека с синдромом Дауна

По горькой статистике на каждые 700 новорожденных младенцев приходится один малыш с данным заболеванием . Данная патология была описана еще в 1866 году. Ключом в данной проблеме служит третья хромосома, которая присоединяется к 21 паре набора. Этот процесс происходит в момент, когда в одной из веток хромосомного цепи родителей 24 хромосомы (с удвоенной 21). В итоге у такого больного ребенка получается одна лишняя хромосома, а их общее количество равняется 47. Такая патология может быть спровоцирована из-за перенесенного одним из родителей заболевания – диабет. Также изменение в коде человека могут вызвать вирусные инфекции, радиация и прочие факторы.

Из-за своего заболевания, в подавляющем большинстве случаев, дети с синдромом Дауна являются умственно отсталыми . Общий вид заболевания сказывается как на общем процессе мышления с самого раннего возраста, так и влияет на общие черты внешности человека. У таких людей наблюдаются отклонения во внешности в виде большого языка, ушей неправильной формы, складки на коже, широкая переносица, пятна в глазах и общая форма головы. Они в большей степени подвержены сердечно – сосудистым заболеваниям, имеют слабо развитые половые органы (в большей мере у мужской половины) и живут в среднем около 40 лет.

Количество хромосом у примата, на примере обезьяны

Размножайтесь, меняйтесь, и пусть сильнейшие выживают, а слабейшие умрут

Чарльз Дарвин. Так гласит старая цитата ученого.

У высших обезьян – 24 пары хромосом. Как утверждает общая теория Дарвина, мы произошли от обезьян, приспособившись и адаптировав свои физиологические процессы к внешней среде обитания. Так почему же у людей меньшее количество хромосом, нежели у наших «предков».

По данной теории мы должны обладать гораздо более развитой системой хромосомного набора. Такое разъяснение может скрываться в непоследовательном развитии эволюционных преобразований, согласно выдвинутой теории. Среди множества разнообразных видов живых организмов в природе, каждая цепочка развития планомерна и идет своим чередом. Значит, в определенный момент общий процесс развития обезьяны в человека пошел несколькими путями. В конечном итоге мы имеем то, что видим каждый день на улицах, в парках, метро, на работе, кругом. Это человек. Ключевым отличием его развития от обезьяны является более сложная структура генов, содержащихся внутри хромосом. Структура ДНК человека и примата имеет кардинальные различия, но при этом схожую структуру построения генов.

Выводы

Как бы то ни было, но все мы состоим из набора хромосом и ДНК. У каждого из нас уникальная структура генетического материала. Он является универсальным фундаментом и компонентом, из которого мы построены. Каждый человек на планете Земля – уникален. Он индивид. Стоит это осознавать, ценить и беречь в каждом из нас.

Видео

ХРОМОСОМЫ (греческий chroma цвет, окраска + soma тело) - главные структурно-функциональные элементы клеточного ядра, содержащие расположенные в линейном порядке гены и обеспечивающие хранение, воспроизводство генетической информации, а также начальные этапы ее реализации в признаки; изменяют свою линейную структуру в клеточном цикле. Термин «хромосомы» предложен Вальдейером (W. Waldeyer) в 1888 году из-за палочковидной формы и интенсивного окрашивания этих элементов основными красителями в период деления клетки.

Термин «хромосома» в полном его значении применим к соответствующим ядерным структурам клеток многоклеточных эукариотных организмов (см.). В ядре таких клеток хромосом всегда несколько, они составляют хромосомный набор (см.). В соматических клетках хромосомы парны, так как происходят от двух родительских (диплоидный набор хромосом), в зрелых половых клетках содержится одинарный (гаплоидный) набор хромосом. Каждый биологический вид характеризуется постоянным числом, размерами и другими морфологическими признаками хромосом (см. Кариотип). У разнополых организмов хромосомный набор включает две хромосомы, несущие гены, определяющие пол особи (см. Ген , Пол), которые называют половыми, или гоносомами, в противоположность всем остальным, именуемым аутосомами. У человека пара половых хромосом составлена: у женщин из двух X-хромосом (XX набор), а у мужчин - из X и Y-хромосом (XY набор). Поэтому в зрелых половых клетках - гаметах у женщин содержится только X-хромосома, тогда как у мужчин половина сперматозоидов содержит Х-хромосому, а другая - Y-хромосому.

История

Первые наблюдения хромосом в ядре клетки, выполненные в 70-х годах 19 века И. Д. Чистяковым, О. Гертвигом, Страсбургером (E. Strasburger), положили начало цитологическому направлению в изучении хромосом. До начала 20 века это направление было единственным. Применение светового микроскопа позволило получить сведения о поведении хромосом в митотическом и мейотическом делениях (см. Мейоз , Митоз), факты о постоянстве числа хромосом у данного вида, специальных типах хромосом. В 20-40-х годах 20 века преимущественное развитие получило сравнительное морфологическое изучение хромосом у разных видов организмов, включая человека, с целью выяснения общих принципов их организации, особенностей индивидуальных хромосом и изменений их в процессе эволюции. В изучение этой проблемы особый вклад внесли отечественные ученые С. Г. Навашин, Г. А. Левитский, Л. Н. Делоне, П. И. Живаго, А. Г. Андрес, М. С. Навашин, А. А. П рокофъева-Бельговская, а также зарубежные - Хейтц (E. Heitz), Дарлингтон (С. D. Darlington) и др. С 50-х годов для исследования хромосом стал использоваться электронный микроскоп. Началось изучение морфологических изменений хромосом в процессе их генетического функционирования. В 1956 году Тио (H. J. Tjio) и Леван (A. Levan) окончательно установили число хромосом у человека, равное 46, описали их морфологические признаки в метафазе митоза. Значительный прогресс в изучении хромосом был достигнут в 70-х годах после разработки различных методов их окраски, позволивших выявить неоднородность структуры хромосом по длине в мета фазе деления клеток.

Сопоставление поведения хромосом в мейотическом делении с закономерностями наследования признаков (см. Менделя законы) положило начало цитогенетическим исследованиям. В конце 19 - начале 20 века Сеттоном (W. Sutton), Бовери (Th. Boveri), Уилсоном (Е. В. Wilson) были заложены основы хромосомной теории наследственности (см.), согласно которой гены локализованы в хромосомах и поведение последних при созревании гамет и их слиянии в момент оплодотворения объясняет законы передачи признаков в поколениях. Теория получила окончательное обоснование в цитогенетических экспериментах, проведенных на дрозофиле (см.) Т. Морганом и его учениками, которые доказали, что каждая хромосома есть группа генов, сцепленно наследуемых и расположенных в линейном порядке, что в мейозе осуществляется рекомбинация генов (см. Рекомбинация) гомологичных (идентичных) хромосом.

Изучение биохимической природы хромосом, начатое в 30-40-е годы 20 века, первоначально основывалось на цитохимическом качественном и количественном определении содержания ДНК, РНК и белков в ядре. С 50-х годов для этих целей стали применять фото- и спектрометрию (см. Спектрофотометрия), рентгеноструктурный анализ (см.) и другие физико-химические методы.

Физико-химическая природа хромосом

Физико-химическая природа хромосом зависит от сложности организации биологического вида. Хромосома эукариот состоит из молекулы дезоксирибонуклеиновой кислоты (см.), гистоновых и негистоновых белков (см. Гистоны), а также рибонуклеиновой кислоты (см.). Основным химическим компонентом хромосомы, заключающим в структуре своей молекулы генетическую информацию, является ДНК. В естественных условиях в отдельных участках хромосомы ДНК может быть свободной от структурных белков, однако в основном она существует в виде комплекса с гистонами, причем как и в интерфазе, так и в метафазе весовое отношение ДНК/гистон составляет единицу. Содержание кислых белков в хромосомах варьирует в зависимости от их активности и степени конденсации в клеточном цикле. В хроматине (см.) интерфазного ядра и на любой стадии митотической конденсации ДНК существует в комплексе с гистонами, и взаимодействие именно этих молекул создает элементарные структурные частицы хроматина - нуклеосомы. В нуклеосоме ее центральную часть составляют 8 молекул гистонов четырех типов (по 2 молекулы от каждого типа). Это гистоны Н2А, Н2В, НЗ и Н4, взаимодействующие между собой, по-видимому, С-концевыми участками молекул. N-концевые участки гистоновых молекул взаимодействуют с молекулой ДНК таким образом, что последняя оказывается накрученной на гистоновый остов, делая два витка на одной его стороне и один на другой. На одну нуклеосому приходится около 140 пар оснований ДНК. Между соседними нуклеосомами имеется варьирующий по длине отрезок ДНК (10-70 пар оснований). Когда он выпрямлен, ДНК принимает вид нити с бусинками. Если отрезок находится в сложенном состоянии, нуклеосомы тесно прилегают друг к другу, формируя фибриллу диаметром 10 нм. Строение из нуклеосомных частиц является принципом организации хроматина (см.) как в интерфазной, так и в метафазной хромосоме.

Индивидуально различимые хромосомы формируются ко времени клеточного деления, митоза или мейоза, в результате прогрессивно нарастающей конденсации хромосом. В профазе митотического деления хромосомы видны в световом микроскопе в виде длинных и переплетенных нитей, поэтому индивидуальные хромосомы на всем протяжении неразличимы. В профазе первого мейотического деления хромосомы претерпевают сложные специфические морфологические преобразования, связанные главным образом с конъюгацией гомологичных хромосом (см. Конъюгация хромосом) и генетической рекомбинацией (обменом участками) между ними. В пахитене (когда заканчивается конъюгация) особенно показательно чередование хромомер по длине хромосом, причем хромомерный рисунок специфичен для каждой хромосомы и меняется по мере конденсации. Многие хромосомы в оогенезе и Y-хромосома в сперматогенезе обладают высокой транскрипционной активностью. У некоторых видов организмов такие хромосомы получили название «ламповых щеток». Они состоят из оси, построенной из хромомер и межхромомерных участков, и многочисленных боковых петель - деконденсированных хромомер, находящихся в состоянии генетического функционирования (транскрипции).

В метафазе деления клетки хромосомы имеют наименьшую длину и их легко исследовать, поэтому описание индивидуальных хромосом, как и всего их набора в клетке, дают применительно к их состоянию в этой фазе. Размеры метафазных хромосом у одного и того же вида организмов сильно различаются: хромосомы размерами в доли микрона имеют точечный вид, при длине более 1 мкм они выглядят как палочковидные тела. Обычно это раздвоенные по длине образования, состоящие из двух сестринских хроматид (рис. 2, 3), поскольку в метафазе хромосомы редуплицированы.

Индивидуальные хромосомы набора различаются между собой по длине и другим морфологическим признакам. Методы, применявшиеся до 70-х годов, обеспечивали равномерное окрашивание хромосомы по ее длине. Тем не менее такая хромосома в качестве обязательного элемента структуры имеет первичную перетяжку - участок, где обе хроматиды сужаются, видимо не отделяясь одна от другой, и плохо окрашиваются. Этот район хромосомы называется центромерой, он содержит специализированную структуру - кинетохор, который участвует в формировании нитей веретена деления хромосом. По соотношению размеров лежащих по обе стороны от первичной перетяжки хромосомных плеч хромосомы подразделяются на три типа: метацентрические (со срединно расположенной перетяжкой), субметацентрические (перетяжка смещена от середины), акроцентрические (центромера расположена близко к концу хромосомы, рис. 3). У человека имеются все три типа хромосом. Концы хромосом называют теломерами. По длине хромосом с той или иной степенью постоянства могут встречаться не имеющие отношения к центромере, так называемые вторичные перетяжки. Если они располагаются близко к теломере, отделяемый перетяжкой дистальный участок хромосомы называют спутником, а перетяжку - спутничной (рис. 2). У человека десять со вторичной перетяжкой хромосом, все они являются акроцентрическими, спутники локализованы в коротком плече. Некоторые вторичные перетяжки содержат рибосомные гены и называются ядрышкообразующими, поскольку благодаря их функционированию в продукции РНК в интерфазном ядре формируется ядрышко (см.). Другие вторичные перетяжки образуются гетерохроматиновыми районами хромосом; у человека из таких перетяжек наиболее выражены околоцентромерные перетяжки в 1, 9 и 16-й хромосомах.

Первоначальный метод использования красителя Гимзы и других хромосомных красителей давал равномерную окраску по всей длине хромосомы. С начала 70-х годов разработан ряд методов окраски и обработки метафазных хромосом, которые позволили обнаружить дифференцированность (деление на светлые и темные полосы) линейной структуры каждой хромосомы по всей ее длине: Q-окраска (Q - от английского quinacrine акрихин), получаемая с помощью акрихина, акрихиниприта и других флюорохромов; G-окраска (G - от фамилии Giemsa), получаемая с помощью красителя Гимзы (см. Романовского - Гимзы метод) после инкубации препаратов хромосом в специальных условиях; R-окраска (R - от англ. reverse обратный; хромосомы окрашиваются обратно G-окраске). Тело хромосомы оказывается подразделенным на сегменты разной интенсивности окрашивания или флюоресценции. Число, положение и размер таких сегментов специфичны для каждой хромосомы, поэтому любой хромосомный набор может быть идентифицирован. Другие методы позволяют дифференциально окрашивать отдельные специфические районы хромосом. Возможно избирательное окрашивание красителем Гимзы гетерохроматиновых районов хромосомы (С-окраска; С - от centromere центромера), располагающихся рядом с центромерой - С-сегментов (рис. 4). У человека С-сегменты обнаружены в околоцентромерном районе всех аутосом и длинном плече Y -хромосомы. Гетерохроматиновые районы варьируют по величине у разных индивидуумов, обусловливая полиморфизм хромосом (см. Хромосомный полиморфизм). Специфические окраски позволяют выявить в метафазных хромосомах функционировавшие в интерфазе ядрышкообразующие районы, а также кинетохоры.

На электронномикроскопическом уровне основной ультраструктурой единицей интерфазного хроматина при просвечивающей электронной микроскопии (см.) является нить диаметром 20-30 нм. Плотность упаковки нитей различна в участках плотного и диффузного хроматина.

Метафазная хромосома на срезе в просвечивающем электронном микроскопе представляется равномерно заполненной фибриллами 20-30 нм в поперечнике, которые в зависимости от плоскости сечения имеют вид округлых, овальных или удлиненных образований. В профазе и телофазе в хромосоме можно обнаружить более толстые нити (до 300 нм). При электронной микроскопии поверхность метафазной хромосомы представлена хаотично уложенными многочисленными фибриллами разного диаметра, видимыми, как правило, на коротком отрезке (рис. 5). Преобладают нити диаметром 30-60 нм.

Изменчивость хромосом в онтогенезе и эволюции

Постоянство числа хромосом в хромосомном наборе и структуры каждой хромосомы - непременное условие нормального развития в онтогенезе (см.) и сохранения биол. вида. В течение жизни организма могут происходить изменения числа отдельных хромосом и даже их гаплоидных наборов (геномные мутации) или структуры хромосом (хромосомные мутации). Необычные варианты хромосом, обусловливающие уникальность хромосомного набора индивидуума, применяются в качестве генетических маркеров (маркерных хромосом). Геномные и хромосомные мутации играют важную роль в эволюции биол. видов. Данные, полученные при изучении хромосом, вносят большой вклад в систематику видов (кариосистематику). У животных одним из главных механизмов эволюционной изменчивости является изменение числа и структуры отдельных хромосом. Важное значение имеет также изменение содержания гетерохроматина в отдельных или нескольких хромосомах. Сравнительное изучение хромосом человека и современных человекообразных обезьян позволило на основании сходства и различия индивидуальных хромосом установить степень филогенетического родства этих видов и смоделировать кариотип их общего ближайшего предка.

Библиогр.: Босток К. и Самнер Э. Хромосома эукариотической клетки, пер. с англ., М., 1981; Бочко вН. П., Захаров А. Ф. и Иванов В. И. Медицинская генетика, М., 1984; Дарлингтон С. Д. и Л а К у р Л. Ф. Хромосомы, Методы работы, пер. с англ., М., 1980, библиогр.; Захаров А. Ф. Хромосомы человека (проблемы линейной организации;, М., 1977, библиогр.; Захаров А. Ф. и др. Хромосомы человека, Атлас, М., 1982; К и к н а д з е И. И. Функциональная организация хромосом, Л., 1972, библиогр.; Основы цитогенетики человека, под ред. А. А. Прокофьевой-Бельговской, М., 1969: С у о н с о н К., M е р ц Т. и Я н г У. Цитогенетика, пер. с англ., М., 1969; Cell biology, A comprehensive treatise, ed. by L. Goldstein a. D. M. Prescott, p. 267, N. Y. a. o., 1979; S e u й n e z H. N, The phylogeny of human chromosomes, v. 2, B. a. o.\ 1979; S h a r m a A. K. a. S h a r-m a A. Chromosome techniques, L. a. o., 1980; ThermanE. Human chromosomes, N. Y. a. o., 1980.

А. Ф. Захаров.

Хромосома - это организованная структура ДНК и белка, содержащаяся в клетках. Это один кусочек свернутой в спираль ДНК, содержащий много генов, регулирующих элементов и других нуклеотидных последовательностей. Хромосомы также содержат связанные с ДНК белки, которые служат для упаковки ДНК и контролирования ее функций. Хромосомная ДНК кодирует всю генетическую информацию организма или большую ее часть; некоторые виды также содержат плазмиды или другие экстрахромосомные генетические элементы.

Или болезнь Дауна, также известный как трисомия 21 является наследственным заболеванием, вызванным присутствием части или целой 3 копии 21 хромосомы . Обычно, он связан с задержкой физического развития, характерными чертами лица или от легкого до умеренного интеллектуального...


Хромосомы широко варьируются между разными организмами. Молекула ДНК может быть круглой или линейной, и в ее составе может быть от 100000 до более 3750000000 нуклеотидов в длинной цепочке. Обычно клетки-эукариоты (клетки с ядрами) имеют большие линейные хромосомы, а клетки-прокариоты (клетки без определенных ядер) обладают круглыми хромосомами меньшего размера, хотя из этого правила есть много исключений. Кроме того в клетках могут содержаться хромосомы нескольких видов; например, митохондрии в большинстве эукариотов и хлоропласты в растениях имеют свои собственные маленькие хромосомы.

В эукариотах ядерные хромосомы упакованы белками в уплотненную структуру под названием хроматин. Это позволяет очень длинным молекулам ДНК вмещаться в клеточное ядро. Структура хромосом и хроматина варьируется в клеточном цикле. Хромосомы являются важным блоком для клеточного деления и должны воспроизводиться, делиться и пропускаться успешно к своим дочерним клеткам для обеспечения генетического разнообразия и выживания своего потомства. Хромосомы могут быть как дублированными, так и недублированными. Недублированные хромосомы - это единичные линейные пряди, в которых дублированные хромосомы содержат две идентичные копии (называемые хроматидами), объединенные центромерой.

Уплотнение дублированных хромосом во время митоза и мейоза приводит к образованию классической структуры с четырьмя плечами. Хромосомная рекомбинация играет жизненную роль в генетическом разнообразии. Если этими структурами манипулировать неправильно посредством процессов, известных, как хромосомная нестабильность и транслокация, клетка может подвергнуться митотической катастрофе и умереть, или она может неожиданно избежать апоптоза, приводя к прогрессированию рака.

На практике «хромосома» - это довольно неопределенный термин. Для прокариотов и вирусов, где нет хроматина, термин генофор является более пригодным. В прокариотах ДНК обычно организована в виде петли, которая скручена в тугую спираль на себе, иногда сопровождается одной или меньшими круглыми молекулами ДНК под названием плазмиды. Эти маленькие круглые геномы также обнаружены в митохондриях и хлоропластах, что отражает их бактериальное происхождение. Простейшие генофоры обнаружены в вирусах: это молекулы ДНК или РНК - короткие линейные или круглые генофоры, которые часто лишены структурных белков.

Слово «хромосома » образовано греческими словами «χρῶμα» (chroma , цвет) и «σῶμα» (soma , тело) из-за свойства хромосом подвергаться очень сильному окрашиванию определенными красителями.

История изучения хромосом

В ряде экспериментов, начатых в середине 1880-х, Теодор Бовери определенно продемонстрировал, что хромосомы являются векторами наследственности. Его двумя принципами были последовательность хромосом и индивидуальность хромосом. Второй принцип был очень оригинальным. Вильгельм Ру предположил, что каждая хромосома несет разную генетическую нагрузку. Бовери смог протестировать и подтвердить эту гипотезу. При помощи повторного открытия, сделанного в ранней работе Грегора Менделя, в начале 1900-х, Бовери смог отметить связь между правилами наследования и поведением хромосом. Бовери повлиял на два поколения американских цитологов: среди них Эдмунд Бичер Уилсон, Уолтер Саттон и Теофилус Пейнтер (в действительности Уилсон и Пейнтер работали с ним).

В своей знаменитой книге «Клетка в развитии и наследственности » Уилсон связал вместе независимую работу Бовери и Саттона (около 1902 г.), назвав хромосомную теорию наследственности «Теорией Саттона-Бовери» (имена иногда переставляются местами). Эрнст Мэйр отмечает, что теория была горячо оспорена некоторыми знаменитыми генетиками, например, Уильямом Бэйтсоном, Вильгельмом Йохансеном, Ричардом Гольдшмидтом и Т.Х. Морганом, все они обладали довольно догматичным складом ума. В итоге полное доказательство было получено от хромосомных карт в собственной лаборатории Моргана.

Прокариоты и хромосомы

Прокариоты - бактерии и археи - обычно имеют одну круглую хромосому, но существует много вариаций.

В большинстве случаев размер хромосом бактерий может варьироваться от 160000 пар оснований в эндосимбиотической бактерии Candidatus Carsonella ruddii до 12200000 пар оснований в обитающей в почве бактерии Sorangium cellulosum . Спирохеты рода Borrelia являются замечательным исключением из этой классификации вместе с такими бактериями, как Borrelia burgdorferi (причина болезни Лайма), содержащими одну линейную хромосому.

Структура в последовательностях

Хромосомы прокариотов имеют меньшую структуру на основе последовательности, чем эукариоты. Бактерии обычно обладают одной точкой (происхождение дублирования), откуда начинается дублирование, в то время как некоторые археи содержат множество точек происхождения дублирования. Гены в прокариотах часто организованы в опероны и обычно не содержат интроны, в отличие от эукариотов.

Упаковка ДНК

Прокариоты не имеют ядер. Вместо этого их ДНК организована в структуру под названием нуклеоид. Нуклеоид - это отдельная структура, которая занимает определенный участок клетки бактерии. Однако эта структура динамична, поддерживается и трансформируется действиями похожих на гистон белков, которые связываются с бактериальной хромосомой. В археях ДНК в хромосомах даже более организованы, при этом ДНК упакованы в структуры, аналогичные нуклеосомам эукариотов.

Бактериальные хромосомы склонны привязываться к плазменной мембране бактерии. В молекулярном биологическом приложении это позволяет ее изоляцию от ДНК плазмида посредством центрифугирования лизированной бактерии и осаждения мембран (и присоединенной ДНК).

Хромосомы прокариотов и плазмиды являются, как ДНК эукариотов, в целом сверхспиральными. ДНК должна выделиться сначала в ослабленном состоянии для доступа к транскрипции, регулированию и дублированию.

В эукариотах

Эукариоты (клетки с ядрами, обнаруживаемые в растениях, дрожжах и животных) обладают большими линейными хромосомами, содержащимися в клеточном ядре. Каждая хромосома имеет одну центромеру, одно или два плеча выступают из центромеры, хотя в большинстве обстоятельств эти плечи, как таковые, не видны. К тому же большинство эукариотов обладают одним круглым митохондриальным геномом, а некоторые эукариоты могут иметь дополнительные маленькие круглые или линейные цитоплазматические хромосомы.

В ядерных хромосомах эукариотов неуплотненная ДНК существует в полуупорядоченной структуре, где она завернута вокруг гистонов (структурные белки), формируя композитный материал под названием хроматин.

Хроматин

Хроматин - это комплекс ДНК и белка, содержащийся в ядре эукариота, который упаковывает хромосомы. Структура хроматина варьируется значительно между различными этапами клеточного цикла, в соответствии с требованиями ДНК.

Межфазный хроматин

Во время межфазы (период клеточного цикла, когда клетка не делится) можно различить два вида хроматина:

  • Эухроматин, который состоит из активной ДНК, то есть выраженной в качестве белка.
  • Гетерохроматин, который состоит по большей части из неактивной ДНК. Как кажется, он служит структурным целям во время хромосомных стадий. Гетерохроматин можно далее разделить на два типа:
    • Конститутивный гетерохроматин , никогда не выражаемый. Он расположен вокруг центромеры и обычно содержит повторные последовательности.
    • Факультативный гетерохроматин , иногда выражаемый.

Метафазный хроматин и деление

На ранних стадиях митоза или мейоза (деление клетки) пряди хроматина становятся все более уплотненными. Они перестают функционировать, как доступный генетический материал (останавливается транскрипция), и становятся компактной транспортабельной формой. Эта компактная форма делает индивидуальные хромосомы видимыми, и они образуют классическую структуру с четырьмя плечами, с парой сестринских хроматид, присоединенных друг к другу в центромере. Более короткие плечи называются «p плечи » (от французского слова «petit» - маленький), а более длинные плечи называются «q плечи » (буква «q » следует за буквой «p » в латинском алфавите; q-g «grande» - большой). Это единственный натуральный контекст, в котором отдельные хромосомы видны при помощи оптического микроскопа.

Во время митоза микротрубочки вырастают из центросом, расположенных на противоположных концах клетки, и также присоединяются к центромере в специализированных структурах под названием кинетохоры, одна из которых присутствует на каждой сестринской хроматиде. Специальная последовательность оснований ДНК в области кинетохоров обеспечивает вместе со специальными белками долговременное присоединение к этой области. Микротрубочки затем оттягивают хроматиды к центросомам, чтобы каждая дочерняя клетка наследовала один набор хроматид. Когда клетки разделились, хроматиды раскручиваются, и ДНК может снова транскрибироваться. Несмотря на свой внешний вид, хромосомы структурно сильно уплотненные, что позволяет этим гигантским ДНК структурам помещаться в клеточные ядра.

Человеческие хромосомы

Хромосомы у людей могут быть разделены на два типа: аутосомы и половые хромосомы. Определенные генетические черты связаны с полом человека и передаются через половые хромосомы. Аутосомы содержат оставшуюся часть генетической наследуемой информации. Все действуют тем же образом во время деления клеток. В человеческих клетках содержатся 23 пары хромосом (22 пары аутосом и одну пару половых хромосом), что дает в целом 46 на клетку. В добавление к ним в человеческих клетках имеется много сотен копий митохондриального генома. Задание последовательности человеческого генома обеспечило много информации о каждой хромосоме. Ниже приводится таблица, в которой собрана статистика для хромосом на основе информации о геноме человека Института Сенгера в базе данных VEGA (Комментарии к геному позвоночных). Число генов - это приблизительная оценка, так как она частично основана на предсказании генов. Общая длина хромосом - это тоже приблизительная оценка, основанная на оцененном размере областей непоследовательных гетерохроматинов.

Хромосомы

Гены

Общее число комплементарных пар оснований нуклеиновых кислот

Упорядоченные комплементарные пары оснований нуклеиновых кислот

X (половая хромосома)

Y (половая хромосома)

Итого

3079843747

2857698560

Число хромосом в различных организмах

Эукариоты

В этих таблицах дается общее число хромосом (включая половые) в клеточных ядрах. Например, диплоидные человеческие клетки содержат 22 разных вида аутосомов, каждый присутствует в двух копиях, и две половых хромосомы. Это дает 46 хромосом в целом. Другие организмы имеют более двух копий своих хромосом, например, гексаплоидная хлебная пшеница содержит шесть копий семи разных хромосом, всего 42 хромосомы.

Число хромосом в некоторых растениях


Виды растений


Arabidopsis thaliana (диплоид)



Садовая улитка


Тибетская лиса


Домашняя свинья


Лабораторная крыса


Сирийский хомяк



Домашняя овца




Зимородок


Шелкопряд





Число хромосом в других организмах

Виды

Большие хромосомы

Промежуточные хромосомы

Микрохромосомы

Trypanosoma brucei

Домашний голубь (Columba livia domestics )

2 половых хромосомы







Нормальные члены отдельных видов эукариотов имеют то же число ядерных хромосом (см. таблицу). Другие хромосомы эукариотов, то есть митохондриальные и похожие на плазмиды маленькие хромосомы, значительнее варьируются в количестве, и на каждую клетку может быть тысяча копий.

Виды с бесполовым воспроизведением имеют один набор хромосом, тех же самых, что в клетках организма. Однако бесполые виды могут быть гаплоидными и диплоидными.

Виды с половым воспроизведением имеют соматические клетки (клетки организма), которые являются диплоидными , имеющими два набора хромосом, один от матери и другой от отца. Гаметы, репродуктивные клетки, являются гаплоидными [n]: у них один набор хромосом. Гаметы получены мейозом диплоидной клетки зародышевой линии. Во время мейоза соответствующие хромосомы отца и матери могут обмениваться маленькими частями друг друга (скрещивание), и тем самым образуют новые хромосомы, которые не унаследованы только от того или другого родителя. Когда соединяются мужская и женская гаметы (оплодотворение), формируется новый диплоидный организм.

Некоторые виды животных и растений полиплоидные : в них есть более двух наборов гомологических хромосом. Важные для сельского хозяйства растения , такие как табак или пшеница, часто полиплоидные, по сравнению с наследственными видами. Пшеница имеет гаплоидное число семи хромосом, обнаруженное в некоторых культурных растениях, а также в диких предках. Более распространенные макаронная и хлебная пшеница - полиплоидные, имеющие 28 (тетраплоид) и 42 (гексаплоид) хромосомы, по сравнению с 14 (диплоид) хромосомами в дикой пшенице.

Прокариоты

Виды прокариотов в целом имеют одну копию каждой главной хромосомы, но большинство клеток может легко выжить с многочисленными копиями. Например, Buchnera , симбионт тли, имеет много копий своей хромосомы, количество которых колеблется от 10 до 400 копий на клетку. Однако в некоторых больших бактериях, таких как Epulopiscium fishelsoni , могут присутствовать до 100 000 копий хромосомы. Количество копий плазмидов и похожих на плазмиды маленьких хромосом, как в эукариотах, значительно колеблется. Число плазмидов в клетке почти полностью определяется скоростью деления плазмидов - быстрое деление порождает высокое число копий.

Кариотип

В целом кариотип - это характерное хромосомное дополнение эукариотических видов. Подготовка и изучение кариотипов - это часть цитогенетики.

Хотя дублирование и транскрипция ДНК высоко стандартизированы в эукариотах, то же самое нельзя сказать для их кариотипов , которые обычно весьма изменчивы. Виды числа хромосом и их детальная организация могут варьироваться. В некоторых случаях между видами может быть значительное колебание. Часто имеется:

  1. колебание между двумя полами;
  2. колебание между зародышевой линией и сомой (между гаметами и оставшейся частью организма);
  3. колебание между членами популяции из-за сбалансированного генетического полиморфизма;
  4. географическое колебание между расами;
  5. мозаика или иные аномалии

Также колебание в кариотипе может возникнуть в ходе развития из оплодотворенной яйцеклетки.

Техника определения кариотипа обычно называется кариотипированием . Клетки могут быть блокированы частично через деление (в метафазе) в искусственных условиях (в реакционной пробирке) колхицином. Эти клетки затем окрашиваются, фотографируются и упорядочиваются в кариограмму, с набором упорядоченных хромосом, аутосом в порядке длины и половых хромосом (здесь X/Y) в конце.

Как и во многих видах с половым воспроизведением, у человека имеются специальные гоносомы (половые хромосомы, в противоположность аутосомам). Это XX у женщин и XY у мужчин.

Историческое примечание

На исследование человеческого кариотипа ушло много лет, прежде чем был получен ответ на самый основной вопрос: Сколько хромосом содержится в нормальной диплоидной человеческой клетке? В 1912 г. Ганс вон Винивартер сообщил о 47 хромосомах в сперматогониях и 48 - в оогониях, включая механизм определения пола XX/XO. Пейнтер в 1922 г. не был уверен по поводу диплоидного числа человека - 46 или 48, вначале склоняясь к 46. Он пересмотрел позднее свое мнение с 46 на 48, и правильно настаивал на том, что человек обладает системой XX/XY.

Для окончательного решения проблемы нужны были новые техники:

  1. Использование клеток в культуре;
  2. Подготовка клеток в гипотоническом растворе, где они набухают и распространяют хромосомы;
  3. Задержка митоза в метафазе раствором колхицина;
  4. Раздавливание препарата на предметодержателе, стимулируя хромосомы в единой плоскости;
  5. Разрезание микрофотографии и упорядочение результатов в неопровержимой кариограмме.

Только в 1954 г. было подтверждено диплоидное число человека - 46. Учитывая техники Винивартера и Пейнтера, их результаты были довольно примечательными. Шимпанзе (ближайший живущий родственник современных людей) имеет 48 хромосом.

Заблуждения

Хромосомные отклонения - это разрушения в нормальном хромосомном содержании клетки и основная причина генетических состояний у людей, таких как синдром Дауна, хотя большая часть отклонений оказывает небольшое влияние или не оказывает его совсем. Некоторые хромосомные нарушения не вызывают болезни у носителей, такие как транслокации или хромосомные инверсии, хотя они могут привести к повышенному шансу рождения ребенка с хромосомным нарушением. Аномальное количество хромосом или хромосомных наборов под названием анэуплоидия может быть летальным или дать рост генетическим нарушениям. Семьям, которые могут нести хромосомную перегруппировку, предлагается генетическая консультация.

Набор или потеря ДНК от хромосом может привести к разнообразным генетическим расстройствам. Примеры среди людей:

  • Синдром кошачьего крика, вызванный делением части короткого плеча хромосомы 5. Состояние получило такое название, потому что заболевшие дети издают пронзительные похожие на кошачьи крики. У людей, пораженных этим синдромом, широко поставленные глаза, маленькая голова и челюсть , умеренно-тяжелые проблемы с психическим здоровьем, невысокий рост.
  • Синдром Дауна, самая распространенная трисомия, обычно вызван лишней копией хромосомы 21 (трисомия 21). Характерные признаки включают пониженный мышечный тонус , коренастое телосложение , асимметричные скулы, раскосые глаза и слабо-умеренные нарушения развития.
  • Синдром Эдвардса или трисомия хромосомы 18, вторая наиболее распространенная трисомия. Симптомы включают замедленность движений, нарушения развития и многочисленные врожденные аномалии, вызывающие серьезные проблемы для здоровья. 90% больных умирают в младенчестве. Для них характерны сжатые кулаки и пальцы внахлест.
  • Изодицентрическая хромосома 15, также называемая idic(15), частичная тетрасомия длинного плеча хромосомы 15 или обратное дублирование хромосомы 15 (inv dup 15).
  • Синдром Якобсена возникает очень редко. Его также называют нарушением терминальной делеции длинного плеча хромосомы 11. Страдающие от него имеют нормальный интеллект или слабую неспособность развития, с плохими речевыми навыками. У большинства имеется нарушение кровотечения под названием синдром Пари-Труссо.
  • Синдром Клайнфельтера (XXY). Мужчины с синдромом Клайнфельтера обычно стерильны, как правило, выше ростом, руки и ноги у них длиннее, чем у ровесников. Мальчики с синдромом обычно застенчивые и тихие, у них выше вероятность замедленной речи и дислексии. Без лечения тестостероном у некоторых может развиться гинекомастия в подростковом периоде.
  • Синдром Патау, также называемый Д-синдромом или трисомия 13 хромосомы. Симптомы аналогичны в некоторой степени трисомии хромосомы 18, без характерной складчатой руки.
  • Маленькая добавочная маркерная хромосома. Это означает наличие дополнительной аномальной хромосомы. Свойства зависят от происхождения дополнительного генетического материала. Синдром кошачьих глаз и синдром изодицентрической хромосомы 15 (или idic15) вызваны добавочной маркерной хромосомой, как синдром Паллистера-Киллиана.
  • Синдром тройной Х хромосомы (XXX). Девочки XXX, как правило, выше ростом, более худые и у них выше вероятность дислексии.
  • Синдром Тернера (X вместо XX или XY). При синдроме Тернера женские половые признаки имеются, но недоразвиты. Женщины с синдромом Тернера имеют короткое туловище, низкий лоб, аномалии развития глаз и костей и вогнутую грудь.
  • Синдром XYY. Мальчики XYY обычно выше своих братьев и сестер. Как у мальчиков XXY и девочек XXX, у них больше вероятность возникновения трудностей с обучением.
  • Синдром Вольфа Хиршхорна, который вызван частичным разрушением короткого плеча хромосомы 4. Он характеризуется тяжелой задержкой роста и серьезными проблемами психического здоровья.

Хромосомы

основные структурно-функциональные элементы клеточного ядра, содержащие гены. Название «хромосомы» обусловлено их способностью интенсивно окрашиваться основными красителями во время деления клетки. Каждый биологический вид характеризуется постоянством числа, размеров и других морфологических признаков X. Хромосомный набор половых и соматических клеток различен. В соматических клетках содержится двойной (диплоидный) набор Х. который можно разделить на пары гомологичных (идентичных) хромосом, сходных по величине и морфологии. Один из гомологов всегда отцовского, другой- материнского происхождения. В половых клетках (гаметах) эукариот (многоклеточных организмов, в т.ч. человека) все хромосомы набора представлены в единственном числе (гаплоидный хромосомный набор). В оплодотворенной яйцеклетке (зиготе) гаплоидные наборы мужских и женских гамет объединяются в одном ядре, восстанавливая двойной набор хромосом. У человека диплоидный хромосомный набор (кариотип) представлен 22 парами хромосом (аутосом) и одной парой половых хромосом (гоносом). Половые хромосомы различаются не только по составу содержащихся в них генов, но и по своей морфологии. Развитие из зиготы женской особи определяет пара половых хромосом, состоящая из двух Х-хромосом, то есть ХХ-пара, а мужской - пара, состоящая из X-хромосомы и У-хромосомы, - то есть ХУ-пара.

Физико-химическая природа Х. зависит от сложности организации биологического вида. Так, у РНК-содержащих вирусов роль Х. выполняет однонитевая молекула РНК, у ДНК-содержащих вирусов и прокариот (бактерий, синезеленых водорослей) единственная Х. представляет собой свободную от структурных белков, замкнутую в кольцо молекулу ДНК, прикрепленную одним из своих участков к клеточной стенке. У эукариот главными молекулярными компонентами Х. служат ДНК (см. Нуклеиновые кислоты), основные белки гистоны, кислые белки и РНК (содержание кислых белков и РНК в хромосоме варьирует на различных этапах клеточного цикла). ДНК в хромосоме существует в виде комплекса с гистонами, хотя отдельные участки молекулы ДНК могут быть свободными от этих белков.

Комплексы ДНК с гистонами формируют элементарные структурные частицы Х. - нуклеосомы. При участии специфического гистона происходит уплотнение нуклеосомной нити, отдельные нуклеосомы тесно прилегают друг к другу, образуя фибриллу. Фибрилла подвергается дальнейшей пространственной укладке формируя нить второго порядка. Из нитей второго порядка образуются петли, которые являются структурами третьего порядка организации хромосом.

Морфология хромосом различна в отдельных фазах клеточного цикла. В пресинтетической фазе Х. представлены одной нитью (хроматидой), в постсинтетической фазе состоят из двух хроматид. В интерфазе Х. занимают весь объем ядра, образуя так называемый хроматин. Плотность хроматина в разных участках ядра неодинакова. Рыхлые участки, слабо окрашивающиеся основными красителями, сменяются более плотными участками, окрашивающимися интенсивно. Первые представляют собой эухроматин: участки плотного хроматина содержат гетерохроматин или генетически инактивированные части Х.

Индивидуально различимые тела хромосом формируются ко времени клеточного деления - митоза или мейоза (см. Клетка). В профазе первого мейотического деления Х. претерпевают сложный цикл преобразований, связанных с конъюгацией гомологичных хромосом по длине с образованием так называемых бивалентов и генетической рекомбинацией между ними. В профазе митотического деления Х. выглядят как длинные переплетенные нити. Формирование «тела» Х. в метафазе клеточного деления происходит путем уплотнения структур третьего порядка неизвестным пока способом. Наименьшую длину и характерные морфологические особенности хромосом можно наблюдать именно на стадии метафазы. Поэтому всегда описание индивидуальных особенностей отдельных хромосом, как и всего хромосомного набора, соответствует их состоянию в метафазе митоза. Обычно на этой стадии Х. представляют собой продольно расщепленные образования, состоящие из двух сестринских хроматид. Обязательным элементом структуры Х. является так называемая первичная перетяжка, где обе хроматиды сужаются и сохраняются объединенными. В зависимости от локализации центромеры различают хромосомы метацентрические (центромеры расположена посередине), субметацентрические (центромера смещена по отношению к центру) и акроцентрические (центромера расположена близко к концу хромосомы). Концы хромосомы называют теломерами.

В основе индивидуализации хромосом человека (и других организмов) лежит их способность окрашиваться на чередующиеся светлые и темные поперечные полосы по длине хромосомы при использовании специальных способов окраски. Число, положение и ширина таких полос специфичны для каждой X. Это обеспечивает надежную идентификацию всех Х. человека в нормальном хромосомном наборе и позволяет расшифровывать происхождение изменений в хромосомах при цитогенетическом обследовании пациентов с различной наследственной патологией.

Сохранение постоянства числа хромосом в хромосомном наборе и структуры каждой отдельной Х. является непременным условием нормальною развития индивидуума в онтогенезе. Однако в течение жизни в организме могут возникать геномные и хромосомные мутации. Геномные мутации являются следствием нарушения механизма деления клеток и расхождения хромосом. Полиплоидия - увеличение числа гаплоидных наборов хромосом больше диплоидного; анэуплоидия (изменение числа отдельных Х.) возможна в результате потери одной из двух гомологичных Х. (моносомия) или, наоборот, появления лишних Х. - одной, двух и более (трисомия, тетрасомия и т.д.). В соматических клетках, отличающихся интенсивным функционированием, изменение плоидности может быть физиологическим (например, физиологическая полиплоидия в клетках печени). Однако анэуплоидия в соматических клетках нередко наблюдается при развитии опухолей. Среди детей с наследственными хромосомными болезнями преобладают так называемые анэуплоиды по отдельным аутосомам и половым хромосомам. Трисомия чаще затрагивает путосомы 8, 13, 18, 21 пар и Х-хромосомы. В результате трисомии хромосом 21 пары развивается Дауна болезнь. Примером моносомии может служить Шерешевского - Тернера синдром, обусловленный утратой одной из Х-хромосом. Анэуплоидия, возникшая в первых делениях зиготы, приводит к возникновению организма с различным числом Х. данной пары в разных клетках тканей (явление мозаицизма).

Геномные и хромосомные мутации играют важную роль в эволюции биологических видов. Сравнительное изучение Х. и хромосомных наборов позволило остановить степень филогенетического родства человека и человекообразных обезьян, смоделировать набор хромосом у их общего предка и определить, какие структурные перестройки хромосом произошли в ходе эволюции человека.

См. также Ген, Генетика, Медицинская генетика.

Энциклопедический словарь медицинских терминов М. СЭ-1982-84, ПМП: БРЭ-94 г., ММЭ: МЭ.91-96 г.