Значение модуля. Модуль числа. Полные уроки — Гипермаркет знаний. Геометрический смысл модуля

Сначала определяем знак выражения под знаком модуля, а потом раскрываем модуль :

  • если значение выражения больше нуля, то просто выносим его из-под знака модуля,
  • если же выражение меньше нуля, то выносим его из-под знака модуля, меняя при этом знак, как делали это ранее в примерах.

Ну что, попробуем? Оценим:

(Забыл, Повтори.)

Если, то какой знак имеет? Ну конечно, !

А, значит, знак модуля раскрываем, меняя знак у выражения:

Разобрался? Тогда попробуй сам:

Ответы:

Какими же ещё свойствами обладает модуль?

Если нам нужно перемножить числа внутри знака модуля, мы спокойно можем перемножить модули этих чисел!!!

Выражаясь математическим языком, модуль произведения чисел равен произведению модулей этих чисел.

Например:

А что, если нам нужно разделить два числа (выражения) под знаком модуля?

Да то же, что и с умножением! Разобьем на два отдельных числа (выражения) под знаком модуля:

при условии, что (так как на ноль делить нельзя).

Стоит запомнить ещё одно свойство модуля:

Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел:

Почему так? Всё очень просто!

Как мы помним, модуль всегда положителен. Но под знаком модуля может находиться любое число: как положительное, так и отрицательное. Допустим, что числа и оба положительные. Тогда левое выражение будет равно правому выражению.

Рассмотрим на примере:

Если же под знаком модуля одно число отрицательное, а другое положительно, левое выражение всегда окажется меньше правого:

Вроде с этим свойством все ясно, рассмотрим еще парочку полезных свойств модуля.

Что если перед нами такое выражение:

Что мы можем сделать с этим выражением? Значение x нам неизвестно, но зато мы уже знаем, что, а значит.

Число больше нуля, а значит можно просто записать:

Вот мы и пришли к другому свойству, которое в общем виде можно представить так:

А чему равно такое выражение:

Итак, нам необходимо определить знак под модулем. А надо ли здесь определять знак?

Конечно, нет, если помнишь, что любое число в квадрате всегда больше нуля! Если не помнишь, смотри тему . И что же получается? А вот что:

Здорово, да? Довольно удобно. А теперь конкретный пример для закрепления:

Ну, и почему сомнения? Действуем смело!

Во всем разобрался? Тогда вперед тренироваться на примерах!

1. Найдите значение выражения, если.

2. У каких чисел модуль равен?

3. Найдите значение выражений:

Если не все пока ясно и есть затруднения в решениях, то давай разбираться:

Решение 1 :

Итак, подставим значения и в выражение

Решение 2:

Как мы помним, противоположные числа по модулю равны. Значит, значение модуля, равное имеют два числа: и.

Решение 3:

а)
б)
в)
г)

Все уловил? Тогда пора перейти к более сложному!

Попробуем упростить выражение

Решение:

Итак, мы помним, что значение модуля не может быть меньше нуля. Если под знаком модуля число положительное , то мы просто можем отбросить знак: модуль числа будет равен этому числу.

Но если под знаком модуля отрицательное число , то значение модуля равно противоположному числу (то есть числу, взятому со знаком «-»).

Для того, чтобы найти модуль любого выражения, для начала нужно выяснить, положительное ли значение оно принимает, или отрицательное.

Получается, значение первого выражения под модулем.

Следовательно, выражение под знаком модуля отрицательно. Второе выражение под знаком модуля всегда положительно, так как мы складываем два положительных числа.

Итак, значение первого выражения под знаком модуля отрицательно, второго - положительно:

Это значит, раскрывая знак модуля первого выражения, мы должны взять это выражение со знаком «-». Вот так:

Во втором случае просто отбросим знак модуля:

Упростим данное выражение целиком:

Модуль числа и его свойства (строгие определения и доказательства)

Определение:

Модуль (абсолютная величина) числа - это само число, если, и число, если:

Например:

Пример:

Упростите выражение.

Решение:

Основные свойства модуля

Для всех:

Пример:

Докажите свойство №5 .

Доказательство:

Предположим, что существуют такие, что

Возведем левую и правую части неравенства в квадрат (это можно сделать, т.к. обе части неравенства всегда неотрицательны ):

а это противоречит определению модуля.

Следовательно, таких не существует, а значит, при всех выполняется неравенство

Примеры для самостоятельного решения:

1) Докажите свойство №6 .

2) Упростите выражение.

Ответы:

1) Воспользуемся свойством №3 : , а поскольку, тогда

Чтобы упростить, нужно раскрыть модули. А чтобы раскрыть модули, нужно узнать, положительны или отрицательны выражения под модулем?

a. Сравним числа и и:

b. Теперь сравним и:

Складываем значения модулей:

Модуль числа. Коротко о главном.

Модуль (абсолютная величина) числа - это само число, если, и число, если:

Свойства модуля:

  1. Модуль числа есть число неотрицательное: ;
  2. Модули противоположных чисел равны: ;
  3. Модуль произведения двух (и более) чисел равен произведению их модулей: ;
  4. Модуль частного двух чисел равен частному их модулей: ;
  5. Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел: ;
  6. Постоянный положительный множитель можно выносить за знак модуля: при;

Сначала определяем знак выражения под знаком модуля, а потом раскрываем модуль :

  • если значение выражения больше нуля, то просто выносим его из-под знака модуля,
  • если же выражение меньше нуля, то выносим его из-под знака модуля, меняя при этом знак, как делали это ранее в примерах.

Ну что, попробуем? Оценим:

(Забыл, Повтори.)

Если, то какой знак имеет? Ну конечно, !

А, значит, знак модуля раскрываем, меняя знак у выражения:

Разобрался? Тогда попробуй сам:

Ответы:

Какими же ещё свойствами обладает модуль?

Если нам нужно перемножить числа внутри знака модуля, мы спокойно можем перемножить модули этих чисел!!!

Выражаясь математическим языком, модуль произведения чисел равен произведению модулей этих чисел.

Например:

А что, если нам нужно разделить два числа (выражения) под знаком модуля?

Да то же, что и с умножением! Разобьем на два отдельных числа (выражения) под знаком модуля:

при условии, что (так как на ноль делить нельзя).

Стоит запомнить ещё одно свойство модуля:

Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел:

Почему так? Всё очень просто!

Как мы помним, модуль всегда положителен. Но под знаком модуля может находиться любое число: как положительное, так и отрицательное. Допустим, что числа и оба положительные. Тогда левое выражение будет равно правому выражению.

Рассмотрим на примере:

Если же под знаком модуля одно число отрицательное, а другое положительно, левое выражение всегда окажется меньше правого:

Вроде с этим свойством все ясно, рассмотрим еще парочку полезных свойств модуля.

Что если перед нами такое выражение:

Что мы можем сделать с этим выражением? Значение x нам неизвестно, но зато мы уже знаем, что, а значит.

Число больше нуля, а значит можно просто записать:

Вот мы и пришли к другому свойству, которое в общем виде можно представить так:

А чему равно такое выражение:

Итак, нам необходимо определить знак под модулем. А надо ли здесь определять знак?

Конечно, нет, если помнишь, что любое число в квадрате всегда больше нуля! Если не помнишь, смотри тему . И что же получается? А вот что:

Здорово, да? Довольно удобно. А теперь конкретный пример для закрепления:

Ну, и почему сомнения? Действуем смело!

Во всем разобрался? Тогда вперед тренироваться на примерах!

1. Найдите значение выражения, если.

2. У каких чисел модуль равен?

3. Найдите значение выражений:

Если не все пока ясно и есть затруднения в решениях, то давай разбираться:

Решение 1 :

Итак, подставим значения и в выражение

Решение 2:

Как мы помним, противоположные числа по модулю равны. Значит, значение модуля, равное имеют два числа: и.

Решение 3:

а)
б)
в)
г)

Все уловил? Тогда пора перейти к более сложному!

Попробуем упростить выражение

Решение:

Итак, мы помним, что значение модуля не может быть меньше нуля. Если под знаком модуля число положительное , то мы просто можем отбросить знак: модуль числа будет равен этому числу.

Но если под знаком модуля отрицательное число , то значение модуля равно противоположному числу (то есть числу, взятому со знаком «-»).

Для того, чтобы найти модуль любого выражения, для начала нужно выяснить, положительное ли значение оно принимает, или отрицательное.

Получается, значение первого выражения под модулем.

Следовательно, выражение под знаком модуля отрицательно. Второе выражение под знаком модуля всегда положительно, так как мы складываем два положительных числа.

Итак, значение первого выражения под знаком модуля отрицательно, второго - положительно:

Это значит, раскрывая знак модуля первого выражения, мы должны взять это выражение со знаком «-». Вот так:

Во втором случае просто отбросим знак модуля:

Упростим данное выражение целиком:

Модуль числа и его свойства (строгие определения и доказательства)

Определение:

Модуль (абсолютная величина) числа - это само число, если, и число, если:

Например:

Пример:

Упростите выражение.

Решение:

Основные свойства модуля

Для всех:

Пример:

Докажите свойство №5 .

Доказательство:

Предположим, что существуют такие, что

Возведем левую и правую части неравенства в квадрат (это можно сделать, т.к. обе части неравенства всегда неотрицательны ):

а это противоречит определению модуля.

Следовательно, таких не существует, а значит, при всех выполняется неравенство

Примеры для самостоятельного решения:

1) Докажите свойство №6 .

2) Упростите выражение.

Ответы:

1) Воспользуемся свойством №3 : , а поскольку, тогда

Чтобы упростить, нужно раскрыть модули. А чтобы раскрыть модули, нужно узнать, положительны или отрицательны выражения под модулем?

a. Сравним числа и и:

b. Теперь сравним и:

Складываем значения модулей:

Модуль числа. Коротко о главном.

Модуль (абсолютная величина) числа - это само число, если, и число, если:

Свойства модуля:

  1. Модуль числа есть число неотрицательное: ;
  2. Модули противоположных чисел равны: ;
  3. Модуль произведения двух (и более) чисел равен произведению их модулей: ;
  4. Модуль частного двух чисел равен частному их модулей: ;
  5. Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел: ;
  6. Постоянный положительный множитель можно выносить за знак модуля: при;

Термин (module) в буквальном переводе с латинского означает «мера». Это понятие было введено в математику английским учёным Р. Котесом. А немецкий математик К. Вейерштрасс ввёл в обращение знак модуля - символ, которым это понятие обозначается при написании.

Вконтакте

Впервые данное понятие изучается в математике по программе 6 класса средней школы. Согласно одному из определений, модуль - это абсолютное значение действительного числа. Другими словами, чтобы узнать модуль действительного числа, необходимо отбросить его знак.

Графически абсолютное значение а обозначается как |a| .

Основная отличительная черта этого понятия заключается в том, что он всегда является неотрицательной величиной.

Числа, которые отличаются друг от друга только знаком, называются противоположными. Если значение положительное, то противоположное ему будет отрицательным, а ноль является противоположным самому себе.

Геометрическое значение

Если рассматривать понятие модуля с позиций геометрии, то он будет обозначать расстояние, которое измеряется в единичных отрезках от начала координат до заданной точки. Это определение полностью раскрывает геометрический смысл изучаемого термина.

Графически это можно выразить следующим образом: |a| = OA.

Свойства абсолютной величины

Ниже будут рассмотрены все математические свойства этого понятия и способы записи в виде буквенных выражений:

Особенности решения уравнений с модулем

Если говорить о решении математических уравнений и неравенств, в которых содержится module, то необходимо помнить, что для их решения потребуется открыть этот знак.

К примеру, если знак абсолютной величины содержит в себе некоторое математическое выражение, то перед тем как раскрыть модуль, необходимо учитывать действующие математические определения.

|А + 5| = А + 5 , если, А больше или равняется нулю.

5-А , если, А значение меньше нуля.

В некоторых случаях знак может раскрываться однозначно при любых значениях переменной.

Рассмотрим ещё одни пример. Построим координатную прямую, на которой отметим все числовые значения абсолютной величиной которых будет 5.

Для начала необходимо начертить координатную прямую, обозначить на ней начало координат и задать размер единичного отрезка. Кроме того, прямая должна иметь направление. Теперь на этой прямой необходимо нанести разметки, которые будут равны величине единичного отрезка.

Таким образом, мы можем увидеть, что на этой координатной прямой будут две интересующие нас точки со значениями 5 и -5.

Цели урока

Познакомить школьников с таким математическим понятием, как модуль числа;
Научить школьников навыкам нахождения модулей чисел;
Закрепить изученный материал с помощью выполнения различных заданий;

Задачи

Закрепить знания детей о модуле числа;
С помощью решения тестовых заданий проверить, как усвоили ученики изученный материал;
Продолжать прививать интерес к урокам математики;
Воспитывать у школьников логическое мышление, любознательность и усидчивость.

План урока

1. Общие понятия и определение модуля числа.
2. Геометрический смысл модуля.
3. Модуль числа его свойства.
4. Решение уравнений и неравенств, которые содержат модуль числа.
5. Историческая справка о термине «модуль числа».
6. Задание на закрепление знаний пройденной темы.
7. Домашнее задание.

Общие понятия о модуле числа

Модулем числа принято называть само число, если оно не имеет отрицательного значения, или это же число отрицательное, но с противоположным знаком.

То есть, модулем неотрицательного действительного числа a является само это число:

А, модулем отрицательного действительного числа х будет противоположное число:

В записи это будет выглядеть так:

Для более доступного понимания приведем пример. Так, например, модулем числа 3 будет 3, и также модулем числа -3, является 3.

Из этого следует, что под модулем числа подразумевается абсолютная величина, то есть, ее абсолютное значение, но без учета его знака. Если говорить еще более просто, то необходимо от числа отбросить знак.

Обозначаться и выглядеть модуль числа может так: |3|, |х|, |а| и т.д.

Так, например, модуль числа 3 обозначается |3|.

Также, следует помнить, что модуль числа никогда не бывает отрицательным: |a|≥ 0.

|5| = 5, |-6| = 6, |-12,45| = 12,45 и т.д.

Геометрический смысл модуля

Модулем числа называют расстояние, которое измеряется в единичных отрезках от начала координат до точки. В этом определении раскрывается модуль с геометрической точки зрения.

Возьмем координатную прямую и обозначим на ней две точки. Пускай этим точкам будут соответствовать такие числа, как −4 и 2.



Теперь давайте обратим внимание на данный рисунок. Мы видим, что обозначенная на координатной прямой точка А соответствует числу -4 и если вы внимательно посмотрите, то увидите, что эта точка находится от точки отсчета 0 на расстоянии 4 единичных отрезков. Отсюда следует, что длина отрезка OA равняется четырем единицам. В этом случае, длина отрезка ОА, то есть число 4 будет модулем числа -4.

Обозначается и записывается в данном случае модуль числа таким образом: |−4| = 4.

Теперь возьмем, и на координатной прямой обозначим точку В.

Эта точка В будет соответствовать числу +2, и находится она, как мы видим, от начала отсчета на расстоянии двух единичных отрезков. Из этого следует, что длина отрезка OB равняется двум единицам. В этом случае число 2 будет модулем числа +2.

В записи это будет выглядеть так: |+2| = 2 или |2| = 2.

А теперь подведем итог. Если мы с вами возьмем какое-то неизвестное число а и обозначим его на координатной прямой точкой А, то в этом случае расстояние от точки A до начала отсчёта, то есть длинна отрезка ОА, как раз и является модулем числа «a».

В записи это будет выглядеть так: |a| = OA.

Модуль числа его свойства

А теперь давайте попробуем выделить свойства модуля, рассмотреть всевозможные случаи и записать их с помощью буквенных выражений:

Во-первых, модулем числа является число неотрицательное, а значит модуль положительного числа, равен самому числу: |a| = a, если a > 0;

Во-вторых, модули, которые состоят из противоположных чисел, равны: |а| = |–а|. То есть это свойство говорит нам о том, что противоположные числа всегда имеют равные модули, та как на координатной прямой, хотя они и имеют противоположные числа, но они находятся на одинаковом расстоянии от точки отсчета. Из этого следует, что и модули этих противоположных чисел равны.

В-третьих, модуль нуля равняется нулю в том случае, если это число является нулем: |0| = 0, если a = 0. Здесь можно с уверенностью сказать, что модулем нуля является ноль по определению, так как ему соответствует начало отсчета координатной прямой.

Четвертым свойством модуля является то, что модуль произведения двух чисел равен произведению модулей этих чисел. Теперь подробнее рассмотрим, что это значит. Если следовать определению, то мы с вами знаем, что модуль произведения чисел a и b будет равен a b, или −(a b), если, а в ≥ 0, или же – (а в), если, а в больше 0. В записи это будет выглядеть так: |а b| = |а| |b|.

Пятым свойством является то, что модуль частного от деления чисел равен отношению модулей этих чисел: |а: b| = |а| : |b|.

И следующие свойства модуля числа:



Решение уравнений и неравенств, которые содержат модуль числа

Приступив к решению задач, которые имеют модуль числа, следует помнить, что чтобы решить такое задание, необходимо раскрыть знак модуля, используя знания свойств, которым эта задача соответствует.

Задание 1

Так, к примеру, если под знаком модуля стоит выражение, которое зависит от переменной, то раскрывать модуль следует в соответствии с определением:


Конечно же, при решении задач бывают случаи, когда модуль раскрывается однозначно. Если, например, взять

, здесь мы видим, что такое выражение под знаком модуля неотрицательно при любых значениях х и у.

Или, же для примера берем

, мы видим, что это выражение под модулем не положительно при любых значениях z.

Задание 2

Перед вами изображена координатная прямая. На этой прямой необходимо отметить числа, модуль которых будет равен 2.



Решение

В первую очередь, мы должны начертить координатную прямую. Вам уже известно, что для этого, вначале на прямой необходимо выбрать начало отсчета, направление и единичный отрезок. Далее, нам нужно от начала отсчета поставить точки, которые равны расстоянию двух единичных отрезков.

Как видим, таких точек на координатной прямой две, одна из которых соответствует числу -2, а другая числу 2.

Историческая справка о модуле числа

Термин «модуль» произошел от латинского названия modulus, что в переводе обозначает слово «мера». Ввел в обращение этот термин английский математик Роджер Котес. А вот знак модуля был введен благодаря немецкому математику Карлу Вейерштрассу. При написании модуль обозначается с помощью такого символа: | |.

Вопросы на закрепление знаний материала

На сегодняшнем уроке мы с вами познакомились с таким понятием, как модуль числа, а теперь давайте проверим, как вы усвоили эту тему, ответив на поставленные вопросы:

1. Как называется число, которое противоположно положительному числу?
2. Какое название носит число, которое противоположно отрицательному числу?
3. Назовите число, которое является противоположным нулю. Существует ли такое число?
4. Назовите то число, которое не может являться модулем числа.
5. Дайте определение модулю числа.

Домашнее задание

1. Перед вами изображены числа, которые вам нужно расположить в порядке убывания модулей. Если вы правильно выполните задание, то узнаете фамилию человека, который впервые ввел в математику термин «модуль».



2. Начертите координатную прямую и найдите расстояние от М(-5) и К (8) до начала отсчета.

Предмети > Математика > Математика 6 класс