Дуализм микрочастиц. Корпускулярно-волновой дуализм – миф или реальность

Так и с помощью формализма, основанного на представлении об объекте как о частице или как о системе частиц. В частности, волновое уравнение Шрёдингера не накладывает ограничений на массу описываемых им частиц, и следовательно, любой частице, как микро-, так и макро-, может быть поставлена в соответствие волна де Бройля . В этом смысле любой объект может проявлять как волновые , так и корпускулярные (квантовые) свойства .

Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В соответствии с теоремой Эренфеста квантовые аналоги системы канонических уравнений Гамильтона для макрочастиц приводят к обычным уравнениям классической механики. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей в квантовой теории поля .

Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году . Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона . Фотон ведёт себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).

Сейчас концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как, во-первых, некорректно сравнивать и/или противопоставлять материальный объект (электромагнитное излучение, например) и способ его описания (корпускулярный или волновой); и, во-вторых, число способов описания материального объекта может быть больше двух (корпускулярный, волновой, термодинамический, …), так что сам термин «дуализм » становится неверным. На момент своего возникновения концепция корпускулярно-волнового дуализма служила способом интерпретировать поведение квантовых объектов, подбирая аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении. Методологически более корректной является формулировка квантовой теории через интегралы по траекториям (пропагаторная), свободная от использования классических понятий.

Энциклопедичный YouTube

  • 1 / 5

    Такие явления, как интерференция и дифракция света, убедительно свидетельствуют о волновой природе света. В то же время закономерности равновесного теплового излучения, фотоэффекта и эффекта Комптона можно успешно истолковать с классической точки зрения только на основе представлений о свете, как о потоке дискретных фотонов. Однако волновой и корпускулярный способы описания света не противоречат, а взаимно дополняют друг друга, так как свет одновременно обладает и волновыми, и корпускулярными свойствами.

    Волновые свойства света играют определяющую роль в закономерностях его интерференции, дифракции, поляризации, а корпускулярные - в процессах взаимодействия света с веществом. Чем больше длина волны света, тем меньше импульс и энергия фотона и тем труднее обнаружить корпускулярные свойства света. Например, внешний фотоэффект происходит только при энергиях фотонов, больших или равных работе выхода электрона из вещества. Чем меньше длина волны электромагнитного излучения, тем больше энергия и импульс фотонов и тем труднее обнаружить волновые свойства этого излучения. Например, рентгеновское излучение дифрагирует только на очень «тонкой» дифракционной решётке - кристаллической решётке твёрдого тела. В 1909 году английский учёный Джеффри Инграм Тейлор провёл опыт с использованием чрезвычайно слабого источника света и установил, что волновое поведение присуще отдельным фотонам.

    Волны де Бройля

    p = h 2 π k = ℏ k , {\displaystyle \mathbf {p} ={\frac {h}{2\pi }}\mathbf {k} =\hbar \mathbf {k} ,}

    где k = 2 π λ n {\displaystyle \mathbf {k} ={\frac {2\pi }{\lambda }}\mathbf {n} } - волновой вектор, модуль которого k = 2 π λ {\displaystyle k={\frac {2\pi }{\lambda }}} - волновое число - есть число длин волн, укладывающихся на 2 π {\displaystyle 2\pi } единицах длины, n {\displaystyle \mathbf {n} } - единичный вектор в направлении распространения волны, ℏ = h 2 π = 1 , 05 ⋅ 10 − 34 {\displaystyle \hbar ={\frac {h}{2\pi }}=1{,}05\cdot 10^{-34}} Дж·с.

    Длина волны де Бройля для нерелятивистской частицы с массой m {\displaystyle m} , имеющей кинетическую энергию W k {\displaystyle W_{k}}

    λ = h 2 m W k . {\displaystyle \lambda ={\frac {h}{\sqrt {2mW_{k}}}}.}

    В частности, для электрона, ускоряющегося в электрическом поле с разностью потенциалов Δ φ {\displaystyle \Delta \varphi } вольт

    λ = 12 , 25 Δ φ A ∘ . {\displaystyle \lambda ={\frac {12{,}25}{\sqrt {\Delta \varphi }}}\;{\overset {\circ }{\mathrm {A} }}.}

    Формула де Бройля экспериментально подтверждается опытами по рассеянию электронов и других частиц на кристаллах и по прохождению частиц сквозь вещества. Признаком волнового процесса во всех таких опытах является дифракционная картина распределения электронов (или других частиц) в приёмниках частиц.

    Волновые свойства не проявляются у макроскопических тел. Длины волн де Бройля для таких тел настолько малы, что обнаружение волновых свойств оказывается невозможным. Впрочем, наблюдать квантовые эффекты можно и в макроскопическом масштабе, особенно ярким примером этому служат - циклическая частота, W {\displaystyle W} - кинетическая энергия свободной частицы, E {\displaystyle E} - полная (релятивистская) энергия частицы, p = m v 1 − v 2 c 2 {\displaystyle p={\frac {mv}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}} - импульс частицы, m {\displaystyle m} v f {\displaystyle v_{f}} волны де Бройля хотя и больше скорости света, но относится к числу величин, принципиально неспособных переносить информацию (является чисто математическим объектом).

    Групповая скорость волны де Бройля u {\displaystyle u} равна скорости частицы v {\displaystyle v} :

    u = d ω d k = d E d p = v {\displaystyle u={\frac {d\omega }{dk}}={\frac {dE}{dp}}=v} .

    Связь между энергией частицы E {\displaystyle E} и частотой ν {\displaystyle \nu } волны де Бройля

    E = h ν = ℏ ω , {\displaystyle E=h\nu =\hbar \omega ,} волны де Бройля оказывается наибольшей. Частицы не обнаруживаются в тех местах, где, согласно статистической интерпретации , квадрат модуля амплитуды «волны вероятности» обращается в нуль.

    Коллега, по представлениям классической физики, движение частиц и распространение волн различаются принципиально. Многие наблюдали это различие между полётом камня по определённой траектории и распространением волн по поверхности воды, при падении этого камня в воду.

    Это, мой друг, в макромире. Но в микромире эти различия, как-бы, «размываются».

    К примеру, ещё Гюйгенс (1629-1695), затем Юнг (1773-1829) и Френель (1788-1827) доказали, что свет имеет волновую природу. Это проявляется в явлениях, поляризации, преломления, интерференции и дифракции света.

    Однако, исследуя в 1900 году законы теплового излучения, Планк (1858-1947) обнаружил «световые порции» – кванты электромагнитного поля. Эти кванты – фотоны – во многом похожи на частицы (корпускулы): они обладают определённой энергией и импульсом, взаимодействуют с веществом как целое. Более поздние опыты по вырыванию светом электронов с поверхности металлов (фотоэффект) и рассеянию света на электронах (Комптона эффект) показали, что свет ведёт себя подобно потоку частиц.

    С другой стороны, оказалось, что падающие на кристалл электроны, которые изначально воспринимались, как частицы, дают дифракционную картину, которую нельзя понять иначе, как на основе волновых представлений. Позже было установлено, что это явление свойственно вообще всем микрочастицам.

    В 1924 Бройль (1892-1968) выступил с поразительной по смелости гипотезой о том, что корпускулярно-волновой дуализм присущ всем без исключения видам материи – электронам, протонам, атомам и т.д., причём количественные соотношения между волновыми и корпускулярными свойствами частиц те же, что и установленные ранее для фотонов. А именно, если частица имеет энергию W и импульс p , то с ней связана волна, частота которой ν = W/h и длина волны λ = h/p , где h – постоянная Планка. Эти волны получили название «волны де Бройля».

    Таким образом, характерной особенностью микромира является своеобразная двойственность, дуализм корпускулярных и волновых свойств, который не может быть понят в рамках классической физики.

    Квантовая механика устранила абсолютную грань между волной и частицей. Ведь каждая волна состоит из полуволн, которые мы называем пучностями (расположены между двумя узлами, см. рис.):

    Пучности во многом похожи на частицы (корпускулы). Ведь они, так же как и фотоны, обладают определённой энергией и импульсом, чётко ограничены в пространстве (длина волны) и во времени (период волны).

    При этом (очень важно!), если мы по горизонтальной оси будем откладывать длину волны (в метрах), а по вертикальной – её импульс (кг*м/с), то величина площади пучности будет равна постоянной Планка (Дж*с). Такое же значение будет иметь площадь пучности, если мы по вертикали будем откладывать энергию волны (Дж), а по горизонтали – её период (в секундах). Именно поэтому мы называем эти пучности квантами (порциями) энергии и импульса (следовательно, и массы).

    Вывод : фотон, электрон, протон, нейтрон… являются лишь полуволнами колебаний той среды, в которой распространяется волна. В свою очередь полуволну можно рассматривать, как корпускулу, имеющую конкретный размер (длина полуволны), энергию, импульс и массу (для электрона и протона – ещё и электрический заряд) .

    Дополнение :

    Однако электромагнитные волны распространяются не в плоскости, а в трёхмерном объёме. При этом поперечность этих волн выражается в том, что колеблющиеся в них векторы напряжённости электрического и магнитного полей перпендикулярны направлению распространения волны. Кроме того, эти векторы почти всегда взаимно перпендикулярны, поэтому для описания электромагнитной волны требуется знать поведение лишь одного из них. Обычно для этой цели выбирают вектор Е.

    На рисунке показаны колебания проекций электрического вектора Е на взаимно перпендикулярные оси X и Y (Z - направление распространения волны) и огибающая концов полного вектора Е в разных точках волны для случая, когда вертикальные (по оси X) колебания на четверть периода (90°) опережают горизонтальные (по оси Y). Конец вектора Е в этом случае описывает окружность в направлении «правого винта».

    Практически мы получили цилиндрическую пружину, которую можно рассматривать как устройство, накапливающее потенциальную энергию. Однако, в потенциальном поле атома электромагнитная волна распространяется не линейно (вдоль оси Z), а по замкнутой кривой. Значит, нашу пружину необходимо свернуть в кольцо так, чтобы её основания совместились друг с другом. Получим тор (проще бублик), центр которого совпадает с центром потенциального поля.

    Электромагнитная волна в замкнутом пространстве атома представляет собой стоячую волну, которая распространяется вдоль оси тора (свёрнутая нами в кольцо ось Z) с орбитальной скоростью, равной корню квадратному из модуля гравитационного потенциала (v 2 , Дж/кг) на данной траектории, а конец вектора Е описывает винтовую окружность вдоль витков пружины.

    Для справки :

    Поляризация света , одно из фундаментальных свойств оптического излучения (света), состоящее в неравноправии векторов напряжённости в плоскости, перпендикулярной световому лучу (направлению распространения световой волны).

    Преломление света , изменение направления распространения оптического излучения (света) при его прохождении через границу раздела двух сред.

    Интерференция волн , сложение в пространстве двух (или нескольких) волн, при котором в разных точках получается усиление или ослабление амплитуды результирующей волны.

    Дифракция (от лат. diffractus – разломанный) волн , явление, связанное с отклонением волн при их прохождении мимо края препятствия. В соответствии с принципом Гюйгенса – Френеля это препятствие является источником вторичных волн, от которого распространяется сферическая волна, попадая в область геометрической тени.

    Квант света (нем. quant, от лат. quantum – сколько), количество (порция) электромагнитного излучения, которое в единичном акте способен излучить или поглотить атом или другая квантовая система; элементарная частица, то же, что фотон.

    Планка постоянная , квант действия, фундаментальная физическая постоянная, определяющая широкий круг физических явлений, для которых существенна дискретность действия.

    Квантовая механика – волновая механика, теория устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах.

    За последние сто лет наука шагнула далеко вперед в изучении устройства нашего мира как на микроскопическом, так и на макроскопическом уровне. Потрясающие открытия, принесенные нам специальной и общей теориями относительности, квантовой механикой, до сих пор будоражат умы общественности. Однако любому образованному человеку необходимо разобраться хотя бы в основах современных достижений науки. Одним из наиболее впечатляющих и важных моментов является корпускулярно-волновой дуализм. Это парадоксальное открытие, понимание которого неподвластно интуитивному бытовому восприятию.

    Корпускулы и волны

    Впервые дуализм обнаружили при исследовании света, который вел себя в зависимости от условий совершенно по-разному. С одной стороны, получалось, что свет - это оптическая электромагнитная волна. С другой стороны - дискретная частица (химическое действие света). Первоначально ученые считали, что эти два представления взаимно исключают друг друга. Однако многочисленные опыты показали, что это не так. Постепенно реальность такого понятия, как корпускулярно-волновой дуализм, стала обыденной. Эта концепция представляет собой основу для изучения поведения сложных квантовых объектов, которые не являются ни волнами, ни частицами, а только приобретают свойства вторых или первых в зависимости от определенных условий.

    Опыт с двумя щелями

    Дифракция фотонов - наглядная демонстрация дуализма. Детектором заряженных частиц является фотопластинка или люминесцирующий экран. Каждый отдельный фотон отмечался засветкой или точечной вспышкой. Совокупность таких отметок давала интерференционную картину - чередование слабо и сильно засвеченных полосок, что является характеристикой дифракции волны. Это и объясняется таким понятием, как корпускулярно-волновой дуализм. Знаменитый физик и Нобелевский лауреат Ричард Фейнман говорил, что вещество ведет себя в малых масштабах так, что ощутить «естественность» поведения квантов невозможно.

    Универсальный дуализм

    Однако данный опыт справедлив не только для фотонов. Оказалось, что дуализм - это свойство всего вещества, и он универсален. Гейзенберг утверждал, что материя существует в обоих вариантах попеременно. На сегодняшний день абсолютно доказано, что оба свойства проявляются совершенно одновременно.

    Корпускулярная волна

    А как объяснить такое поведение материи? Волну, которая присуща корпускулам (частицам), именуют волной де Бройля, по имени молодого аристократа-ученого, предложившего решение данной проблемы. Принято считать, что уравнения де Бройля описывают волновую функцию, которая в квадрате определяет только вероятность того, что частица находится в разное время в разных точках в пространстве. Проще говоря, дебройлевская волна - это вероятность. Таким образом установили равенство между математическим понятием (вероятностью) и реальным процессом.

    Квантовое поле

    Что такое корпускулы вещества? По большому счету, это кванты волновых полей. Фотон - квант электромагнитного поля, позитрон и электрон - электронно-позитронного, мезон - квант мезонного поля и так далее. Взаимодействие между волновыми полями объясняется обменом между ними некими промежуточными частицами, к примеру, при электромагнитном взаимодействии идет обмен фотонами. Из этого прямо следует еще одно подтверждение того, что волновые процессы, описанные де Бройлем, - это абсолютно реальные физические явления. А корпускулярно-волновой дуализм выступает не как «таинственное скрытое свойство», которое характеризует способность частиц к «перевоплощению». Он наглядно демонстрирует два взаимосвязанных действия - движение объекта и связанный с ним волновой процесс.

    Туннельный эффект

    Корпускулярно-волновой дуализм света связан со многими другими интересными явлениями. Направление действия волны де Бройля проявляется при так называемом туннельном эффекте, то есть при проникновении фотонов через энергетический барьер. Это явление обусловлено превышением среднего значения импульсом частицы в момент пучности волны. При помощи туннелирования оказалась возможной разработка множества электронных приборов.


    Интерференция квантов света

    Современная наука говорит про интерференцию фотонов так же загадочно, как и про интерференцию электронов. Получается, что фотон, который является неделимой частицей, одновременно может пройти по любому открытому для себя пути и интерферировать сам с собой. Если учесть, что корпускулярно-волновой дуализм свойств вещества и фотон являют собой волну, которая охватывает много структурных элементов, то его делимость не исключается. Это противоречит предыдущим воззрениям на частицу как на элементарное неделимое образование. Обладая определенной массой движения, фотон формирует связанную с этим движением продольную волну, которая предшествует самой частице, так как скорость продольной волны больше, чем поперечной электромагнитной. Поэтому существуют два объяснения интерференции фотона самого с собой: частица расщепляется на две составляющие, которые и интерферируют друг с другом; волна фотона проходит по двум путям и формирует интерференционную картину. Опытным путем было обнаружено, что интерференционная картина создается и при пропускании сквозь интерферометр поочередно единичных заряженных частиц-фотонов. Этим подтверждается тезис о том, что каждый отдельный фотон интерферирует сам с собой. Особенно четко это видно при учете того, что свет (не когерентный и не монохроматичный) - это собрание фотонов, которые излучаются атомами во взаимонесвязанных и случайных процессах.

    Что такое свет?

    Световая волна - это электромагнитное нелокализованное поле, которое распределяется по пространству. Электромагнитное поле волны обладает объемной плотностью энергии, которая пропорциональна квадрату амплитуды. Это значит, что плотность энергии может меняться на любую величину, то есть это непрерывно. С одной стороны, свет - это поток квантов и фотонов (корпускул), которые, благодаря универсальности такого явления, как корпускулярно-волновой дуализм, представляют собой свойства электромагнитной волны. Например, в явлениях интерференции и дифракции и в масштабах свет явно демонстрирует характеристики волны. Например, одиночный фотон, как было описано выше, проходя через двойную щель, создает интерференционную картинку. При помощи экспериментов было доказано, что отдельно взятый фотон - это не электромагнитный импульс. Его нельзя разделить на пучки с делителями лучей, что показали французские физики Аспэ, Роже и Гранжье.

    Свет обладает и корпускулярными свойствами, которые проявляются при эффекте Комптона и при фотоэффекте. Фотон может вести себя как частица, которая поглощается объектами целиком, размеры которых намного меньше длины его волны (например, атомным ядром). В некоторых случаях фотоны вообще можно считать точечными объектами. Нет разницы, с какой позиции рассматривать свойства света. В области цветного зрения поток света может выполнять функции и волны, и частицы-фотона как кванта энергии. Предметная точка, сфокусированная на фоторецепторе сетчатки, например, на мембране колбочки, может позволить глазу сформировать собственное отфильтрованное значение как основные спектральные лучи света и отсортировать их по длинам волн. Согласно значениям энергии квантов, в мозге предметная точка будет переведена на ощущение цвета (сфокусированное оптическое изображение).

    Итак, микрочастицы обладают необычайными свойствами. Микрочастицы это элементарные частицы (электроны, протоны, нейтроны и т.д.), а также сложные частицы , образованные из небольшого числа элементарных (пока неделимых ) частиц (атомы, молекулы, ядра атомов). Называя эти микрочастицы частицами, мы подчеркиваем только одну сторону, правильнее было бы назвать «частица-волна ».

    Микрочастицы не способны непосредственно воздействовать на наши органы чувств – ни видеть, ни осязать их нельзя. Мы знаем, что будет с большим предметом; но именно так микрочастицы не поступают! Поэтому, изучая их, приходится прибегать к различного рода абстракциям, напрягать воображение и не пытаться связывать их с нашим непосредственным опытом.

    В доквантовой физике понять – значить составить себе наглядный образ объекта или процесса. В квантовой физике так рассуждать нельзя. Всякая наглядная модель будет действовать по классическим законам, и поэтому не пригодна для представления квантовых процессов. Например, вращение электрона по орбите вокруг атома – такое представление. Это дань классической физике и не соответствует истинному положению вещей, не соответствует квантовым законам.

    Рассмотренные нами волны Луи де Бройля не являются электромагнитными , это волны особой природы.

    Вычислим дебройлевскую длину волны мячика массой 0,20 кг, движущегося со скоростью 15 м/с.

    . (3.3.1)

    Это чрезвычайно малая длина волны. Даже при крайне низких скоростях, скажем м/с, дебройлевская длина волны составляла бы примерно м. Дебройлевская длина волны обычного тела слишком мала, чтобы ее можно было обнаружить и измерить. Дело в том, что типичные волновые свойства – интерференция и дифракция – проявляются только тогда, когда размеры предметов или щелей сравнимы по своей величине с длиной волны. Но нам не известны предметы и щели, на которых могли бы дифрагировать волны с длиной волны , поэтому волновые свойства обычных тел обнаружить не удается.

    Другое дело, если речь идет об элементарных частицах типа электронов. Т.к. масса входит в знаменатель формулы 3.3.1, определяющей дебройлевскую длину волны, очень малой массе соответствует большая длина волны.

    Определим дебройлевскую длину волны электрона, ускоренного разностью потенциалов 100 В.

    м/с,

    Из приведенного примера видно, что электрон может соответствовать длине волны порядка . Хотя это очень короткие волны, их можно обнаружить экспериментально: межатомные расстояния в кристалле того же порядка величины () и регулярно расположенные атомы кристалла можно использовать в качестве дифракционной решетки, как в случае рентгеновского излучения. Итак, если гипотеза Луи де Бройля справедлива, то, как указал Эйнштейн, для электронов должно наблюдаться явление дифракции .

    Отвлечемся на время и поставим мысленный эксперимент. Направим на преграду с двумя узкими щелями параллельный пучок моноэнергетических (т.е. обладающих одинаковой кинетической энергией) электронов (рис. 3.6), за преградой поставим фотопластину (Фп).

    а б в

    Сначала закроем вторую щель и произведем экспонирование в течение времени t . Почернение на обработанной Фп будет характеризоваться кривой 1, рис. 3.6, б. Затем закроем первую щель и произведем экспонирование второй фотопластины. Характер почернения передается в этом случае кривой 2 (рис. 3.6, б). Наконец, откроем обе щели и подвергнем экспонированию в течение времени t третью пластину. Картина почернения, получающаяся в последнем случае, изображена на рис. 3.6, в. Эта картина отнюдь не эквивалентна положению первых двух. Каким образом открывание второй щели может повлиять на те электроны, которые, казалось бы, прошли через другую щель? Полученная картина (рис. 3.6, в) оказывается аналогичной картине, получающейся при интерференции двух когерентных световых волн. Характер картины свидетельствует о том, что на движение каждого электрона оказывают влияние оба отверстия. Такой вывод несовместим с представлением о траекториях. Если бы электрон находился в каждый момент в определенной точке пространства и двигался по траектории, он проходил бы через определенное отверстие – первое или второе. Явление же дифракции доказывает, что в прохождении каждого электрона участвуют оба отверстия – и первое, и второе.

    Таким образом, дифракция электронов и других микрочастиц доказывает справедливость гипотезы Луи де Бройля и подтверждает корпускулярно-волновой дуализм микрочастиц вещества .

    Корпускулярно-волновой дуализм – свойство любой микрочастицы обнаруживать признаки частицы (корпускулы) и волны. Наиболее ярко корпускулярно-волновой дуализм проявляется у элементарных частиц. Электрон, нейтрон, фотон в одних условиях ведут себя как хорошо локализованные в пространстве материальные объекты (частицы), двигающиеся с определёнными энергиями и импульсами по классическим траекториям, а в других – как волны, что проявляется в их способности к интерференции и дифракции. Так электромагнитная волна, рассеиваясь на свободных электронах, ведёт себя как поток отдельных частиц – фотонов, являющихся квантами электромагнитного поля (Комптона эффект), причём импульс фотона даётся формулой р = h/λ, где λ – длина электромагнитной волны, а h – постоянная Планка. Эта формула сама по себе – свидетельство дуализма. В ней слева – импульс отдельной частицы (фотона), а справа – длина волны фотона. Дуализм электронов, которые мы привыкли считать частицами, проявляется в том, что при отражении от поверхности монокристалла наблюдается дифракционная картина, что является проявлением волновых свойств электронов. Количественная связь между корпускулярными и волновыми характеристиками электрона та же, что и для фотона: р = h/λ (р – импульс электрона, а λ – его длина волны де Бройля). Корпускулярно-волновой дуализм лежит в основе квантовой физики.

    Волна(мех) – процесс, всегда связанный с к-либо материальной средой, занимающей определенный объем в пространстве.

    64. Волны де Бройля. Дифракция электронов Волновые свойства микрочастиц.

    Развитие представлений о корпускулярно-волновых свойствах материи получило в гипотезе о волновом характере движения микрочастиц. Луи де Бройль из идеи симметрии в природе для частиц вещества и света приписал любой микрочастице некий внутренний периодический процесс (1924). Объединив формулы E = hν и E = mc 2 , он получил соотношение, показывающее, что любой частице соответствует своя длина волны : λ Б = h/mv = h/p, где p- импульс волны-частицы. К примеру, для электрона, имеющего энергию 10 эВ, длина волны де Бройля составляет 0,388 нм. В дальнейшем было показано, что состояние микрочастицы в квантовой механике может быть описано определенной комплекснойволновой функцией координат Ψ(q), причем квадрат модуля этой функции |Ψ| 2 определяет распределение вероятностей значений координат. Эта функция была впервые введена в квантовую механику Шредингером в 1926 г. Таким образом, волна де Бройля не несет энергию, а только отображает “распределение фаз” некоего вероятностного периодического процесса в пространстве. Следовательно, описание состояния объектов микромира носит вероятностный характер , в отличие от объектов макромира, которые описываются законами классической механики.

    Для доказательства идеи де Бройля о волновой природе микрочастиц немецкий физик Эльзассер предложил использовать кристаллы для наблюдения дифракции электронов (1925). В США К. Дэвиссон и Л. Джермер обнаружили явление дифракции при прохождении пучка электронов через пластинку из кристалла никеля (1927). Независимо от них дифракцию электронов при прохождении через металлическую фольгу открыли Дж. П. Томсон в Англии и П.С. Тартаковский в СССР. Так идея де Бройля о волновых свойствах вещества нашла экспериментальное подтверждение. Впоследствии дифракционные, а значит волновые, свойства были обнаружены у атомных и молекулярных пучков. Корпускулярно-волновыми свойствами обладают не только фотоны и электроны, но и все микрочастицы.

    Октрытие волновых свойств у микрочастиц показало, что такие формы материи, как поле (непрерывное) и вещество (дискретное), которые с точки зрения классической физики, считались качественно отличающимися, в определенных условиях могут проявлять свойства, присущие и той и другой форме. Это говорит о единстве этих форм материи. Полное описание их свойств возможно только на основе противоположных, но дополняющих друг - друга представлений.