Соли стеариновой кислоты называются стеаратами. Стеариновая кислота

Помимо стеариновой кислоты отечественного производства на рынке также присутствует кислота импортного производства. В нижеследующих таблицах укажем основные требования и технические характеристики стеариновой кислоты из Китая и Малайзии.

МАЛАЙЗИЯ

Стеариновая кислота STEARIC ACID Palmera B1810

Показатель

Норма
Кислотное число, мг КОН/г 195,0 минимально
Число омыления, мг КОН/г 196,0 минимально
Йодное число, J2/100г 8,0 максимально
Температура плавления, °С 52,0 минимально
Цветность 2 максимально

КИТАЙ

Стеариновая кислота SA 1801

Показатель

Норма
Кислотное число, мг КОН/г 192,0-218,0
Число омыления, мг КОН/г 193,0-220,0
Йодное число, J2/100г 8,0 максимально
Температура плавления, °С 52,0 минимально

Области применения стеариновой кислоты

В настоящее время стеариновая кислота используется в различных областях промышленности. Полифункциональный характер стеариновой кислоты позволяет использовать ее в качестве активатора ускорителей вулканизации, диспергатора наполнителей резиновых смесей, мягчителя (пластификатора). При непосредственном введении в каучук она улучшает распределение ингредиентов и обрабатываемость резиновых смесей. Склонность стеарина к миграции способствует снижению клейкости резиновых смесей.

Фармакопейная стеариновая кислота широко применяется в фармацевтической промышленности. В косметической промышленности стеариновая кислота используется в качестве структурообразующего и эмульгирующего компонента в кремах.

Стеариновую кислоту используют в аналитической химии при нефелометрическом определении кальция, магния и лития, а также качестве жидкой фазы в распределительной газо-жидкостной хроматографии для разделения смеси жирных кислот. При полировании металлов стеариновая кислота является компонентом полировальных паст.

Это соединение применяется не только в качестве функционального химиката, но и как химическое сырье. Например, для получения октадецилового (стеарилового) спирта, который употребляется как структурообразователь и эмолент в кремах и пеногаситель в моющих средствах. В промышленности стеариновая кислота используется также для синтеза октадециламина.

Производные и соли октадециламина применяются в качестве эмульгаторов и добавок к битумам в дорожном строительстве; флотоагентов прямой и обратной флотации при обогащении калийных и фосфоритных руд, полевого шпата, слюды; антислеживателей неорганических солей и удобрений; ингибиторов коррозии в кислых средах; деэмульгаторов необработанной нефти в нефтяной промышленности; компонентов антистатиков; отвердителей эпоксидных смол.

Из солей стеариновой кислоты применяют стеарат натрия как анионное ПАВ, в качестве моющего средства и компонента косметических изделий, загустителя смазок, стабилизатора при формовании полиамидов и антивспенивающей добавки в пищевой промышленности, а также стеарат кальция - в качестве загустителя смазок, стабилизатора поливинилхлорида и наружной смазки при формовании изделий из него, вспомогательного сиккатива и матирующего вещества в лакокрасочных материалах, гидрофобизатора для цемента и тканей, добавки, препятствующей слеживанию муки, эмульгатора для косметических препаратов. Кроме того, в производстве масляных лаков используется стеарат магния. Стеарат цинка применяют в медицине, производстве каучука, пластмасс и клеенки. Стеарат меди используется для бронзирования гипса и в качестве агента, препятствующего обрастанию. Стеарат свинца применяют в качестве сиккатива. Водорастворимые соли стеариновой кислоты, в частности стеараты натрия, калия и аммиака, являются мылами. Эфиры стеариновой кислоты применяют в качестве компонентов клеящих паст, антиоксидантов, эмульсий для обработки текстиля и кожи, стабилизаторов пищевых продуктов. Сложные эфиры стеариновой кислоты представлены этил- и бутилстеаратами, применяемыми в качестве пластификаторов, и гликольстеаратом, который используется как заменитель натурального воска.

Технология производства стеариновой кислоты

В настоящее время основным способом производства стеариновой кислоты в мире и в России остается гидролиз животных и растительных жиров, а также растительных масел. Основным сырьем при этом является пальмовое масло, кокосовое масло, рапсовое масло, стеариновую кислоту также можно выделять из соевого и подсолнечного масла.

Также перспективным возобновляемым источником сырья для получения стеариновой кислоты считается талловое масло - побочный продукт переработки крафт-целлюлозы. Сырое талловое масло в равных пропорциях содержит жирные и смоляные кислоты и в
меньших количествах, неомыляемые вещества. Очищенное талловое масло имеет повышенное содержание жирных кислот, в том числе ненасыщенных - линолевой (45-50%), олеиновой (30-35%) и насыщенных - стеариновой (10%) и пальмитиновой (5%).

Остановимся на основных методах получения стеариновой кислоты: гидролиз жиров и гидрирование непредельных кислот. Животные жиры - непревзойденные помощники в деле извлечения стеариновой кислоты. Для получения конечного продукта жир должен пройти обработку щелочными растворами, кислотой или просто водой при высокой температуре для расщепления глицеридов на глицерин и свободные кислоты, включая стеариновую.

Наиболее распространенный метод получения чистой стеариновой кислоты предполагает использование раствора щелочи. В результате образуется мыло, расщепляющееся под воздействием соляной или серной кислоты, затем смесь кипятится, пока выделившаяся смесь жирных кислот не сделается совершенно прозрачной. После охлаждения застывшую твердую массу промывают водой.

Омыление жиров - термин, хорошо знакомый любителям домашнего мыловарения. Обозначает он разложение животных или растительных жиров щелочью: обычно едким натром или едким калием.

Но не все умельцы знают, что в результате реакции они получают не только натуральный, экологически безопасный кусочек моющего средства, но и .

Соли жирных кислот натрия, калия и кальция - основное название продукта, закрепленное в ГОСТ 32770–2014 .

Синонимы:

  • Е 470а (Е–470а), индекс в европейской кодификации пищевых добавок;
  • Sodium, Potassium and Calcium Salts of Fatty Acids, международный;
  • натриевые, калиевые и кальциевые соли жирных кислот (более точное обозначение продукта, встречается в
  • СанПиН, документах Министерства здравоохранения);
  • стеараты кальция, натрия, калия;
  • мыла;
  • Calcium-, Natrium-, Kalium der Fettsauren, Seifen, Alkalisalze der Fettsauren, немецкий;
  • calcium, potassium et sodium sels d’acides gras, французский.

Тип вещества

Пищевая добавка E 470а включена в группу .

Общим европейским индексом объединена группа веществ, схожих по свойствам, получению и использованию в различных отраслях деятельности: натриевая, калиевая и кальциевая соли насыщенных жирных кислот (примечание: соли ненасыщенных кислот обозначены кодом Е 470).

Получение добавки идентично начальному этапу производства мыла. К исходным животным (реже растительным) жирам добавляют натриевую, калиевую или кальциевую щелочи и нагревают. В ходе реакции происходит гидролиз (распад) триглицеридов с образованием соответствующих солей (мыл) и . Последующая отгонка жирных кислот дает в итоге сухое порошкообразное вещество, применяемое как пищевая добавка E 470а.

Если щелочной раствор осадить хлоридом натрия, получится так называемое «мыльное ядро», из которого делают мыло.

Свойства

Показатель Стандартные значения
Цвет белый
Состав соли жирных кислот; эмпирические формулы: C 18 H 3 О 2 Na (натриевая соль), С 36 Н 70 О 4 Са (кальциевая) С 18 Н 33 О 2 К (калиевая)
Внешний вид порошок, чешуйки, зерна
Запах слабый характерный
Растворимость соли натрия и калия растворимы в воде, спирте; соли кальция в воде, этаноле, эфирах не растворяются
Содержание основного вещества 95%
Вкус отсутствует
Плотность 0,87 до 1,05 г/см³
Другие гигроскопичны (калиевая и натриевая); вязкость водного раствора снижается с повышением температуры

Упаковка

Стандартной упаковочной тарой для эмульгатора Е 470а служат:

  • многослойные крафт-мешки;
  • картонные барабаны;
  • мешки для пищевых продуктов из синтетических нитей.

Обязательно наличие внутреннего мешка, обеспечивающего защиту от влаги.

Добавка объемом до 5 кг может быть расфасована в многослойные прозрачные пакеты из нестабилизированного полиэтилена.

Применение

Добавка Е 470а обладает высокой поверхностной активностью и может быть использована для стабилизации дисперсных систем.

Вещество не только облегчает получение эмульсий, но и предотвращает повторное слипание частиц.

В пищевой промышленности мыло применяется очень ограниченно : обычно в комплексе с другими эмульгаторами для усиления их свойств или в составе синтетических красителей для обеспечения их равномерного распределения в продуктовой массе.

СанПиН 2.3.2.1293-03 разрешает использовать добавку Е 470 а в качестве носителя-наполнителя в глазирователях для фруктов. Нанесение пленок на поверхность предотвращает высыхание плодов, значительно снижает потерю витаминов, защищает от заражения болезнетворными микроорганизмами.

В Кодексе Алиментариус продукт упомянут как соэмульгатор добавки в стандартах на бульонные кубики и сахарную пудру для предотвращения их слеживания и комкования. Допустимая норма ограничена 6% от массы.

Широкое распространение эмульгатор Е 470а получил в производстве косметических препаратов и средств бытовой химии.

Натриевая соль входит в состав натурального твердого мыла. Калиевую соль благодаря антибактериальным свойствам применяют для изготовления жидкого «зеленого» мыла для нужд медицины.

В составе пен для бритья, красок для волос способствует образованию легко наносимой однородной текстуры.

В кремах для рук выполняет защитную функцию благодаря способности образовывать на поверхности пленку, предохраняющую кожу от потери влаги.

Фармацевтическая отрасль применяет добавку E 470а в ректальных препаратах как вспомогательное вещество, улучшающее скольжение.

Эмульгатор разрешен в России, большинстве европейских государств, США.

Польза и вред

Соли алифатических кислот являются продуктом естественного расщепления жиров в пищеварительной системе. С этой точки зрения добавка Е 470а совершенно безопасна. Вещество полностью усваивается в организме.

Возможная степень вреда не установлена. Считается, что может быть небезопасен для людей, страдающих нарушением обмена веществ.

  • Foodchem International Corporation;
  • Huzhou City Linghu Xinwang Chemical Co., Ltd.;
  • Guangzhou X-Kev Food Additive Co., Ltd.

Безопасность пищевой добавки Е 470а остается под вопросом. Потребителю, не желающему видеть в своей тарелке сомнительный эмульгатор, можно посоветовать отказаться от покупки бульонных кубиков иностранного производства. Сахарную пудру несложно сделать самостоятельно.

Фрукты перед употреблением надо обязательно мыть (включая бананы и цитрусовые). Защитная пленка на поверхности состоит не только из мыла, в ней есть более опасные соединения, например .

С 17 Н 33 СООН

олеодистеарин глицерин олеиновая

Реакция может быть использована для получения глицерина и высших жирных кислот из жира.

2. Щелочной гидролиз (омыление).

стеарат натрия (твёрдое мыло)

тристеарин глицерин

Эта реакция лежит в основе процесса получения мыла из жира. В живом организме жиры гидролизуются под действием фермента липазы при t30–40 o С.

3. Гидрогенизация (гидрирование) жидких жиров. Жидкие жиры могут вступать в реакцию присоединения водорода, в результате чего происходит отвердение жиров.

триолеин тристеарин

(жидкий жир) (твёрдый жир – саломас)

Подобные твёрдые жиры используются в мыловарении и производстве пищевого маргарина, при этом в полученный твёрдый жир добавляют молоко, яйца, витамин А и другие добавки.

4. Галогенирование жидких жиров.

триолеин (жидкий жир)

Реакция используется для определения степени непредельности жиров.

5. Прогоркание жиров.

При хранении жиры под влиянием света, кислорода воздуха, влаги приобретают неприятный вкус и запах, этот процесс называется прогорканием. При прогоркании происходит несколько химических процессов:

а) Самоокисление жиров. По месту двойной связи происходит присоединение кислорода с образованием перекисных соединений, которые разлагаются в дальнейшем по схеме:

В результате образуются низкомолекулярные альдегиды и ки­слоты (типа масляной) с неприятным запахом. Этот процесс кроме кислорода окружающей среды, повышенной температуры ускоряют также металлы (Сu,Feи др.), попадающие в виде следов из оборудования.

Процесс самоокисления жиров можно затормозить с помощью химических веществ – антиоксидантов. Это токоферол (витамин Е), каротиноиды, фосфатиды, полифенольные соединения и др. Добавляют также вещества, которые усиливают действие антиоксидантов. Они называются синергистами. Это аскорбиновая кислота (витамин С), лимонная кислота, сорбит, сахара и их производные и др.

б) Частичная полимеризация (высыхание), что ведёт к накопле­нию высокомолекулярных полимерных продуктов в жирах. Этот процесс активнее протекает в растительных маслах, отличающихся высоким содержанием непредельных кислот. Различают высыхаю­щие масла (льняное, конопляное), содержащие непредельные кислоты с двумя или тремя двойными связями, линолевую, линоленовую. Такие масла способны на воздухе «высыхать», образуя плёнки. На этом свойстве и основано применение таких масел для получения олифы. Невысыхающие масла (подсолнечное, кукурузное) обладают этим свойством в меньшей степени.

в) Частичный гидролиз, которому подвергаются жиры под дей­ствием влаги окружающей среды. В результате накапливаются свободные жирные кислоты, которые оказывают каталитическое действие на процесс самоокисления жиров.

Различные микроорганизмы также способствуют прогорканию жиров, в результате чего биологическая ценность их падает.

Отсюда условия хранения жиров: чистые помещения, низкая температура, отсутствие света, тщательная упаковка (для защиты от кислорода воздуха и влаги).

6. Разложение при нагревании.

При сильном нагревании (250–300°) жиры разлагаются с выде­лением жирных кислот и различных полимерных смолообразных полимерных продуктов.

жир глицерин смесь кислот

При этом глицерин расщепляется до акролеина:

глицерин акролеин

Акролеин преобладает в составе кухонного чада. Это слезоточивая жидкость с резким запахом, при концентрации её 70мг/м 3 воздух опасен для жизни, так как является канцерогенным веществом.

Физико-химические показатели жиров. Качество жира характеризуют такие физико-химические константы:

1. Кислотное число – показывает, сколько миллиграммов КОН требуется для нейтрализации свободных жирных кислот, содержа­щихся в 1 г жира. Это число характеризует свежесть и доброкачественность жира.

2. Йодное число – показывает, какое количество граммов йода присоединилось к 100 г жира. Чем больше ненасыщенных кислот содержится в молекуле жира, тем больше йодное число.

Так, свиное сало имеет йодное число 50–75

масло подсолнечное – 120–130

масло конопляное – 140–167

масло льняное – 171–200

Чем выше йодное число, тем легче окисляется жир, а значит, менее устойчив при хранении.

3. Перекисное число – показывает количество граммов йода, выделенное из иодида калия перекисями, содержащимися в 100 г жира. Чем выше перекисное число, тем более окисленным является жир, а значит, менее доброкачественным.

Применение жиров:

1. Жиры являются высококалорийной пищей, в процессе усвое­ния организмом 1 г жира выделяет 9,4 ккал.

2. Жиры являются источником жирорастворимых витаминов А, Д, Е и полиненасыщенных кислот (витамин F).

3. Жиры часто используются в медицине (рыбий жир, оливко­вое, шиповниковое, персиковое масла), а также как основа для приготовления линиментов, мазей и др.

4. Жиры используются для приготовления косметических средств (кремов, масок и других смесей).

5. Жиры используются для получения мыла, шампуней, а также олифы, которая применяется для приготовления масляных красок, клеёнки, линолеума и т.д.

Знаком Е470 маркируются вещества, или даже группа веществ, которые используются как пищевые добавки. Эти синтетические концентраты применяются для предотвращения слеживания или склеивания некоторых сыпучих продуктов. Относятся по большей части к категории эмульгаторов, диспергаторов, разделителей, стабилизаторов пены.

Основные характеристики веществ

Другими названиями данной пищевой добавки являются: кальциевые, алюминиевые, натриевые, магниевые, аммонийные и калиевые соли карбоновых жирных кислот, стеараты кальция, магния, аммония, калия, натрия и алюминия, Е470, Salts of fatty acids (with base Ca, Al, Mg, Na, К and NH4), Salts of myristic, соли алифатических жирных кислот, Palmitic and stearic fatty acids.

Такие вещества обычно на внешний вид напоминают зерна, чешуйки или порошок. Цвет их варьируется от белого, до желто-коричневого и даже бурого. Некоторые соли очень хорошо растворяются в , а вот кальциевая соль нерастворима ни в воде, ни в этиловом , ни в эфирах.

В натуральном виде в природе чаще всего Е470 встречается при омылении в процессе их расщепления в человеческом организме при метаболизме.

Химическим путем такую пищевую добавку получают при помощи молекулярных реакций, причем при этом не играет роли отгонка жирных пищевых кислот. В процессе производства образуются различные примеси: глицерин, моноглицериды, вода, диглицериды, неомыляемые жиры и жирные кислоты.

Данные вещества быстро, легко и в полном количестве усваиваются человеческим организмом.

Применение солей жирных кислот

Основным назначением группы таких веществ является препятствование слеживанию сыпучих продуктов: сухих супов и сухих бульонов, сахарной пудры, и других видов пищевой продукции. Наименование стеарат чаще всего употребляют для названия всех солей , а олеат, в свою очередь, – для .

Хорошо зарекомендовала себя такая добавка в фармакологической отрасли, способствуя лучшему спрессовыванию и скольжению гранулятов, таблеток, экструзионных продуктов.

Применимы соли алифатических карбоновых кислот и в косметологической промышленности, при производстве моющих и чистящих средств, бытовой химии, а также при переработке макулатуры.

По законам Российской Федерации производство таких веществ не запрещено, но жестко ограничено рамками допустимого количества. В европейских странах и на Украине такая пищевая добавка запрещена для изготовления.

Полезные и вредные свойства пищевой добавки Е470

По сути своей соли алифатических карбоновых кислот не несут организму человека никакой опасности, но несмотря на это существуют жестко установленные и контролируемые нормы на ее употребление. Их разрешено добавлять в пищевые продукты лишь в количестве шести процентов от общей массы готовой продукции.

В основном это связано с образованием и наличием в них множества различных вредных примесей. Соответственно вред организму наносят лишь те добавки, примеси в которых остаются при их образовании. Поэтому категорически противопоказано употреблять такие вещества людям, страдающими нарушениями обменных процессов в организме. В некоторых случаях может спровоцировать возникновение и развитие заболеваний органов желудочно-кишечного тракта.

Безопасность же данных продуктов гарантирована полным усвоением веществ в организме, отсутствием побочных реакций при соблюдении правил и норм употребления.

Подводя итоги

Пищевая добавка Е470 является синтетически выведенным веществом, применяющимся в медицинской, пищевой, косметологической и фармацевтической промышленности. Употребляемая в допустимых нормируемых дозировках не причиняет никакого вреда организму и не вызывает негативных побочных реакций после использования. Нежелательно применять такую добавку людям с нарушениями обмена веществ. При приеме повышенных доз возможно развитие заболеваний желудочно-кишечного тракта.

Cтраница 1


Соль стеариновой кислоты, твердая нерастворимая в воде масса; используется как компонент смазоч-но-охлаждающих жидкостей, загуститель смазок, мазей и кремов, антивспениватель, гидрофобизатор для цемента.  

В краску введена соль стеариновой кислоты.  

Например, соли олеиново или линоленовой кислот растворяются легче и при более низкой температуре, чем соли стеариновой кислоты. Последние при низкой температуре почти не пенятся и не обладают моющей способностью, соли же олеиновой кислоты при низкой температуре хорошо пенятся и моющая способность их довольно велика.  

Основными источниками промстоков являются цеха химреактивов, периодически сбрасывающие сточные воды, образующиеся при производстве олеиновой кислоты, солей стеариновой кислоты, тлпкокола, этиленднамип-тетрауксусной кислоты и заказных реактивов, а также при очистке уксусной кислоты.  

СТЕАРИНОВАЯ кислота - органическое соединение алифатического ряда; твердый бесцветный кристаллический продукт; входит в состав многих природных жиров; содержится в стеарине; соли стеариновой кислоты широко используют в качестве мыла.  

В некоторые пластмассы вводят пластификаторы (например, трикрезилфосфат, дибутилфталат и др.), иногда красители, отвердители и смазывающие вещества (например, соли стеариновой кислоты) для облегчения выема из пресс-формы.  

В жесткой воде объемом 2л содержится гидрокарбонат кальция массой 3 г, гидрокарбонат магния массой 0 20 г, сульфат кальция массой 1 4 г. Сколько натриевого мыла (соли стеариновой кислоты) будет израсходовано при использовании такой воды объемом 50 л за счет ее жесткости.  

Так как поры остались той же величины, что видно при рассматривании ткани под микроскопом, то водонепроницаемость обработанной ткани можно объяснить только изменением степени смачивания ее водой, которое происходит из-за адсорбции нерастворимых в воде солей стеариновой кислоты.  

В 2 л жесткой воды содержится 3 г гидрокарбоната кальция, 0 29 г гидрокарбоната магния и 1 4 г сульфата кальция. Сколько натриевого мыла (соли стеариновой кислоты) будет перерасходовано при использовании 50 л такой воды за счет ее жесткости.  

Первые патенты на моющие присадки к маслам были получены еще в 1925 - 1927 гг. Практически применять моющие присадки начали лишь в середине 30 - х годов, после того, как в 1935 г. в США было освоено промышленное производство динафтената алюминия. Для этого периода характерно использование в качестве моющих присадок солей нафтеновых и стеариновых кислот.  

Смазка вводится в пластмассы с целью снижения прили-паемости прессматериала к поверхности прессформы в процессе прессования. Чаще всего применяются олеиновая и стеариновая кислоты, стеарин, соли стеариновой кислоты: магниевая, кальциевая, цинковая.  

Растворимость гомологов понижается (уже стеараты плохо растворимы в воде), следовательно, концентрация эмульгатора низка и эмульгирующие свойства проявляются слабо. Подтверждается эта точка зрения тем, что с повышением температуры соли стеариновой кислоты лучше растворяются и лучше эмульгируют.  

В состав поливинилхлоридного пластиката чаще всего входит не один, а несколько стабилизаторов, обеспечивающих связывание хлористого водорода и поглощение кислорода и предотвращающих распад под действием ультрафиолетовых лучей. Применяемые в качестве стабилизаторов смеси могут быть органо-металлическими и органическими. Наиболее распространенными композициями стабилизаторов являются углекислый свинец и соли стеариновой кислоты, кальция, кадмия, бария, стронция и др., а также стеараты металлов, главным образом свинца, в композиции с эпоксидными смолами. Учитывая, что смесь двух стабилизаторов более эффективна, чем равное количество каждого из стабилизаторов, нашли применение бариево-кадмиевые пасты фер-роклер, оловооргагшческие стабилизаторы станклер. Для получения цветных поливинилхлоридных пласти-катов вводятся окрашивающие добавки.  

Для расширения спектрального интервала за пределы, допускаемые обычными окисными подложками, был испытан ряд методик, которые не требуют их описания здесь. Так как напыленные пленки имеют хорошие зеркальные поверхности, вероятно, целесообразно попытаться получить спектры отражения адсорбированных молекул. В одной из первых работ указывалось, что монослой соли стеариновой кислоты на металлической пленке практически не поддается обнаружению в спектрах отражения.