Элементарные преобразование системы линейных уравнений. Системы линейных уравнений. Линейная зависимость, независимость систем векторов

Наибольшее и наименьшее значения

Функция, ограниченная в ограниченной замкнутой области, достигает в ней наибольшего и наименьшего значений или в стационарных точках, или в точках, лежащих на границе области.

Для нахождения наибольшего или наименьшего значений функции необходимо:

1. Найти стационарные точки, лежащие внутри данной области, и вычислить в них значение функции.

2. Найти наибольшее (наименьшее) значение функции на границе области.

3. Сравнить все полученные значения функции: самые большее (меньшее) и будет наибольшим (наименьшим) значением функции в данной области.

Пример 2 . Найти наибольшее (наименьшее) значение функции: в круге .

Решение .

точка стационарная; .

2 .Границей данной замкнутой области является окружность или , где .

Функция на границе области становится функцией одной переменной: , где . Найдем наибольшее и наименьшее значения этой функции.

При x=0 ; (0,-3) и (0,3)- критические точки.

Вычислим значения функции на концах отрезка

3 . Сравнивая между собой значения получаем,

В точках Aи B.

В точках C и D.

Пример 3. Найти наибольшее и наименьшее значения функции в замкнутой области, заданной неравенством:


Решение . Область представляет собой треугольник, ограниченный осями координат и прямой x+y=1.

1. Находим стационарные точки внутри области:

; ; у = - 1/ 8 ; х = 1/ 8.

Стационарная точка не принадлежит рассматриваемой области, поэтому значение z в ней не вычисляем.

2 .Исследуем функцию на границе. Так как граница состоит из трех участков, описанных тремя разными уравнениями, то исследуем функцию на каждом участке отдельно:

а ) на участке 0A: y=0- уравнение 0A, тогда ; из уравнения видно, что функция возрастает на 0A от 0 до 1. Значит .

б ) на участке 0B: x=0 - уравнение 0B, тогда ; –6y+1=0; - критическая точка.

в ) на прямой x+y = 1: y=1-x, тогда получим функцию

Вычислим значение функции z в точке B(0,1).

3 .Сравнивая числа получаем, что

На прямой AB.

В точке B.

Тесты для самоконтроля знаний.

1 . Экстремум функции - это

а) ее производные первого порядка

б) ее уравнение

в) ее график

г) ее максимум или минимум

2. Экстремум функции нескольких переменных может достигаться:

а) только в точках, лежащих внутри ее области определения, в которых все частные производные первого порядка больше нуля

б) только в точках, лежащих внутри ее области определения, в которых все частные производные первого порядка меньше нуля

в) только в точках, лежащих внутри ее области определения, в которых все частные производные первого порядка не равны нулю


г) только в точках, лежащих внутри ее области определения, в которых все частные производные первого порядка равны нулю

3. Функция, непрерывная в ограниченной замкнутой области, достигает в ней наибольшего и наименьшего значений:

а) в стационарных точках

б) или в стационарных точках, или в точках, лежащих на границе области

в) в точках, лежащих на границе области

г) во всех точках

4. Стационарными точками для функции нескольких переменных называются точки:

а) в которых все частные производные первого порядка не равны нулю

б) в которых все частные производные первого порядка больше нуля

в) в которых все частные производные первого порядка равны нулю

г) в которых все частные производные первого порядка меньше нуля

Пусть функция $z=f(x,y)$ определена и непрерывна в некоторой ограниченной замкнутой области $D$. Пусть в этой области заданная функция имеет конечные частные производные первого порядка (за исключением, быть может, конечного количества точек). Чтобы найти наибольшее и наименьшее значения функции двух переменных в данной замкнутой области требуется выполнить три шага простого алгоритма.

Алгоритм поиска наибольшего и наименьшего значений функции $z=f(x,y)$ в замкнутой области $D$.

  1. Найти критические точки функции $z=f(x,y)$, принадлежащие области $D$. Вычислить значения функции в критических точках.
  2. Исследовать поведение функции $z=f(x,y)$ на границе области $D$, найдя точки возможного наибольшего и наименьшего значений. Вычислить значения функции в полученных точках.
  3. Из значений функции, полученных в предыдущих двух пунктах, выбрать наибольшее и наименьшее.

Что такое критические точки? показать\скрыть

Под критическими точками подразумевают такие точки, в которых обе частные производные первого порядка равны нулю (т.е. $\frac{\partial z}{\partial x}=0$ и $\frac{\partial z}{\partial y}=0$) или хотя бы одна частная производная не существует.

Часто точки, в которых частные производные первого порядка равны нулю, именуют стационарными точками . Таким образом, стационарные точки - есть подмножество критических точек.

Пример №1

Найти наибольшее и наименьшее значения функции $z=x^2+2xy-y^2-4x$ в замкнутой области, ограниченной линиями $x=3$, $y=0$ и $y=x+1$.

Будем следовать указанному выше , но для начала разберёмся с чертежом заданной области, которую обозначим буквой $D$. Нам заданы уравнения трёх прямых, кои эту область ограничивают. Прямая $x=3$ проходит через точку $(3;0)$ параллельно оси ординат (оси Oy). Прямая $y=0$ - это уравнение оси абсцисс (оси Ox). Ну, а для построения прямой $y=x+1$ найдём две точки, через которые и проведём данную прямую. Можно, конечно, подставить вместо $x$ парочку произвольных значений. Например, подставляя $x=10$, получим: $y=x+1=10+1=11$. Мы нашли точку $(10;11)$, лежащую на прямой $y=x+1$. Однако лучше отыщем те точки, в которых прямая $y=x+1$ пересекается с линиями $x=3$ и $y=0$. Почему это лучше? Потому, что мы одним выстрелом уложим пару зайцев: получим две точки для построения прямой $y=x+1$ и заодно выясним, в каких точках эта прямая пересекает иные линии, ограничивающие заданную область. Прямая $y=x+1$ пересекает прямую $x=3$ в точке $(3;4)$, а прямую $y=0$ - в точке $(-1;0)$. Дабы не загромождать ход решения вспомогательными пояснениями, то вопрос о получении этих двух точек вынесу в примечание.

Как были получены точки $(3;4)$ и $(-1;0)$? показать\скрыть

Начнём с точки пересечения прямых $y=x+1$ и $x=3$. Координаты искомой точки принадлежат и первой, и второй прямой, поэтому для нахождения неизвестных координат нужно решить систему уравнений:

$$ \left \{ \begin{aligned} & y=x+1;\\ & x=3. \end{aligned} \right. $$

Решение такой системы тривиально: подставляя $x=3$ в первое уравнение будем иметь: $y=3+1=4$. Точка $(3;4)$ и есть искомая точка пересечения прямых $y=x+1$ и $x=3$.

Теперь отыщем точку пересечения прямых $y=x+1$ и $y=0$. Вновь составим и решим систему уравнений:

$$ \left \{ \begin{aligned} & y=x+1;\\ & y=0. \end{aligned} \right. $$

Подставляя $y=0$ в первое уравнение, получим: $0=x+1$, $x=-1$. Точка $(-1;0)$ и есть искомая точка пересечения прямых $y=x+1$ и $y=0$ (оси абсцисс).

Всё готово для построения чертежа, который будет иметь такой вид:

Вопрос примечания кажется очевидным, ведь всё видно по рисунку. Однако стоит помнить, что рисунок не может служить доказательством. Рисунок - лишь иллюстрация для наглядности.

Наша область была задана с помощью уравнений прямых, которые её ограничивают. Очевидно, что эти прямые определяют треугольник, не так ли? Или не совсем очевидно? А может, нам задана иная область, ограниченная теми же прямыми:

Конечно, в условии сказано, что область замкнута, поэтому показанный рисунок неверен. Но чтобы избегать подобных двусмысленностей, области лучше задавать неравенствами. Нас интересует часть плоскости, расположенная под прямой $y=x+1$? Ок, значит, $y ≤ x+1$. Наша область должна располагаться над прямой $y=0$? Отлично, значит $y ≥ 0$. Кстати, два последних неравенства легко объединяются в одно: $0 ≤ y ≤ x+1$.

$$ \left \{ \begin{aligned} & 0 ≤ y ≤ x+1;\\ & x ≤ 3. \end{aligned} \right. $$

Эти неравенства и задают область $D$, причём задают её однозначно, не допуская никаких двусмысленностей. Но как это поможет нам в том вопросе, что указан в начале примечания? Ещё как поможет:) Нам нужно проверить, принадлежит ли точка $M_1(1;1)$ области $D$. Подставим $x=1$ и $y=1$ в систему неравенств, которые эту область определяют. Если оба неравенства будут выполнены, то точка лежит внутри области. Если хотя бы одно из неравенств будет не выполнено, то точка области не принадлежит. Итак:

$$ \left \{ \begin{aligned} & 0 ≤ 1 ≤ 1+1;\\ & 1 ≤ 3. \end{aligned} \right. \;\; \left \{ \begin{aligned} & 0 ≤ 1 ≤ 2;\\ & 1 ≤ 3. \end{aligned} \right. $$

Оба неравенства справедливы. Точка $M_1(1;1)$ приналежит области $D$.

Теперь настал черёд исследовать поведение функции на границе области, т.е. переходим ко . Начнём с прямой $y=0$.

Прямая $y=0$ (ось абсцисс) ограничивает область $D$ при условии $-1 ≤ x ≤ 3$. Подставим $y=0$ в заданную функцию $z(x,y)=x^2+2xy-y^2-4x$. Полученную в результате подстановки функцию одной переменной $x$ обозначим как $f_1(x)$:

$$ f_1(x)=z(x,0)=x^2+2x\cdot 0-0^2-4x=x^2-4x. $$

Теперь для функции $f_1(x)$ нужно найти наибольшее и наименьшее значения на отрезке $-1 ≤ x ≤ 3$. Отыщем производную этой функции и приравняем её к нулю:

$$ f_{1}^{"}(x)=2x-4;\\ 2x-4=0; \; x=2. $$

Значение $x=2$ принадлежит отрезку $-1 ≤ x ≤ 3$, поэтому к списку точек добавим ещё и $M_2(2;0)$. Кроме того, вычислим значения функции $z$ на концах отрезка $-1 ≤ x ≤ 3$, т.е. в точках $M_3(-1;0)$ и $M_4(3;0)$. Кстати, если бы точка $M_2$ не принадлежала рассматриваемому отрезку, то, разумеется, значение функции $z$ в ней вычислять не было бы надобности.

Итак, вычислим значения функции $z$ в точках $M_2$, $M_3$, $M_4$. Можно, конечно, подставлять координаты данных точек в исходное выражение $z=x^2+2xy-y^2-4x$. Например, для точки $M_2$ получим:

$$z_2=z(M_2)=2^2+2\cdot 2\cdot 0-0^2-4\cdot 2=-4.$$

Однако вычисления можно немного упростить. Для этого стоит вспомнить, что на отрезке $M_3M_4$ имеем $z(x,y)=f_1(x)$. Распишу это подробно:

\begin{aligned} & z_2=z(M_2)=z(2,0)=f_1(2)=2^2-4\cdot 2=-4;\\ & z_3=z(M_3)=z(-1,0)=f_1(-1)=(-1)^2-4\cdot (-1)=5;\\ & z_4=z(M_4)=z(3,0)=f_1(3)=3^2-4\cdot 3=-3. \end{aligned}

Разумеется, что в столь подробных записях обычно нет нужды, и все вычисления в дальнейшем станем записывать покороче:

$$z_2=f_1(2)=2^2-4\cdot 2=-4;\; z_3=f_1(-1)=(-1)^2-4\cdot (-1)=5;\; z_4=f_1(3)=3^2-4\cdot 3=-3.$$

Теперь обратимся к прямой $x=3$. Эта прямая ограничивает область $D$ при условии $0 ≤ y ≤ 4$. Подставим $x=3$ в заданную функцию $z$. В результате такой подстановки мы получим функцию $f_2(y)$:

$$ f_2(y)=z(3,y)=3^2+2\cdot 3\cdot y-y^2-4\cdot 3=-y^2+6y-3. $$

Для функции $f_2(y)$ нужно найти наибольшее и наименьшее значения на отрезке $0 ≤ y ≤ 4$. Отыщем производную этой функции и приравняем её к нулю:

$$ f_{2}^{"}(y)=-2y+6;\\ -2y+6=0; \; y=3. $$

Значение $y=3$ принадлежит отрезку $0 ≤ y ≤ 4$, поэтому к найденным ранее точкам добавим ещё и $M_5(3;3)$. Кроме того, нужно вычислить значение функции $z$ в точках на концах отрезка $0 ≤ y ≤ 4$, т.е. в точках $M_4(3;0)$ и $M_6(3;4)$. В точке $M_4(3;0)$ мы уже вычисляли значение $z$. Вычислим значение функции $z$ в точках $M_5$ и $M_6$. Напомню, что на отрезке $M_4M_6$ имеем $z(x,y)=f_2(y)$, поэтому:

\begin{aligned} & z_5=f_2(3)=-3^2+6\cdot 3-3=6; & z_6=f_2(4)=-4^2+6\cdot 4-3=5. \end{aligned}

И, наконец, рассмотрим последнюю границу области $D$, т.е. прямую $y=x+1$. Эта прямая ограничивает область $D$ при условии $-1 ≤ x ≤ 3$. Подставляя $y=x+1$ в функцию $z$, будем иметь:

$$ f_3(x)=z(x,x+1)=x^2+2x\cdot (x+1)-(x+1)^2-4x=2x^2-4x-1. $$

Вновь мы получили функцию одной переменной $x$. И вновь нужно найти наибольшее и наименьшее значения этой функции на отрезке $-1 ≤ x ≤ 3$. Отыщем производную функции $f_{3}(x)$ и приравняем её к нулю:

$$ f_{3}^{"}(x)=4x-4;\\ 4x-4=0; \; x=1. $$

Значение $x=1$ принадлежит отрезку $-1 ≤ x ≤ 3$. Если $x=1$, то $y=x+1=2$. Добавим к списку точек ещё и $M_7(1;2)$ и выясним, чему равно значение функции $z$ в этой точке. Точки на концах отрезка $-1 ≤ x ≤ 3$, т.е. точки $M_3(-1;0)$ и $M_6(3;4)$, были рассмотрены ранее, значение функции в них мы уже находили.

$$z_7=f_3(1)=2\cdot 1^2-4\cdot 1-1=-3.$$

Второй шаг решения закончен. Мы получили семь значений:

$$z_1=-2;\;z_2=-4;\;z_3=5;\;z_4=-3;\;z_5=6;\;z_6=5;\;z_7=-3.$$

Обратимся к . Выбирая наибольшее и наименьшее значения из тех чисел, что были получены в третьем пункте, будем иметь:

$$z_{min}=-4; \; z_{max}=6.$$

Задача решена, осталось лишь записать ответ.

Ответ : $z_{min}=-4; \; z_{max}=6$.

Пример №2

Найти наибольшее и наименьшее значения функции $z=x^2+y^2-12x+16y$ в области $x^2+y^2 ≤ 25$.

Сначала построим чертёж. Уравнение $x^2+y^2=25$ (это граничная линия заданной области) определяет окружность с центром в начале координат (т.е. в точке $(0;0)$) и радиусом 5. Неравенству $x^2+y^2 ≤ 25$ удовлетворяют все точки внутри и на упомянутой окружности.

Будем действовать по . Найдем частные производные и выясним критические точки.

$$ \frac{\partial z}{\partial x}=2x-12; \frac{\partial z}{\partial y}=2y+16. $$

Точек, в которых найденные частные производные не существуют, нет. Выясним, в каких точках обе частные производные одновременно равны нулю, т.е. найдём стационарные точки.

$$ \left \{ \begin{aligned} & 2x-12=0;\\ & 2y+16=0. \end{aligned} \right. \;\; \left \{ \begin{aligned} & x=6;\\ & y=-8. \end{aligned} \right. $$

Мы получили стационарную точку $(6;-8)$. Однако найденная точка не принадлежит области $D$. Это легко показать, даже не прибегая к помощи рисунка. Проверим, выполняется ли неравенство $x^2+y^2 ≤ 25$, которое определяет нашу область $D$. Если $x=6$, $y=-8$, то $x^2+y^2=36+64=100$, т.е. неравенство $x^2+y^2 ≤ 25$ не выполнено. Вывод: точка $(6;-8)$ не принадлежит области $D$.

Итак, внутри области $D$ нет критических точек. Переходим дальше, ко . Нам нужно исследовать поведение функции на границе заданной области, т.е. на окружности $x^2+y^2=25$. Можно, конечно, выразить $y$ через $x$, а потом подставить полученное выражение в нашу функцию $z$. Из уравнения окружности получим: $y=\sqrt{25-x^2}$ или $y=-\sqrt{25-x^2}$. Подставляя, например, $y=\sqrt{25-x^2}$ в заданную функцию, будем иметь:

$$ z=x^2+y^2-12x+16y=x^2+25-x^2-12x+16\sqrt{25-x^2}=25-12x+16\sqrt{25-x^2}; \;\; -5≤ x ≤ 5. $$

Дальнейшее решение будет полностью идентично исследованию поведения функции на границе области в предыдущем примере №1. Однако мне кажется более разумным в этой ситуации применить метод Лагранжа . Нас будет интересовать лишь первая часть этого метода. После применения первой части метода Лагранжа мы получим точки, в которых и исследуем функцию $z$ на предмет минимального и максимального значений.

Составляем функцию Лагранжа:

$$ F=z(x,y)+\lambda\cdot(x^2+y^2-25)=x^2+y^2-12x+16y+\lambda\cdot (x^2+y^2-25). $$

Находим частные производные функции Лагранжа и составляем соответствующую систему уравнений:

$$ F_{x}^{"}=2x-12+2\lambda x; \;\; F_{y}^{"}=2y+16+2\lambda y.\\ \left \{ \begin{aligned} & 2x-12+2\lambda x=0;\\ & 2y+16+2\lambda y=0;\\ & x^2+y^2-25=0. \end{aligned} \right. \;\; \left \{ \begin{aligned} & x+\lambda x=6;\\ & y+\lambda y=-8;\\ & x^2+y^2=25. \end{aligned} \right. $$

Для решения этой системы давайте сразу укажем, что $\lambda\neq -1$. Почему $\lambda\neq -1$? Попробуем подставить $\lambda=-1$ в первое уравнение:

$$ x+(-1)\cdot x=6; \; x-x=6; \; 0=6. $$

Полученное противоречие $0=6$ говорит о том, что значение $\lambda=-1$ недопустимо. Вывод: $\lambda\neq -1$. Выразим $x$ и $y$ через $\lambda$:

\begin{aligned} & x+\lambda x=6;\; x(1+\lambda)=6;\; x=\frac{6}{1+\lambda}. \\ & y+\lambda y=-8;\; y(1+\lambda)=-8;\; y=\frac{-8}{1+\lambda}. \end{aligned}

Полагаю, что тут становится очевидным, зачем мы специально оговаривали условие $\lambda\neq -1$. Это было сделано, чтобы без помех поместить выражение $1+\lambda$ в знаменатели. Т.е., чтобы быть уверенным, что знаменатель $1+\lambda\neq 0$.

Подставим полученные выражения для $x$ и $y$ в третье уравнение системы, т.е. в $x^2+y^2=25$:

$$ \left(\frac{6}{1+\lambda} \right)^2+\left(\frac{-8}{1+\lambda} \right)^2=25;\\ \frac{36}{(1+\lambda)^2}+\frac{64}{(1+\lambda)^2}=25;\\ \frac{100}{(1+\lambda)^2}=25; \; (1+\lambda)^2=4. $$

Из полученного равенства следует, что $1+\lambda=2$ или $1+\lambda=-2$. Отсюда имеем два значения параметра $\lambda$, а именно: $\lambda_1=1$, $\lambda_2=-3$. Соответственно, получим и две пары значений $x$ и $y$:

\begin{aligned} & x_1=\frac{6}{1+\lambda_1}=\frac{6}{2}=3; \; y_1=\frac{-8}{1+\lambda_1}=\frac{-8}{2}=-4. \\ & x_2=\frac{6}{1+\lambda_2}=\frac{6}{-2}=-3; \; y_2=\frac{-8}{1+\lambda_2}=\frac{-8}{-2}=4. \end{aligned}

Итак, мы получили две точки возможного условного экстремума, т.е. $M_1(3;-4)$ и $M_2(-3;4)$. Найдём значения функции $z$ в точках $M_1$ и $M_2$:

\begin{aligned} & z_1=z(M_1)=3^2+(-4)^2-12\cdot 3+16\cdot (-4)=-75; \\ & z_2=z(M_2)=(-3)^2+4^2-12\cdot(-3)+16\cdot 4=125. \end{aligned}

На следует выбрать наибольшее и наименьшее значения из тех, что мы получили на первом и втором шагах. Но в данном случае выбор невелик:) Имеем:

$$ z_{min}=-75; \; z_{max}=125. $$

Ответ : $z_{min}=-75; \; z_{max}=125$.

§ Экстремумы, Наибольшее и наименьшее значения функций нескольких переменных - страница №1/1

§ 8. Экстремумы, Наибольшее и наименьшее значения функций нескольких переменных.

1. Экстремумы функций нескольких переменных.



плоскости
,
– точка этой области.

Точка
называется точкой максимума функции
, если для любой точки

выполняется неравенство


.

Аналогично точка
называется точкой минимума функции
, если для любой точки
из некоторой окрестности точки
выполняется неравенство


.

Замечания . 1) По смыслу определений функция
должна быть определена в некоторой окрестности точки
. Т.е. точкой максимума и точкой минимума функции
могут быть только внутренние точки области
.

2) Если существует окрестность точки
, в которой для любой точки
отличной от
выполняется неравенство

(

), то точку
называют точкой строгого максимума (соответственно точкой строгого минимума ) функции
. В связи с этим, определенные выше точки максимума и минимума называют иногда точками нестрого максимума и минимума.


Точки максимума и минимума функции называются ее точками экстремума . Значения функции в точках максимума и минимума называются соответственно максимумами и минимумами , или, короче, экстремумами этой функции.

Понятия экстремумов носят локальный характер: значение функции в точке
сравнивается со значениями функции в достаточно близких точках. В данной области функция может совсем не иметь экстремумов, а может иметь несколько минимумов, несколько максимумов и даже бесчисленное множество и тех и других. При этом некоторые минимумы могут оказаться больше некоторых ее максимумов. Не следует смешивать максимумы и минимумы функции с ее наибольшим и наименьшим значениями.

Найдем необходимое условие экстремума. Пусть, например,
– точка максимума функции
. Тогда по определению существует gif" align=absmiddle width="17px" height="18px">-окрестность точки
такая, что
для любой точки
из этой окрестности. В частности,

(1)

где
,
, и

(2)

где
,
. Но (1) означает, что функция одной переменной
имеет в точке максимум или является на интервале
постоянной. Следовательно,

или
– не существует,


или
– не существует.

Аналогично из (2) получаем, что

или
– не существует.

Таким образом, справедлива следующая теорема.

ТЕОРЕМА 8.1. (необходимые условия экстремума). Если функция
в точке
имеет экстремум, то в этой точке либо обе ее частные производные первого порядка равны нулю, либо хотя бы одна из этих частных производных не существует.

Геометрически теорема 8.1 означает, что если
– точка экстремума функции
, то касательная плоскость к графику этой функции в точке либо параллельна плоскости
, либо вообще не существует. Чтобы убедиться в этом, достаточно вспомнить, как найти уравнение касательной плоскости к поверхности (см. формулу (4.6)).

Точки, удовлетворяющие условиям теоремы 8.1, называются критическими точками функции
. Также как и для функции одной переменной, необходимые условия экстремума не является достаточным. Т.е. не всякая критическая точка функции будет ее точкой экстремума.

ПРИМЕР. Рассмотрим функцию
. Точка
является для этой функции критической, так как в этой точке обе ее частные производные первого порядка
и
равны нулю. Однако она не будет точкой экстремума. Действительно,
, но в любой окрестности точки
есть точки, в которых функция принимает положительные значения и точки, в которых функция принимает отрицательные значения. В этом легко убедиться, если построить график функции – гиперболический параболоид.

Для функции двух переменных наиболее удобные достаточные условия дает следующая теорема.

ТЕОРЕМА 8.2. (достаточные условия экстремума функции двух переменных). Пусть
– критическая точка функции
и в некоторой окрестности точки
функция имеет непрерывные частные производные до второго порядка включительно. Обозначим

,
,
.

Тогда 1) если
, то точка
не является точкой экстремума;



Если с помощью теоремы 8.2 исследовать критическую точку
не удалось (т.е. если
или функция вообще не имеет в окрестности точки
непрерывных частных производных нужного порядка), ответ на вопрос о наличии в точке
экстремума даст знак приращения функции в этой точке.

Действительно, из определения следует, что если функция
имеет в точке
строгий максимум, то

для всех точек
из некоторой окрестности точки
, или, иначе

при всех достаточно малых
и
. Аналогично, если
– точка строгого минимума, то при всех достаточно малых
и
будет выполняться неравенство
.

Таким образом, чтобы выяснить, является ли критическая точка
точкой экстремума, необходимо исследовать приращение функции в этой точке. Если при всех достаточно малых
и
оно будет сохранять знак, то в точке
функция имеет строгий экстремум (минимум, если
, и максимум, если
).

Замечание . Правило остается верным и для нестрого экстремума, но с поправкой, что при некоторых значениях
и
приращение функции будет нулевым
ПРИМЕР. Найти экстремумы функций:

1)
; 2)
.


1) Функция

и
тоже существуют всюду. Решая систему уравнений
,
найдем две критические точки
и
.

Для исследования критических точек применим теорему 8.2. Имеем:

,
,
.

Исследуем точку
:

,
,
,


;
.

Следовательно, в точке
данная функция имеет минимум, а именно
.

Исследуем критическую точку
:

,
,
,


.

Следовательно, вторая критическая точка не является точкой экстремума функции.


2) Функция
определена всюду. Ее частные производные первого порядка
и тоже существуют всюду. Решая систему уравнений
,
найдем единственную критическую точку
.

Для исследования критической точки применим теорему 8.2. Имеем:

,
,
,

,
,
,

.

Установить наличие или отсутствие экстремума в точке
с помощью теоремы 8.2 не удалось.

Исследуем знак приращения функции в точке
:

Если
, то
;

если
, то
.

Поскольку
не сохраняет знак в окрестности точки
, то в этой точке функция не имеет экстремума.


Определения максимума и минимума и необходимые условия экстремума легко переносятся на функции трех и более числа переменных. Достаточные условия экстремума для функции (
) переменных ввиду их сложности в данном курсе не рассматриваются. Определять характер критических точек в этом случае мы будем по знаку приращения функции.

2. Наибольшее и наименьшее значения функции.

Пусть функция двух переменных
определена в некоторой области
плоскости
,
,
– точки этой области. Значение функции в точке
называется наибольшим , если для любой точки
из области
выполняется неравенство


.

Аналогично значение функции в точке
называется наименьшим , если для любой точки
из области
выполняется неравенство

.

Ранее, мы уже говорили, что если функция непрерывна, а область
– замкнута и ограничена, то функция принимает в этой области свое наибольшее и наименьшее значения. При этом точки
и
могут лежать как внутри области
, так и на ее границе. Если точка
(или
) лежит внутри области
, то это будет точка максимума (минимума) функции
, т.е. критическая точка функции внутри области
. Поэтому для нахождения наибольшего и наименьшего значений функции
в области
нужно:
.