Скачать презентацию закон джоуля ленца. Закон джоуля-ленца и его применение. Спираль из вольфрама

Муниципальное бюджетное общеобразовательное учреждение Киселёвского городского округа «Основная общеобразовательная школа 24

Конспект урока по физике

в 8 классе

«Нагревание проводников электрическим током. Закон Джоуля – Ленца».

Составила: Л.А.Афанасьева

учитель физики

Киселёвск

Тема урока : «Нагревание проводников электрическим током. Закон Джоуля – Ленца»

Цели урока :

Формирование понятий об универсальности закона сохранения и превращения энергии на примере электрических и тепловых процессов, ознакомление с законом Джоуля - Ленца.

Развитие логического мышления, памяти, способности находить оптимальный путь выполнения поставленной задачи, умения правильно объяснять физические понятия и явления

Воспитание эстетического восприятия стройности и строгости логических рассуждений.

Тип урока: изучение нового материал

Материалы и оборудование: учебник – Пёрышкин А.В. 8 класс,мультимедиапрезентация, кинофрагмент, проектор, ноутбук, экран.

Методы: словесный, наглядный, проблемно – поисковый

Формы работы: коллективная, индивидуальная

План-конспект урока:

    Организационный момент.

    Актуализация знаний.

    Изложение нового материала.

    Закрепление (мини тест).

    Подведение итогов. Постановка домашнего задания.

I .Организационный момент

II .Актуализация знаний:

Слайд -1.

? Сформулируйте закон Ома для участка цепи

Закон Ома: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

? Что называется сопротивлением проводника, в чём его причина

Сопротивление проводника: физическая величина, характеризующая свойства проводника. Причина сопротивления: взаимодействие движущихся электронов с ионами кристаллической решётки.

? Чему равна работа электрического тока на участке цепи

Работа электрического тока на участке цепи равна произведению напряжения на концах этого участка, на силу тока и на время, в течение которого совершалась работа.

Слайд -2. Составляйка

Слайд -3.

Носителями электрического тока в металлах являются

А) ионы, Б) Электроны, В) протоны Т

Слайд -4.

Единицей электрического заряда является

А) Кл, Б) А, В) Н Е

Слайд -5.

Работу электрического тока можно вычислить

А) A = FS, Б) A = UIt , В) A = U/q П

Слайд -6.

Закон Ома для участка цепи

А) U = IR, Б) I = U/R, В) I = q/t Л

Слайд -7.

Мощность электрического тока вычисляется по формуле

А) P = UI , Б) P = UIt , В) P = U /R О

Слайд -8.

За единицу работы принят

А) Вт, Б) Дж, В) А В

Слайд -9.

Какая из электрических схем составлена без ошибок?

Слайд -10.

Рассчитайте сопротивление проводника

А) 6 Ом Б) 1,5 Ом, В) 0,6 Ом Е

Слайд -11.

Тепловое действие

Слайд –12. Применение теплового действия тока

III . Изложение нового материала

Слайд -13.

Поговорим подробно о тепловом действии тока. На рисунке изображена электрическая цепь, какие элементы цепи вам известны? (источник тока, ключ, соединительные провода, штативы, исследуемый проводник). Что произойдёт, если замкнуть ключ? (в цепи появится электрический ток)

Тепловое действие тока – анимационная демонстрация

Исследуемый проводник нагреется до красна и провиснет, т.к. при нагревании твёрдые тела расширяются.

Вывод: электрический ток нагревает проводник.

Слайд –14.

Почему же проводник нагревается ? Рассмотрим на примере движения одного электрона по проводнику.

Анимационная демонстрация

Электрический ток в проводнике – это упорядоченное движение электронов. Провод – это кристалл из ионов, по – этому электронам приходится «течь» между ионами, постоянно наталкиваясь на них. При этом часть кинетической энергии электроны передают ионам, заставляя их колебаться сильнее.

Кинетическая энергия ионов в узлах кристаллической решётки увеличивается, следовательно, увеличивается внутренняя энергия проводника и, следовательно, его температура. А это и означает, что проводник нагрелся.

После этого слайда кинофрагмент – Нагревание проводников электрическим током

Слайд – 15.

Рассмотрим на примере движения одного электрона и положительного иона в жидком проводнике (растворе медного купороса CuSO 4)

Анимационная демонстрация

В жидких и газообразных проводниках движущиеся электроны и ионы наталкиваются на молекулы, как бы «раскачивая» их, увеличивают их кинетическую энергию, что и означает возрастание температуры жидкости или газа.

Слайд – 16.

В неподвижных металлических проводниках вся работа электрического тока идёт на увеличение их внутренней энергии (на участке цепи не совершается механическая работа, и ток не производит химического действия).

Анимационная демонстрация

Нагретый проводник отдаёт полученную энергию окружающим телам путём теплопередачи.

Q = A Учитывая, что A = UIt , получаем Q = UIt .

Зная, что U = IR , получим Q = I 2 Rt .

Слайд – 17.

Q = I 2 Rt Количество теплоты, выделившееся за время t ? определяется законом Джоуля – Ленца : Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени.

Историческая справка о Джоуле Д.П., Ленце Э.Х.

Физкультминутка

Слайд – 18.

? Какой из проводников нагреется сильнее при прохождении по цепи электрического тока. Размеры проводников одинаковые.

медь сталь никелин

Q = I 2 Rt . Нагревание проводников электрическим током зависит от их сопротивления. Чем больше сопротивление проводника, тем сильнее он нагревается.

R = ρl /S Чтобы проводник нагрелся сильнее он должен обладать большим удельным сопротивлением.

Вещество

удельное сопротивление,

Ом мм 2 /м

нагревание проводника

медь

0,017

слабое

сталь

среднее

никелин

1.Чему равно количество теплоты, выделяемое неподвижным проводником по которому течёт электрический ток?

к) внутренней энергии проводника

л) работе электрического тока

м) мощности электрического тока

м) P = UI , н) Q = cm (t 1 - t 2) , о) U = IR , у) Q = I 2 R t

3.Один и тот же проводник включают в электрические цепи, где в нём устанавливаются силы тока 2 А, 4 А. В какой цепи он выделит большее количество теплоты и во сколько раз?

о) где I = 4 А, в 16 раз

у) где I = 4 А, в 4 раза

ф) где I = 2 А, в 2 раза

х) где I = 2 А, в 4 раза

4.В каких единицах измеряется количество теплоты?

д) кг, ж) Дж, з) м, и) Вт

5.Какое количество теплоты выделится за 30 мин. проволочной спиралью сопротивлением 25 Ом при силе тока 6 А?

б) 162 Дж, в) 1620 Дж, г) 162кДж, д) 1,62 МДж

Ответы:

1. л

2. у

3. о

4. ж

5. д

Если составит слово из букв, получится джоуль.

Если останется время:

1.Задача качественная: К.Г.Паустовский. Подарок.

«Лесничий – мужик хитрый, он, когда в Москве жил, так, говорят, на электрическом току пищу себе готовил. Может это быть или нет?

Может, - ответил Рувим.

Может, Может! – передразнил его дед. – А ты этот электрический ток видал? Как же ты его видал, когда он видимости не имеет, вроде как воздух?»

2 .Задачи из задачника В.И. Лукашик (1994г): №1209,1203,1218.

VI . Подведение итогов. Домашнее задание: п 53, пр.27(2-3)

Слайд 2

План урока: Проверка знаний; Закон Джоуля - Ленца; Применение теплового действия электрического тока. Лампа накаливания; Применение закона Джоуля - Ленца в сварочном производстве; Закрепление пройденного материала; Решение качественной задачи с помощью MS Excel; Анализ полученных результатов.

Слайд 3

Фронтальный опрос: 1. Как запустить табличный процессор? 2. Как задать адрес ячейки? 3. Как ввести в ячейку формулу? 4. Как вставить диаграмму? 5. Как выбрать тип диаграммы? 6. Как вывести график и таблицу на печать?

Слайд 4

Открытие закона Джоуля - Ленца

Джеймс Джоуль (английский физик) в 1841 году

Слайд 5

Закон Джоуля - Ленца: A = UIt В неподвижных проводниках вся работа тока идет лишь на нагревание проводников, т. е. на то, чтобы увеличь их внутреннюю энергию. Учитывая, что U = IR(из закона Ома для участка цепи)

Слайд 6

Q = I2Rt Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени. закон Джоуля – Ленца:

Слайд 7

1. Q = I2Rt 3. Q = U2t/R 2. Q = UIt

Слайд 8

Видео фрагмент «закон Джоуля - Ленца»

Слайд 9

Вольфрамовая спираль Стеклянный баллон Цоколь лампы Основание цоколя Пружинящий контакт Устройство современной лампочки накаливания 2 1 3 4 5

Слайд 10

Фронтальный опрос: Две проволоки одинаковой длины и сечения - железная и медная - соединены параллельно. В какой из них выделится большее количество теплоты? 2. Спираль электрической плитки укоротили. Как изменится количество выделяемой в ней теплоты, если плитку включить в то же напряжение? 3. В чем проявляется тепловое действие тока? При каких условиях оно наблюдается? 4. Почему при прохождении тока проводник нагревается? 5. Почему, когда по проводнику пропускают электрический ток, проводник удлиняется?

Слайд 11

Задача №1 Какое количество теплоты выделится в течение часа в проводнике сопротивлением 10 Ом при силе тока 2 А? Решение задач: Задача №2 Какое сопротивление нужно включить в сеть с напряжением 220 В, чтобы в нем за 10 мин выделилось 66 кДж теплоты?

Раздел ОГЭ по физике: 3.9. Закон Джоуля-Ленца
Раздел ЕГЭ по физике: 3.2.8. . Закон Джоуля–Ленца

Рассмотрим Закон Джоуля-Ленца и его применение.

При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника , в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: Q = А или Q = IUt . Учитывая, что U = IR , в результате получаем формулу:

Q = I 2 Rt , где

Q — количество выделяемой теплоты (в Джоулях)
I — сила тока (в Амперах)
R — сопротивление проводника (в Омах)
t — время прохождения (в секундах)

♦ Закон Джоуля–Ленца : количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

В XIX в. независимо друг от друга англичанин Д. Джоуль и россиянин Э. Ленц изучали нагревание проводников при прохождении электрического тока и опытным путём обнаружили закономерность: количество теплоты, выделяющееся при прохождении тока по проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени: Q = I 2 Rt (в случае постоянных силы тока и сопротивления). Эту закономерность называют законом Джоуля-Ленца. Данный закон дает количественную оценку теплового действия электрического тока.

Применяя , можно получить эквивалентные формулы: Q = IUt , Q= U 2 t/R

Где применяется закон Джоуля-Ленца?

1. Например, в лампах накаливания и в электронагревательных приборах применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на определенном участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

2. Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии . Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

3. Также закон Джоуля-Ленца влияет на выбор проводов для цепей . Потому что при неправильном подборе проводов возможен сильный нагрев проводника, а также его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии.

Нагревание проводов является вредным, поскольку приводит к потерям электроэнергии при передаче ее от источника к потребителю. Для уменьшения этих потерь силу тока уменьшают, повышая напряжение источника с тем, чтобы передаваемая мощность осталась прежней. Чтобы избежать электрического пробоя изоляции проводов, их поднимают на большую высоту на мачтах высоковольтных линий электропередач , связывающих крупные электростанции с городами и поселками, отстоящими от них на десятки и сотни километров.

Вы смотрели конспект урока физики в 8 классе «Закон Джоуля-Ленца и его применение».
Выберите дальнейшие действия:

  • Посмотреть

«Действие электрического тока» - Сформулируйте гипотезу о предполагаемом действии тока. Сделайте выводы. Тепловое действие тока. «Отчет-рассказ». Тема: «Действия электрического тока». (Кант Иммануил немецкий философ, 1724 - 1804 г.г.). Что является источником магнитного поля Земли? Магнитное действие тока. 10. «Порешаем». Приведите примеры применения данного действия.

«Переменный электрический ток» - i=Im cos ?t. P = Im Um / 2 = Im2R / 2. P=i2R. Переменный Электрический ток. Ф=b*s*cos ?. Амплитуда силы тока равна: Мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Im= Um / R. Среднее значение квадрата косинуса за 1 период равно 0,5. Действующие значения силы тока и напряжения.

«Работа электрического тока» - Выведем формулы для расчета работы электрического тока. U= 3,5 В R= 14 Ом t= 2мин. А) Анализ энергетических превращений, происходящих в электрических цепях. В) Какую роль выполняет источник тока? 3. Новый материал. Новый материал. Работа электрического тока. Выполнила учитель физики Курочкина Т.А. 120c.

«Электроемкость и конденсаторы» - Конденсатор переменной емкости. Обозначение на электрических схемах: Соединение конденсаторов. Все электрическое поле сосредоточено внутри конденсатора. Последовательное. Энергия заряженного конденсатора. +q. Конденсаторы. Электроемкость. Электроемкость плоского конденсатора. -q. Параллельное. Конденсатор постоянной емкости.

«Постоянный электрический ток» - 10.2. Плотность тока. Линии в случае постоянного тока нигде не начинаются и нигде не заканчиваются. Величина, равная работе сторонних сил по перемещению единичного положительного заряда в цепи, называется электродвижущей силой (Э.Д.С.), действующей в цепи: (7.4.1). Распределение напряженности Е и потенциала? электростатического поля связано с плотностью распределения зарядов? в пространстве уравнением Пуассона:

«Работа и мощность тока» - Единицы мощности. Единицы работы. i=P/u. Джеймс Уатт. Цели урока: A=P*t. Работа и мощность электрического тока. Научиться применять формулы при решении задач. Ватт 1 Ватт = 1 Вольт * 1 Ампер 1 Вт = 1 В *1 А 1 кВт = 1 000 Вт 1Мвт = 1 000 000 Вт. Работа электрического тока. Шестнадцатое марта Классная работа.

Всего в теме 16 презентаций