Урок-лекция "Теория химического строения А. Бутлерова". Теория строения органических соединений А.М. Бутлерова

Тип водорода:

Такие формулы несколько похожи на современные. Но сторонники теории типов не считали их отражающими реальное строение веществ и писали множество различных формул одного соединения в зависимости от химических реакций, которые пытались записать с помощью этих формул. Строение молекул они считали принципиально непознаваемым, что наносило вред развитию науки.

3. Введение Й. Берцелиусом в 1830 г. термина «изомерия » для явления существования веществ одинакового состава, обладающих различными свойствами.

4. Успехи в синтезе органических соединений, в результате которых было развеяно учение о витализме, то есть о «жизненной силе», под влиянием которой якобы в организме живых существ образуются органические вещества:

В 1828 г. Ф. Велер из неорганического вещества (цианата аммония) синтезировал мочевину;

В 1842 г. русский химик Н. Н. Зинин получил анилин;

В 1845 г. немецкий химик А. Кольбе синтезировал уксусную кислоту;

В 1854 г. французский химик М. Бертло синтезировал жиры, и, наконец,

В 1861 г. сам А. М. Бутлеров синтезировал сахароподобное вещество.

5. В середине XVIII в. химия становится более строгой наукой. В результате работ Э. Франкланда и А. Кекуле утвердилось понятие о валентности атомов химических элементов. Кекуле развил представление о четырехвалентности углерода. Благодаря трудам Канниццаро четче стали понятия об атомных и молекулярных массах, уточнены их значения и способы определения.

В 1860 г. более 140 ведущих химиков из разных стран Европы собрались на международный конгресс в г. Карлсруэ. Конгресс стал очень важным событием в истории химии: были обобщены успехи науки и подготовлены условия для нового этапа в развитии органической химии - появления теории химического строения органических веществ А. М. Бутлерова (1861 г.), а также для фундаментального открытия Д. И. Менделеева - Периодического закона и системы химических элементов (1869 г.).

В 1861 г. А. М. Бутлеров выступил на съезде врачей и естествоиспытателей в г. Шпейере с докладом «О химическом строении тел». В нем он изложил основы разработанной им теории химического строения органических соединений. Под химическим строением ученый понимал порядок соединения атомов в молекулах.

Личностные качества А. М. Бутлерова

А. М. Бутлерова отличали энциклопедичность химических знаний, умение анализировать и обобщать факты, прогнозировать. Он предсказал существование изомера бутана, а затем получил его, равно как изомер бутилена - изобутилен.

Бутлеров Александр Михайлович (1828-1886)

Русский химик, академик Петербургской АН (с 1874 г.). Окончил Казанский университет (1849 г.). Работал там же (с 1857 г. - профессор, в 1860 и 1863 гг. - ректор). Создатель теории химического строения органических соединений, лежащей в основе современной химии. Обосновал идею о взаимном влиянии атомов в молекуле. Предсказал и объяснил изомерию многих органических соединений. Написал «Введение к полному изучению органической химии» (1864 г.) - первое в истории науки руководство, основанное на теории химического строения. Председатель Отделения химии Русского физико-химического общества (1878-1882).

А. М. Бутлеров создал первую в России школу химиков-органиков, из которой вышли блестящие ученые: В. В. Марковников, Д. П. Коновалов, А. Е. Фаворский и др.

Недаром Д. И. Менделеев писал: «А. М. Бутлеров - один из величайших русских ученых, он русский и по ученому образованию, и по оригинальности трудов».

Основные положения теории строения химических соединений

Теория химического строения органических соединений, выдвинутая А. М. Бутлеровым во второй половине прошлого века (1861 г.), была подтверждена работами многих ученых, в том числе учениками Бутлерова и им самим. Оказалось возможным на ее основе объяснить многие явления, до той поры не имевшие толкования: изомерию, гомологию, проявление атомами углерода четырехвалентности в органических веществах. Теория выполнила и свою прогностическую функцию: на ее основе ученые предсказывали существование неизвестных еще соединений, описывали свойства и открывали их.

Так, в 1862-1864 гг. А. М. Бутлеров рассмотрел изомерию пропиловых, бутиловых и амиловых спиртов, определил число возможных изомеров и вывел формулы этих веществ. Существование их позднее было экспериментально доказано, причем некоторые из изомеров синтезировал сам Бутлеров.

В течение XX в. положения теории химического строения химических соединений были развиты на основе новых воззрений, распространившихся в науке: теории строения атома, теории химической связи, представлений о механизмах химических реакций. В настоящее время эта теория имеет универсальный характер, то есть справедлива не только для органических веществ, но и для неорганических.

Первое положение. Атомы в молекулах соединяются в определенном порядке в соответствии с их валентностью. Углерод во всех органических и в большинстве неорганических соединений четырехвалентен.

Очевидно, что последнюю часть первого положения теории легко объяснить тем, что в соединениях атомы углерода находятся в возбужденном состоянии:

а) атомы четырехвалентного углерода могут соединяться друг с другом, образуя различные цепи:

Открытые разветвленные
- открытые неразветвленные
- замкнутые

б) порядок соединения атомов углерода в молекулах может быть различным и зависит от вида ковалентной химической связи между атомами углерода - одинарной или кратной (двойной и тройной).

Второе положение. Свойства веществ зависят не только от их качественного и количественного состава, но и от строения их молекул.

Это положение объясняет явление изомерии. Вещества, имеющие одинаковый состав, но разное химическое или пространственное строение, а следовательно, и разные свойства, называют изомерами. Основные виды изомерии:

Структурная изомерия, при которой вещества различаются порядком связи атомов в молекулах:

1) изомерия углеродного скелета

3) изомерия гомологических рядов (межклассовая)

Пространственная изомерия, при которой молекулы веществ отличаются не порядком связи атомов, а положением их в пространстве: цис-транс-изомерия (геометрическая).

Эта изомерия характерна для веществ, молекулы которых имеют плоское строение: алкенов, циклоалканов и др.

К пространственной изомерии относится и оптическая (зеркальная) изомерия.

Четыре одинарные связи вокруг атома углерода, как вы уже знаете, расположены тетраэдрически. Если атом углерода связан с четырьмя различными атомами или группами, то возможно разное расположение этих групп в пространстве, то есть две пространственные изомерные формы.

Две зеркальные формы аминокислоты аланина (2-аминопропановой кислоты) изображены на рисунке 17.

Представьте себе, что молекулу аланина поместили перед зеркалом. Группа -NH2 находится ближе к зеркалу, поэтому в отражении она будет впереди, а группа -СООН - на заднем плане и т. д. (см. изображение справа). Алании существует в двух пространственных формах, которые при наложении не совмещаются одна с другой.

Универсальность второго положения теории строения химических соединений подтверждает существование неорганических изомеров.

Так, первый из синтезов органических веществ - синтез мочевины, проведенный Велером (1828 г.), показал, что изомерны неорганическое вещество - цианат аммония и органическое - мочевина:

Если заменить атом кислорода в мочевине на атом серы, то получится тиомочевина, которая изомерна роданиду аммония, хорошо известному вам реактиву на ионы Fе 3+ . Очевидно, что тиомочевина не дает этой качественной реакции.

Третье положение. Свойства веществ зависят от взаимного влияния атомов в молекулах.

Например, в уксусной кислоте в реакцию со щелочью вступает только один из четырех атомов водорода. На основании этого можно предположить, что только один атом водорода связан с кислородом:

С другой стороны, из структурной формулы уксусной кислоты можно сделать вывод о наличии в ней одного подвижного атома водорода, то есть о ее одноосновности.

Чтобы убедиться в универсальности положения теории строения о зависимости свойств веществ от взаимного влияния атомов в молекулах, которое существует не только у органических, но и у неорганических соединений, сравним свойства атомов водорода в водородных соединениях неметаллов. Они имеют молекулярное строение и в обычных условиях представляют собой газы или летучие жидкости. В зависимости от положения неметалла в Периодической системе Д. И. Менделеева можно выявить закономерность в изменении свойств таких соединений:

Метан не взаимодействует с водой. Отсутствие основных свойств у метана объясняется насыщенностью валентных возможностей атома углерода.

Аммиак проявляет основные свойства. Его молекула способна присоединять к себе ион водорода за счет его притяжения к неподеленной электронной паре атома азота (донорно-акцепторный механизм образования связи).

У фосфина РН3 основные свойства слабо выражены, что связано с радиусом атома фосфора. Он значительно больше радиуса атома азота, поэтому атом фосфора слабее притягивает к себе атом водорода.

В периодах слева направо увеличиваются заряды ядер атомов, уменьшаются радиусы атомов, увеличивается сила отталкивания атома водорода с частичным положительным зарядом §+, а потому кислотные свойства водородных соединений неметаллов усиливаются.

В главных подгруппах сверху вниз увеличиваются радиусы атомов элементов, атомы неметаллов с 5- слабее притягивают атомы водорода с 5+, уменьшается прочность водородных соединений, они легко диссоциируют, а потому их кислотные свойства усиливаются.

Различная способность водородных соединений неметаллов к отщеплению или присоединению катионов водорода в растворах объясняется неодинаковым влиянием, которое оказывает атом неметалла на атомы водорода.

Различным влиянием атомов в молекулах гидроксидов, образованных элементами одного периода, объясняется также изменение их кислотно-основных свойств.

Основные свойства гндроксидов убывают, а кислотные усиливаются, так как увеличивается степень окисления центрального атома, следовательно, растет энергия связи его с атомом кислорода (8-) и отталкивание им атома водорода (8+).

Гидроксид натрия NаОН. Так как у атома водорода радиус очень мал, его сильнее Притягивает к себе атом кислорода и связь между атомами водорода и кислорода будет более прочной, чем между атомами натрия и кислорода. Гидроксид алюминия Аl(0Н)3 проявляет амфотерные свойства.

В хлорной кислоте НСlO 4 атом хлора с относительно большим положительным зарядом прочнее связан с атомом кислорода и сильнее отталкивает от себя атом водорода с 6+. Диссоциация происходит по кислотному типу.

Основные направления развития теории строения химических соединений и ее значение

Во времена А. М. Бутлерова в органической химии широко использовали эмпирические (молекулярные) и структурные формулы. Последние отражают порядок соединения атомов в молекуле согласно их валентности, которая обозначается черточками.

Для простоты записи часто используют сокращенные структурные формулы, в которых черточками обозначают только связи между атомами углерода или углерода и кислорода.

Сокращенные структурные формулы

Затем, по мере развития знаний о природе химической связи и о влиянии электронного строения молекул органических веществ на их свойства, стали пользоваться электронными формулами, в которых ковалентную связь условно обозначают двумя точками. В таких формулах часто показывают направление смещения электронных пар в молекуле.

Именно электронным строением веществ объясняют мезомерный и индукционный эффекты.

Индукционный эффект - смещение электронных пар гамма-связей от одного атома к другому вследствие их разной электроотрицательности. Обозначается (->).

Индукционный эффект атома (или группы атомов) отрицательный (-/), если этот атом имеет большую электроотрицательность (галогены, кислород, азот), притягивает к себе электроны гамма-связи и приобретает при этом частичный отрицательный заряд. Атом (или группа атомов) имеет положительный индукционный эффект (+/), если он отталкивает электроны гамма-связей. Этим свойством обладают некоторые предельные радикалы С2H5). Вспомните правило Марковникова о том, как присоединяется к алкенам (пропену) водород и галоген галогеноводорода и вы поймете, что это правило носит частный характер. Сравните эти два примера уравнений реакций:

[[Теория_строения_химических_соединений_А._М._Бутлерова|]]

В молекулах отдельных веществ проявляются и индукционный, и мезомерный эффекты одновременно. В этом случае они или усиливают друг друга (в альдегидах, карбоновых кислотах), или взаимно ослабляются (в хлорвиниле).

Результатом взаимного влияния атомов в молекулах является перераспределение электронной плотности.

Идею о пространственном направлении химических связей впервые высказали французский химик Ж. А. Ле Бель и голландский химик Я. X. Вант-Гофф в 1874 г. Предположения ученых полностью подтвердила квантовая химия. На свойства веществ значительное влияние оказывает пространственное строение их молекул. Например, мы уже приводили формулы цис- и транс-изомеров бутена-2, которые отличаются по своим свойствам (см. рис. 16).

Средняя энергия связи, которую необходимо разорвать при переходе одной формы в другую, равна примерно 270 кДж/моль; такого большого количества энергии при комнатной температуре нет. Для взаимного перехода форм бутена-2 из одной в другую необходимо одну ковалентную связь разорвать и взамен образовать другую. Иными словами, этот процесс - пример химической реакции, а обе рассмотренные формы бутена-2 представляют собой различные химические соединения.

Вы, очевидно, помните, что важнейшей проблемой при синтезе каучука было получение каучука стереорегулярного строения. Необходимо было создать такой полимер, в котором структурные звенья располагались бы в строгом порядке (натуральный каучук, например, состоит только из цис-звеньев), ведь от этого зависит такое важнейшее свойство каучука, как его эластичность.

Современная органическая химия различает два основных типа изомерии: структурную (изомерию цепи, изомерию положения кратных связей, изомерию гомологических рядов, изомерию положения функциональных групп) и стереоизоме-рию (геометрическую, или цис-транс-изомерию, оптическую, или зеркальную, изомерию).

Итак, вы смогли убедиться в том, что второе положение теории химического строения, четко сформулированное А. М. Бутлеровым, было неполным. С современных позиций это положение требует дополнения:
свойства веществ зависят не только от их качественного и количественного состава, но и от их:

Химического,

Электронного,

Пространственного строения.

Создание теории строения веществ сыграло важнейшую роль в развитии органической химии. Из науки преимущественно описательной она превращается в науку созидательную, синтезирующую, появилась возможность судить о взаимном влиянии атомов в молекулах различных веществ (см. табл. 10). Теория строения создала предпосылки для объяснения и прогнозирования различных видов изомерии органических молекул, а также направлений и механизмов протекания химических реакций.

На основе этой теории химики-органики создают вещества, которые не только заменяют природные, но по своим свойствам значительно их превосходят. Так, синтетические красители гораздо лучше и дешевле многих природных, например известных в древности ализарина и индиго. В больших количествах производят синтетические каучуки с самыми разнообразными свойствами. Широкое применение находят пластмассы и волокна, изделия из которых используют в технике , быту, медицине, сельском хозяйстве.

Значение теории химического строения А. М. Бутлерова для органической химии можно сравнить со значением Периодического закона и Периодической системы химических элементов Д. И. Менделеева для неорганической химии. Недаром в обеих теориях так много общего в путях их становления, направлениях развития и общенаучном значении. Впрочем, в истории любой другой ведущей научной теории (теории Ч. Дарвина, генетике, квантовой теории и т. д.) можно найти такие общие этапы.

1. Установите параллели между двумя ведущими теориями химии - Периодическим законом и Периодической системой химических элементов Д. И. Менделеева и теорией химического строения органических соединений А. М. Бутлерова по следующим признакам: общее в предпосылках, общее в направлениях их развития, общее в прогностической роли.

2. Какую роль сыграла теория строения химических соединений в становлении Периодического закона?

3. Какие примеры из неорганической химии подтверждают универсальность каждого из положений теории строения химических соединений?

4. Фосфористая кислота Н3РО3 относится к двухосновным кислотам. Предложите ее структурную формулу и рассмотрите взаимное влияние атомов в молекуле этой кислоты.

5. Напишите изомеры, имеющие состав С3Н8O. Назовите их по систематической номенклатуре. Определите виды изомерии.

6. Известны следующие формулы кристаллогидратов хлорида хрома(III): [Сг(Н20)6]Сl3; [Сг(Н20)5Сl]Сl2 Н20; [Сг(Н20)4 * С12]Сl 2Н2О. Как вы назовете описанное явление?

Крупнейшим событием в развитии органической химии было создание в 1961 г. великим русским ученым А.М. Бутлеровым теории химического строения органических соединений.

До А.М. Бутлерова считалось невозможным познать строение молекулы, т. е. порядок химической связи между атомами. Многие ученые даже отрицали реальность атомов и молекул.

А.М. Бутлеров опроверг это мнение. Он исходил из правильных материалистических и философских представлений о реальности существования атомов и молекул, о возможности познания химической связи атомов в молекуле. Он показал, что строение молекулы можно установить опытным путем, изучая химические превращения вещества. И наоборот, зная строение молекулы, можно вывести химические свойства соединения.

Теория химического строения объясняет многообразие органических соединений. Оно обусловлено способностью четырехвалентного углерода образовывать углеродные цепи и кольца, соединяться с атомами других элементов и наличием изомерии химического строения органических соединений. Эта теория заложила научные основы органической химии и объяснила ее важнейшие закономерности. Основные принципы своей теории А.М. Бутлеров изложил в докладе «О теории химического строения».

Основные положения теории строения сводятся к следующему:

1) в молекулах атомы соединены друг с другом в определенной последовательности в соответствии с их валентностью. Порядок связи атомов называется химическим строением;

2) свойства вещества зависят не только от того, какие атомы и в каком количестве входят в состав его молекулы, но и от того, в каком порядке они соединены между собой, т. е. от химического строения молекулы;

3) атомы или группы атомов, образовавшие молекулу, взаимно влияют друг на друга.

В теории химического строения большое внимание уделяется взаимному влиянию атомов и групп атомов в молекуле.

Химические формулы, в которых изображен порядок соединения атомов в молекулах, называются структурными формулами или формулами строения.

Значение теории химического строения А.М. Бутлерова:

1) является важнейшей частью теоретического фундамента органической химии;

2) по значимости ее можно сопоставить с Периодической системой элементов Д.И. Менделеева;

3) она дала возможность систематизировать огромный практический материал;

4) дала возможность заранее предсказать существование новых веществ, а также указать пути их получения.

Теория химического строения служит руководящей основой во всех исследованиях по органической химии.

5. Изомерия. Электронное строение атомов элементов малых периодов.Химическая связь

Свойства органических веществ зависят не только от их состава, но и от порядка соединения атомов в молекуле.

Изомеры – это вещества, которые имеют одинаковый состав и одинаковую молярную массу, но различное строение молекул, а потому обладающие разными свойствами.

Научное значение теории химического строения:

1) углубляет представления о веществе;

2) указывает путь к познанию внутреннего строения молекул;

3) дает возможность понять накопленные в химии факты; предсказать существование новых веществ и найти пути их синтеза.

Всем этим теория в огромной степени способствовала дальнейшему развитию органической химии и химической промышленности.

Немецкий ученый А. Кекуле высказывал мысль о соединении атомов углерода друг с другом в цепи.

Учение об электронном строении атомов.

Особенности учения об электронном строении атомов: 1) позволило понять природу химической связи атомов; 2) выяснить сущность взаимного влияния атомов.

Состояние электронов в атомах и строение электронных оболочек.

Электронные облака – это области наибольшей вероятности пребывания электрона, которые различаются по своей форме, размерам, направленности в пространстве.

В атоме водорода единственный электрон при своем движении образует отрицательно заряженное облако сферической (шаровидной) формы.

S-электроны – это электроны, образующие сферическое облако.

В атоме водорода имеется один s-электрон.

В атоме гелия – два s-электрона.

Особенности атома гелия: 1) облака одинаковой сферической формы; 2) наибольшая плотность одинаково удалена от ядра; 3) электронные облака совмещаются; 4) образуют общее двухэлектронное облако.

Особенности атома лития: 1) имеет два электронных слоя; 2) имеет облако сферической формы, но по размерам значительно превосходит внутреннее двухэлектронное облако; 3) электрон второго слоя слабее притягивается к ядру, чем первые два; 4) легко захватывается другими атомами в окислительно-восстановительных реакциях; 5) имеет s-электрон.

Особенности атома бериллия: 1) четвертый электрон – s-электрон; 2) сферическое облако совмещается с облаком третьего электрона; 3) имеются два спаренных s-электрона во внутреннем слое и два спаренных s-электрона в наружном.

Чем больше перекрываются электронные облака при соединении атомов, тем больше выделяется энергии и тем прочнее химическая связь.

Созданная А.М. Бутлеровым в 60-х годах XIX века теория химического строения органических соединений внесла необходимую ясность в причины многообразия органических соединений, вскрыла взаимосвязь между строением и свойствами этих веществ, позволила объяснить свойства уже известных и предсказать свойства ещё не открытых органических соединений.

Открытия в области органической химии (четырёхвалентность углерода, способность образования длинных цепочек) позволили Бутлерову в 1861 году сформулировать основные поколения теории:

1) Атомы в молекулах соединяются согласно их валентности (углерод-IV, кислород-II, водород-I), последовательность соединения атомов отражается структурными формулами.

2) Свойства веществ зависят не только от химического состава, но и от порядка соединения атомов в молекуле (химическое строение). Существуют изомеры , то есть вещества, имеющие одинаковый количественный и качественный состав, но разное строение, и, следовательно, разные свойства.

C 2 H 6 O: CH 3 CH 2 OH – этиловый спирт и CH 3 OCH 3 – диметиловый эфир

C 3 H 6 – пропен и циклопропан - CH 2 =CH−CH 3

3) Атомы взаимно влияют друг на друга, это следствие различной электроотрицательности атомов, образующих молекулы (O>N>C>H), и эти элементы оказывают различное влияние на смещение общих электронных пар.

4) По строению молекулы органического вещества можно предсказать его свойства, а по свойствам – определить строение.

Дальнейшее развитие ТСОС получила после установления строения атома, принятия концепции о типах химических связей, о видах гибридизации, открытие явления пространственной изомерии (стереохимия).


Билет №7 (2)

Электролиз как окислительно-восстановительный процесс. Электролиз расплавов и растворов на примере хлорида натрия. Практическое применение электролиза.

Электролиз - это окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через расплав или раствор электролита

Сущность электролиза состоит в осуществлении за счет электрической энергии хим. Реакции- восстановления на катоде и окисления на аноде.

Катод(-) отдает электроны катионам, а анод(+) принимает электроны от анионов.

Электролиз расплава NaCl

NaCl-―> Na + +Cl -

K(-): Na + +1e-―>Na 0 | 2 проц. восстановления

A(+) :2Cl-2e-―>Cl 2 0 | 1 проц. окисления

2Na + +2Cl - -―>2Na+Cl 2

Электролиз водного раствора NaCl

В электролизе раствора NaC| в воде участвуют ионы Na + и Cl - , а также молекулы воды. При прохождении тока катионы Na + движутся к катоду, а анионы Cl - - к аноду. Но на катоде вместо ионов Na восстанавливаться молекулы воды:

2H 2 O + 2e-―> H 2 +2OH -

а на аноде окисляются хлорид-ионы:

2Cl - -2e-―>Cl 2

В итоге на катоде-водород, на аноде-хлор, а в растворе накапливается NaOH

В ионной форме: 2H 2 O+2e-―>H 2 +2OH-

2Cl - -2e-―>Cl 2

электролиз

2H 2 O+2Cl - -―>H 2 +Cl 2 +2OH -

электролиз

В молекулярной форме: 2H 2 O+2NaCl-―> 2NaOH+H 2 +Cl 2

Применение электролиза:

1)Защита металлов от коррозии

2)Получение активных металлов (натрия, калия, щелочно-земельных и др.)

3)Очистка некоторых металлов от примесей (электрическое рафинирование)

Билет №8 (1)


Похожая информация:

  1. A) Теория познания - наука, изучающая формы, способы и приемы возникновения и закономерности развития знания, отношение его к действительности, критерии его истинности.

Все вещества, которые содержат углеродный атом, помимо карбонатов, карбидов, цианидов, тиоционатов и угольной кислоты, представляют собой органические соединения. Это значит, что они способны создаваться живыми организмами из атомов углерода посредством ферментативных или прочих реакций. На сегодняшний день многие органические вещества можно синтезировать искусственно, что позволяет развивать медицину и фармакологию, а также создавать высокопрочные полимерные и композитные материалы.

Классификация органических соединений

Органические соединения являются самым многочисленным классом веществ. Здесь присутствует порядка 20 видов веществ. Они различны по химическим свойствам, отличаются физическими качествами. Их температура плавления, масса, летучесть и растворимость, а также агрегатное состояние при нормальных условиях также различны. Среди них:

  • углеводороды (алканы, алкины, алкены, алкадиены, циклоалканы, ароматические углеводороды);
  • альдегиды;
  • кетоны;
  • спирты (двухатомные, одноатомные, многоатомные);
  • простые эфиры;
  • сложные эфиры;
  • карбоновые кислоты;
  • амины;
  • аминокислоты;
  • углеводы;
  • жиры;
  • белки;
  • биополимеры и синтетические полимеры.

Данная классификация отражает особенности химического строения и наличие специфических атомных групп, определяющих разность свойств того или иного вещества. В общем виде классификация, в основе которой лежит конфигурация углеродного скелета, не учитывающая особенностей химических взаимодействий, выглядит по-другому. Соответственно ее положениям, органические соединения делятся на:

  • алифатические соединения;
  • ароматические вещества;
  • гетероциклические вещества.

Данные классы органических соединений могут иметь изомеры в разных группах веществ. Свойства изомеров различны, хотя их атомный состав может быть одинаковым. Это вытекает из положений, заложенных А. М. Бутлеровым. Также теория строения органических соединений является руководящей основой при проведении всех исследований в органической химии. Ее ставят на один уровень с менделеевским Периодическим законом.

Само понятие о химическом строении ввел А. М. Бутлеров. В истории химии оно появилось 19 сентября 1861 года. Ранее в науке существовали различные мнения, а часть ученых вовсе отрицало наличие молекул и атомов. Потому в органической и неорганической химии не было никакого порядка. Более того, не существовало закономерностей, по которым можно было судить о свойствах конкретных веществ. При этом были и соединения, которые при одинаковом составе проявляли разные свойства.

Утверждения А. М. Бутлерова во многом направили развитие химии в нужное русло и создали для нее прочнейший фундамент. Посредством нее удалось систематизировать накопленные факты, а именно, химические или же физические свойства некоторых веществ, закономерности вступления их в реакции и прочее. Даже предсказание путей получения соединений и наличие некоторых общих свойств стало возможным благодаря данной теории. А главное, А. М. Бутлеров показал, что структуру молекулы вещества можно объяснить с точки зрения электрических взаимодействий.

Логика теории строения органических веществ

Поскольку до 1861 года в химии многие отвергали существование атома или же молекулы, то теория органических соединений стала революционным предложением для ученого мира. И поскольку сам Бутлеров А. М. исходит лишь из материалистических умозаключений, то ему удалось опровергнуть философские представления об органике.

Ему удалось показать, что молекулярное строение можно распознать опытным путем посредством химических реакций. К примеру, состав любого углевода можно выяснить посредством сжигания его определенного количества и подсчета образовавшейся воды и углекислого газа. Количество азота в молекуле амина подсчитывается также при сжигании путем измерения объема газов и выделения химического количества молекулярного азота.

Если рассматривать суждения Бутлерова о химическом строении, зависящем от структуры, в обратном направлении, то напрашивается новый вывод. А именно: зная химическое строение и состав вещества, можно эмпирически предположить его свойства. Но самое главное - Бутлеров объяснил, что в органике встречается огромное количество веществ, проявляющих разные свойства, но имеющие одинаковый состав.

Общие положения теории

Рассматривая и исследуя органические соединения, Бутлеров А. М. вывел некоторые важнейшие закономерности. Он объединил их в положения теории, объясняющей строение химических веществ органического происхождения. Положения теории таковы:

  • в молекулах органических веществ атомы соединены между собой в строго определенной последовательности, которая зависит от валентности;
  • химическое строение - это непосредственный порядок, согласно которому соединены атомы в органических молекулах;
  • химическое строение обуславливает наличие свойств органического соединения;
  • в зависимости от строения молекул с одинаковым количественным составом возможно появление различных свойств вещества;
  • все атомные группы, участвующие в образовании химического соединения, имеют взаимное влияние друг на друга.

Все классы органических соединений построены согласно принципам данной теории. Заложив основы, Бутлеров А. М. смог расширить химию как область науки. Он пояснил, что благодаря тому, что в органических веществах углерод проявляет валентность равную четырем, обуславливается многообразие данные соединений. Наличие множества активных атомных групп определяет принадлежность вещества к определенному классу. И именно за счет наличия специфических атомных групп (радикалов) появляются физические и химические свойства.

Углеводороды и их производные

Данные органические соединения углерода и водорода являются самыми простыми по составу среди всех веществ группы. Они представлены подклассом алканов и циклоалканов (насыщенных углеводородов), алкенов, алкадиенов и алкатриенов, алкинов (непредельных углеводородов), а также подклассом ароматических веществ. В алканах все атомы углерода соединены только одинарной С-С связью, из-за чего в состав углеводорода уже не может быть встроен ни один атом Н.

В непредельных углеводородах водород может встраиваться по месту наличия двойной С=С связи. Также С-С связь может быть тройной (алкины). Это позволяет данным веществам вступать во множество реакций, связанных с восстановлением или присоединением радикалов. Все остальные вещества для удобства изучения их способности вступать в реакции рассматриваются как производные одного из классов углеводородов.

Спирты

Спиртами называются более сложные, чем углеводороды органические химические соединения. Они синтезируются в результате протекания ферментативных реакций в живых клетках. Самым типичным примером является синтез этанола из глюкозы в результате брожения.

В промышленности спирты получают из галогеновых производных углеводородов. В результате замещения галогенового атома на гидроксильную группу и образуются спирты. Одноатомные спирты содержат лишь одну гидроксильную групп, многоатомные - две и более. Примером двухатомного спирта является этиленгликоль. Многоатомный спирт - это глицерин. Общая формула спиртов R-OH (R - углеродная цепь).

Альдегиды и кетоны

После того как спирты вступают в реакции органических соединений, связанные с отщеплением водорода от спиртовой (гидроксильной) группы, замыкается двойная связь между кислородом и углеродом. Если данная реакция проходит по спиртовой группе, расположенной у концевого углеродного атома, то в результате ее образуется альдегид. Если углеродный атом со спиртовой расположен не на конце углеродной цепи, то результатом реакции дегидратации является получение кетона. Общая формула кетонов - R-CO-R, альдегидов R-COH (R - углеводородный радикал цепи).

Эфиры (простые и сложные)

Химическое строение органических соединений данного класса усложненное. Простые эфиры рассматриваются как продукты реакции между двумя молекулами спиртов. При отщеплении воды от них образуется соединение образца R-O-R. Механизм реакции: отщепление протона водорода от одного спирта и гидроксильной группы от другого спирта.

Сложные эфиры - продукты реакции между спиртом и органической карбоновой кислотой. Механизм реакции: отщепление воды от спиртовой и карбоновой группы обеих молекул. Водород отщепляется от кислоты (по гидроксильной группе), а сама ОН-группа отделяется от спирта. Полученное соединение изображается как R-CO-O-R, где буковой R обозначены радикалы - остальные участки углеродной цепи.

Карбоновые кислоты и амины

Карбоновыми кислотами называются особенные вещества, играющие важную роль в функционировании клетки. Химическое строение органических соединений такое: углеводородный радикал (R) с присоединенной к нему карбоксильной группой (-СООН). Карбоксильная группа может располагаться только у крайнего атома углерода, потому как валентность С в группе (-СООН) равна 4.

Амины - это более простые соединения, которые являются производными углеводородов. Здесь у любого атома углерода располагается аминный радикал (-NH2). Существуют первичные амины, у которых группа (-NH2) присоединяется к одному углероду (общая формула R-NH2). У вторичных аминов азот соединяется с двумя углеродными атомами (формула R-NH-R). У третичных аминов азот соединен с тремя углеродными атомами (R3N), где р - радикал, углеродная цепь.

Аминокислоты

Аминокислоты - комплексные соединения, которые проявляют свойства и аминов, и кислот органического происхождения. Существует несколько их видов в зависимости от расположения аминной группы по отношению к карбоксильной. Наиболее важны альфа-аминокислоты. Здесь аминная группа расположена у атома углерода, к которому присоединена карбоксильная. Это позволяет создавать пептидную связь и синтезировать белки.

Углеводы и жиры

Углеводы являются альдегидоспиртами или кетоспиртами. Это соединения с линейной или циклической структурой, а также полимеры (крахмал, целлюлоза и прочие). Их важнейшая роль в клетке - структурная и энергетическая. Жиры, а точнее липиды, выполняют те же функции, только участвуют в других биохимических процессах. С точки зрения химического строения жир является сложным эфиром органических кислот и глицерина.

Основные положения теории химического строения А.М. Бутлерова

1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

3. Свойства веществ зависят от их химического строения.

4. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы - предвидеть свойства.

5. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии, предсказал существование различных изомеров и впервые получил некоторые из них.

Развитию теории строения способствовали работы Кекуле, Кольбе, Купера и Вант-Гоффа. Однако их теоретические положения не носили общего характера и служили, главным образом, целям объяснения экспериментального материала.

2. Формулы строения

Формула строения (структурная формула) описывает порядок соединения атомов в молекуле, т.е. ее химическое строение. Химические связи в структурной формуле изображают черточками. Связь между водородом и другими атомами обычно не указывается (такие формулы называются сокращенными структурными формулами).

Например, полная (развернутая) и сокращенная структурные формулы н-бутана C4H10имеют вид:

Другой пример - формулы изобутана.

Часто используется еще более краткая запись формулы, когда не изображают не только связи с атомом водорода, но и символы атомов углерода и водорода. Например, строение бензола C6H6 отражают формулы:

Структурные формулы отличаются от молекулярных (брутто) формул, которые показывают только, какие элементы и в каком соотношении входят в состав вещества (т.е. качественный и количественный элементный состав), но не отражают порядка связывания атомов.

Например, н-бутан и изобутан имеют одну молекулярную формулу C4H10, но разную последовательность связей.

Таким образом, различие веществ обусловлено не только разным качественным и количественным элементным составом, но и разным химическим строением, которое можно отразить лишь структурными формулами.

3. Понятие о изомерии

Еще до создания теории строения были известны вещества одинакового элементного состава, но c разными свойствами. Такие вещества были названы изомерами, а само это явление - изомерией.

В основе изомерии, как показал А.М. Бутлеров, лежит различие в строении молекул, состоящих из одинакового набора атомов. Таким образом,

изомерия - это явление существования соединений, имеющих одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства.

Например, при содержании в молекуле 4-х атомов углерода и 10-ти атомов водорода возможно существование 2-х изомерных соединений:

В зависимости от характера отличий в строении изомеров различают структурную и пространственную изомерию.

4. Структурные изомеры

Структурные изомеры - соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е химическим строением.

Например, составу C5H12 соответствует 3 структурных изомера:

Другой пример:

5. Стереоизомеры

Пространственные изомеры (стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле.

Пространственными изомерами являются оптические и цис-транс изомеры (шарики разного цвета обозначают разные атомы или атомные группы):

Молекулы таких изомеров несовместимы в пространстве.

Стереоизомерия играет важную роль в органической химии. Подробнее эти вопросы будут рассматриваться при изучении соединений отдельных классов.

6. Электронные представления в органической химии

Применение электронной теории строения атома и химической связи в органической химии явилось одним из важнейших этапов развития теории строения органических соединений. Понятие о химическом строении как последовательности связей между атомами (А.М. Бутлеров) электронная теория дополнила представлениями обэлектронном и пространственном строении и их влиянии на свойства органических соединений. Именно эти представления дают возможность понять способы передачи взаимного влияния атомов в молекулах (электронные и пространственные эффекты) и поведение молекул в химических реакциях.

Согласно современным представлениям свойства органических соединений определяются:

природой и электронным строением атомов;

типом атомных орбиталей и характером их взаимодействия;

типом химических связей;

химическим, электронным и пространственным строением молекул.

7. Свойства электрона

Электрон имеет двойственную природу. В разных экспериментах он может проявлять свойства как частицы, так и волны. Движение электрона подчиняется законам квантовой механики. Связь между волновыми и корпускулярными свойствами электрона отражает соотношение де Бройля.

Энергию и координаты электрона, как и других элементарных частиц, невозможно одновременно измерить с одинаковой точностью (принцип неопределенностиГейзенберга). Поэтому движение электрона в атоме или в молекуле нельзя описать с помощью траектории. Электрон может находиться в любой точке пространства, но с разной вероятностью.

Часть пространства, в котором велика вероятность нахождения электрона, называют орбиталью или электронным облаком.

Например:

8. Атомные орбитали

Атомная орбиталь (АО) - область наиболее вероятного пребывания электрона (электронное облако) в электрическом поле ядра атома.

Положение элемента в Периодической системе определяет тип орбиталей его атомов (s-, p-, d-, f-АО и т.д.), различающихся энергией, формой, размерами и пространственной направленностью.

Для элементов 1-го периода (Н, He) характерна одна АО - 1s.

В элементах 2-го периода электроны занимают пять АО на двух энергетических уровнях: первый уровень 1s; второй уровень - 2s, 2px, 2py, 2pz. (цифры обозначают номер энергетического уровня, буквы - форму орбитали).

Состояние электрона в атоме полностью описывают квантовые числа.