Открытие менделеевым периодического закона или изобретение. Открытие Периодического закона Д.И. Менделеевым. Список использованных источников

Реферат

«История открытия и подтверждения периодического закона Д.И. Менделеева»

Санкт-Петербург 2007


Введение

Периодический закон Д.И. Менделеева – это фундаментальный закон, устанавливающий периодическое изменение свойств химических элементов в зависимости от увеличения зарядов ядер их атомов. Открыт Д.И. Менделеевым в феврале 1869 г. При сопоставлении свойств всех известных в то время элементов и величин их атомных масс (весов). Термин «периодический закон» Менделеев впервые употребил в ноябре 1870, а в октябре 1871 дал окончательную формулировку Периодического закона: «…свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Графическим (табличным) выражением периодического закона является разработанная Менделеевым периодическая система элементов.


1. Попытки других ученых вывести периодический закон

Периодическая система, или периодическая классификация, элементов имела огромное значение для развития неорганической химии во второй половине XIX в. Это значение в настоящее время колоссально, потому что сама система в результате изучения проблем строения вещества постепенно приобрела ту степень рациональности, которой невозможно было достичь, зная только атомные веса. Переход от эмпирической закономерности к закону составляет конечную цель всякой научной теории.

Поиски основы естественной классификации химических элементов и их систематизации начались задолго до открытия Периодического закона. Трудности, с которыми сталкивались естествоиспытатели, которые первыми работали в этой области, были вызваны недостаточностью экспериментальных данных: в начале XIX в. число известных химических элементов было ещё слишком невелико, а принятые значения атомных масс многих элементов неточны.

Не считая попыток Лавуазье и его школы дать классификацию элементов на основе критерия аналогии в химическом поведении, первая попытка периодической классификации элементов принадлежит Дёберейнеру.

Триады Дёберейнера и первые системы элементов

В 1829 г. немецкий химик И. Дёберейнер предпринял попытку систематизации элементов. Он заметил, что некоторые сходные по своим свойствам элементы можно объединить по три в группы, которые он назвал триадами: Li–Na–K; Ca–Sr–Ba; S–Se–Te; P–As–Sb; Cl–Br–I.

Сущность предложенного закона триад Дёберейнера состояла в том, что атомная масса среднего элемента триады была близка к полусумме (среднему арифметическому) атомных масс двух крайних элементов триады. Хотя разбить все известные элементы на триады Дёберейнеру, естественно, не удалось, закон триад явно указывал на наличие взаимосвязи между атомной массой и свойствами элементов и их соединений. Все дальнейшие попытки систематизации основывались на размещении элементов в соответствии с их атомными массами.

Идеи Дёберейнера были развиты Л. Гмелиным, который показал, что взаимосвязь между свойствами элементов и их атомными массами значительно сложнее, нежели триады. В 1843 г. Гмелин опубликовал таблицу, в которой химически сходные элементы были расставлены по группам в порядке возрастания соединительных (эквивалентных) весов. Элементы составляли триады, а также тетрады и пентады (группы из четырёх и пяти элементов), причём электроотрицательность элементов в таблице плавно изменялись сверху вниз.

В 1850-х гг. М. фон Петтенкофер и Ж. Дюма предложили т.н. дифференциальные системы, направленные на выявление общих закономерностей в изменении атомного веса элементов, которые детально разработали немецкие химики А. Штреккер и Г. Чермак.

В начале 60-х годов XIX в. появилось сразу несколько работ, которые непосредственно предшествовали Периодическому закону.

Спираль де Шанкуртуа

А. де Шанкуртуа располагал все известные в то время химические элементы в единой последовательности возрастания их атомных масс и полученный ряд наносил на поверхность цилиндра по линии, исходящей из его основания под углом 45° к плоскости основания (т.н. земная спираль ). При развертывании поверхности цилиндра оказывалось, что на вертикальных линиях, параллельных оси цилиндра, находились химические элементы со сходными свойствами. Так, на одну вертикаль попадали литий, натрий, калий; бериллий, магний, кальций; кислород, сера, селен, теллур и т.д. Недостатком спирали де Шанкуртуа было то обстоятельство, что на одной линии с близкими по своей химической природе элементами оказывались при этом и элементы совсем иного химического поведения. В группу щелочных металлов попадал марганец, в группу кислорода и серы – ничего общего с ними не имеющий титан.

Таблица Ньюлендса

Английский учёный Дж. Ньюлендс в 1864 г. опубликовал таблицу элементов, отражающую предложенный им закон октав . Ньюлендс показал, что в ряду элементов, размещённых в порядке возрастания атомных весов, свойства восьмого элемента сходны со свойствами первого. Ньюлендс пытался придать этой зависимости, действительно имеющей место для лёгких элементов, всеобщий характер. В его таблице в горизонтальных рядах располагались сходные элементы, однако в том же ряду часто оказывались и элементы совершенно отличные по свойствам. Кроме того, в некоторых ячейках Ньюлендс вынужден был разместить по два элемента; наконец, таблица не содержала свободных мест; в итоге закон октав был принят чрезвычайно скептически.

Таблицы Одлинга и Мейера

В том же 1864 г. появилась первая таблица немецкого химика Л. Мейера; в неё были включены 28 элементов, размещённые в шесть столбцов согласно их валентностям. Мейер намеренно ограничил число элементов в таблице, чтобы подчеркнуть закономерное (аналогичное триадам Дёберейнера) изменение атомной массы в рядах сходных элементов.

В 1870 г. вышла работа Мейера, содержащая новую таблицу под названием «Природа элементов как функция их атомного веса», состоявшая из девяти вертикальных столбцов. Сходные элементы располагались в горизонтальных рядах таблицы; некоторые ячейки Мейер оставил незаполненными. Таблица сопровождалась графиком зависимости атомного объёма элемента от атомного веса, имеющий характерный пилообразный вид, прекрасно иллюстрирующий термин «периодичность», уже предложенный к тому времени Менделеевым.

2. Что было сделано до дня великого открытия

Предпосылки открытия периодического закона следует искать в книге Д.И. Менделеева (далее Д.И.) «Основы химии». Первые главы 2-й части этой книги Д.И. написал в начале 1869 г. 1-я глава была посвящена натрию, 2-я – его аналогам, 3-я – теплоемкости, 4-я – щелочноземельным металлам. Ко дню открытия периодического закона (17 февраля 1869 г.) он, вероятно, уже успел изложить вопрос о соотношении таких полярно-противоположных элементов, как щелочные металлы и галоиды, которые были сближены между собой по величине их атомности (валентности), а также вопрос о соотношении самих щелочных металлов по величине их атомных весов. Он вплотную подошел и к вопросу о сближении и сопоставлении двух групп полярно-противоположных элементов по величине атомных весов их членов, что фактически уже означало отказ от принципа распределения элементов по их атомности и переход к принципу их распределения по атомным весам. Этот переход представлял собой не подготовку к открытию периодического закона, а уже начало самого открытия

К началу 1869 г. Значительная часть элементов была объединена в отдельные естественные группы и семейства по признаку общности химических свойств; наряду с этим другая часть их представлял собой разрозненные, стоявшие особняком отдельные элементы, которые не были объединены в особые группы. Твердо установленными считались следующие:

– группа щелочных металлов – литий, натрий, калий, рубидий и цезий;

– группа щелочноземельных металлов – кальций, стронций и барий;

– группа кислорода – кислород, сера, селен и теллур;

– группа азота – азот, фосфор, мышьяк и сурьма. Кроме того, сюда часто присоединяли висмут, а в качестве неполного аналога азота и мышьяка рассматривали ванадий;

– группа углерода – углерод, кремний и олово, причем в качестве неполных аналогов кремния и олова рассматривали титан и цирконий;

– группа галогенов (галоидов) – фтор, хлор, бром и йод;

– группа меди – медь и серебро;

– группа цинка – цинк и кадмий

– семейство железа – железо, кобальт, никель, марганец и хром;

– семейство платиновых металлов – платина, осмий, иридий, палладий, рутений и родий.

Сложнее дело обстояло с такими элементами, которые могли быть отнесены к разным группам или семействам:

– свинец, ртуть, магний, золото, бор, водород, алюминий, таллий, молибден, вольфрам.

Кроме того был известен ряд элементов, свойства которых были еще недостаточно изучены:

– семейство редкоземельных элементов – иттрий, «эрбий», церий, лантан и «дидим»;

– ниобий и тантал;

– бериллий;

3. День великого открытия

Д.И. был весьма разносторонним ученым. Он давно и очень сильно интересовался вопросами сельского хозяйства. Он принимал самое близкое участие в деятельности Вольного экономического общества в Петербурге (ВЭО), членом которого он состоял. ВЭО организовало в ряде северных губерний артельное сыроварение. Одним из инициаторов этого начинания был Н.В. Верещагин. В конце 1868 г., т.е. в то время как Д.И. заканчивал вып. 2 своей книги, Верещагин обратился в ВЭО с просьбой прислать кого-нибудь из членов Общества для того, чтобы на месте обследовать работу артельных сыроварен. Согласие на такого рода поездку выразил Д.И. В декабре 1868 г. он обследовал ряд артельных сыроварен в Тверской губернии. Для завершения обследования нужна было дополнительная командировка. Как раз на 17 февраля 1869 г. и был назначен отъезд.

Предпосылки открытия периодического закона и создания периодической системы Д.И.Менделеева

Попытки классификации химических элементов до Д.И.Менделœеева

История открытия периодического закона. Основные этапы развития учения о периодичности

Лекция № 7

1. Попытки классификации химических элементов до Д.И.Менделœеева.

2. Предпосылки открытия периодического закона и создания периодической системы Д.И.Менделœеева.

3. Открытие Д.И.Менделœеевым периодического закона и периодической системы.

4. Триумф периодического закона.

По мере возрастания числа открытых химических элементов возникла крайне важно сть их классификации и систематизации. Первую попытку сделал еще в конце XVIII века А.Лавуазье, выделив 4 класса: газы и флюиды (свет и тепло), металлы, неметаллы, ʼʼземлиʼʼ (оказавшиеся оксидами). Эта классификация положила начало многим другим попыткам.

В 1817 году немецкий ученый И.Доберейнер располагает всœе известные элементы отдельными триадами:1) Li, Na, K; 2)Ca, Sr, Ba; 3) P, As, Sb; 4) S, Se, Te; 5) Cl, Br, J; и обнаруживает интересную закономерность: масса атома среднего элемента равна среднеарифметическому из масс крайних элементов, к примеру:ArNa = (Ar Li + Ar K)/2 = (6, 94 + 39,1)/2 = 23.

Эта закономерность занимала умы многих химиков, и в 1857 году Ленсеен 60 известных к тому времени элементов располагает в 20 триад. Многие ученые понимали, что элементы связаны каким-то, пока неясным внутренним родством, однако причины открытых закономерностей не выявлялись.

Помимо таблиц с горизонтальным и вертикальным расположением элементов, были предложены и другие. Так, к примеру, французкий химик Шанкуртуа располагает 50 элементов по винтовой линии на поверхности цилиндра, помещая их на линии, в соответствии с атомным весом. Т.к. система заканчивалась теллуром, то эту систему назвали “теллуровый винт”. Многие сходные элементы на цилиндре оказались друг под другом по вертикалям. Это построение графически правильно выражало идею диалектического развития материи.

Интересно, что из его “винта” впервые выявилась аналогия, между водородом и галогенами, лишь недавно ставшая общепризнанной

Замеченная ученым периодическая повторяемость не нашла развития в нижней части цилиндра, где никакой аналогии по вертикали не наблюдалось.

В 1864-1865 годах появились две новые таблицы: английского ученого Дж.Ньюлендса и немецкого ученого Л.Мейера.

Ньюлендс исходил из идеалистических представлений о всœеобщей гармонии в природе, которая должна существовать и среди химических элементов.

Известные в то время 62 элемента он расположил в порядке возрастания их эквивалентов и подметил, что в данном ряду часто каждый 8-й как бы повторяет свойства каждого, условно считаемого за первый элемент.

H, Li, Be, B и т.д.; Na – девятый элемент повторяет свойства второго – Li, Ca – 17-ый повторяет свойства 10-го – Mg и т.д.

У него получилось 8 вертикальных столбцов – октав. Сходные элементы расположились на горизонталях. Выявленные закономерности он назвал ʼʼзаконом октавʼʼ. При этом, нарушений гармонии в таблице Ньюлендса было много: нет никакого сходства между Cl и Pt, S, Fe и Au.

И всœе же, заслуга Ньюленда несомненна: он первый подметил повторяемость свойств на 8-м элементе, привлек внимание к этому числу.

Таблица Лотара Мейера основана на сходстве элементов по их валентности по водороду.

К этому времени в химии было введено понятие валентность. С введением этого понятия химическое сходство приобрело количественное выражение. Так, к примеру, B и Si сходны по свойствам, но различны по валентности (B – 3, Si - 4). В таблице 6 вертикальных столбцов с 44 элементами. Мейер подмечает, что разность между относительными атомными массами сосœедних по каждому столбцу элементов отличается на закономерно возрастающие числа: 16, 16, 45, 45, 90. Он так же отмечает, что разность между Ar (Si) и Ar (Sn) ненормально велика (90 вместо 45). При этом, никаких выводов не сделал, а ведь таким выводом мог быть вывод о существовании в природе не известных тогда еще элементов.

Мейер, более чем кто - либо другой, был близок к открытию закона (он открыл периодическую зависимость атомных объёмов элементов), но не решился на смелые выводы.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, число попыток классификации элементов до Д.И.Менделœеева было около 50. Классифицировали химические элементы ученые из разных стран, и некоторые из них стояли на пороге открытия периодического закона Οʜᴎ искали сходство между явно сходными элементами, и не допускали наличия сходства между Na и Cl, к примеру, ᴛ.ᴇ. не допускали мысли, что всœе элементы – ступени развития единой материи, в связи с этим они не могли открыть всœеобщий закон природы и обнаружить единую систему элементов.

К концу 60-х годов XIX века выявились следующие предпосылки открытия периодического закона:

o установлены, близкие к современным, атомные массы элементов. (Дальтон, Берцелиус, Реньо, Канниццаро). В 1858 году, Канниццаро, используя метод определœения плотности газов для определœения их молекулярных масс, дал новую систему относительных атомных масс некоторых элементов. Таблица была далеко не полной, но атомные массы, за малым исключением, были точными;

o установлены “естественные группы” сходных элементов (Доберейнер, Петтенкофер, Дюма, Ленсеен, Штреккер, Одлинг, Ньюлендс, Мейер);

o развито учение о валентности химических элементов (Франкланд, Кекуле, Купер);

o открыто сходство кристаллических форм различных химических элементов (Гаюи, Митчерлих, Берцелиус, Розе, Раммельсберг).

Предпосылки открытия периодического закона и создания периодической системы Д.И.Менделеева - понятие и виды. Классификация и особенности категории "Предпосылки открытия периодического закона и создания периодической системы Д.И.Менделеева" 2017, 2018.

Среди детей Менделеева Иван (род. 1883 г.) был, пожалуй, самой яркой личностью. Биографы учёного говорили о «редком дружеском взаимоотношении» между ними; отмечали, что «…Д.И. в лице сына имел друга, советника, с которым делился идеями и мыслями». Ещё будучи студентом физико-математического факультета Санкт-Петербургского Университета, Иван нередко помогал отцу в расчётах по экономической тематике и работам в Главной Палате мер и весов.

Многие близкие родственники и друзья Дмитрия Ивановича оставили воспоминания о нём (см. например, Д.И. Менделеев в воспоминаниях современников. Изд. 2-ое. М.: Атомиздат. 1973. Составители А.А. Макареня, И.Н. Филимонова, Н.Г. Карпило). Из этих свидетельств, подчас трогательных и проникновенных, можно представить себе отдельные черты облика великого учёного и человека. Однако нет ещё труда, который достаточно полно освещал бы жизнь и творческую деятельность Дмитрия Ивановича. Он сам однажды сказал о себе: «Я—человек своеобычный». Быть может, тому «менделеевисту», кому удастся расшифровать глубинное значение этой короткой фразы, и удастся найти «точки опоры», позволяющие создать «голографический» облик одного из самых великих россиян.

Воспоминания Ивана, написанные им, видимо, уже на склоне лет (Иван скончался в 1936 г.) были полностью опубликованы только… в 1993 г. (см. Научное наследство. Том 21. В.Е. Тищенко, М.Н. Младенцев. Дмитрий Иванович Менделеев, его жизнь и деятельность. Университетский период. 1861-1890 гг. М.: Наука. 1993. Приложение 2. Менделеев Ив. Воспоминания об отце Дмитрии Ивановиче Менделееве). Да и книга эта, опубликованная тиражом 1000 экз., ныне стала уже библиографической редкостью. Между тем воспоминания являются ценнейшим историческим документом. Именно Иван являлся тем членом большой менделеевской семьи, который духовно и идейно был наиболее близок к её главе. Впечатления о взаимоотношениях с отцом и оценку его жизни и деятельности Иван излагал спустя много лет после кончины учёного. Конечно, кое-что могло и стереться в памяти; могли быть упущены немаловажные подробности, перепутаны некоторые даты… Впрочем, едва ли всё это сколь либо существенно. Искренность написанного, отсутствие всякого рода «любований» и «преувеличений» заставляют относиться к воспоминаниям Ивана с высокой степенью доверия.

Воспоминания начинаются с раздела «I. Открытие периодического закона»

Сам Дмитрий Иванович ни разу сколь-либо подробно не затрагивал историю того, как именно он пришёл к идее периодичности. Попытки реконструировать ход его мыслей оказывались отнюдь не безупречными. И тем больший интерес представляет рассказанное Иваном.

«I. Открытие периодического закона .

…Отец крайне не любил говорить с посторонними о личной, субъективной стороне своих переживаний, о том подготовительном периоде, когда формулировались мысли и слагалась постепенно уверенность, что он проник в одну из глубочайших тайн природы.

«Молчи, скрывайся и таи
И чувства и мечты свои»,

—отвечал он часто словами Тютчева на назойливые вопросы. Но в интимных беседах время от времени прорывалось невольно многое…

«Я был с самого начала глубоко убеждён,—говорил мне отец,—в том, что самое основное свойство атомов—атомный вес или масса атома должна определять остальные свойства каждого элемента. В этом убеждении и были предприняты ещё со студенческой скамьи две мои первые более серьёзные работы— «Изоморфизм» и «Удельные объёмы». Этот путь неизбежно должен был привести меня к периодической системе—достаточно было идти им до конца. Ведь изоморфизм, т.е. способность различных веществ давать одинаковые кристаллические формы,—есть одно из типичных свойств элементов одной и той же химической жизни. В «Основах химии» в главе о периодическом законе я указываю, что именно изоморфизм послужил исторически первым, важным доказательным средством для суждения о сходстве соединений двух различных элементов. Точно также и удельные объёмы, т.е. величины, обратные плотностям, дают, как я впоследствии наблюдал, один из наиболее ярких примеров периодичности, повторяемости свойств простых тел при возрастании их атомного веса. Мне оставалось только последовательно углублять этот путь.

Я работал над капиллярностью, над удельными объёмами, над изучением кристаллических форм соединений—постоянно в этом убеждении, стремясь найти основной закон атомной механики. Я сделал попутно ряд обобщений—о температуре абсолютного кипения жидкостей или сжиженных газов, о законе предельности соединений и т.д. Но всё это казалось мне второстепенным и до конца не удовлетворяло. Я уже тогда, на студенческой скамье, в первые годы самостоятельного труда—чувствовал, что должно существовать обширное обобщение, связывающее атомный вес со свойствами элементов. Это—вполне естественная мысль, но на неё не обращали тогда достаточного внимания. Я искал это обобщение с помощью усидчивого труда— во всех возможных направлениях. Только весь этот труд дал мне необходимые точки опоры и вселил уверенность, позволившую мне преодолеть препятствия, казавшиеся тогда непреодолимыми».

«Когда я учился,—говорил отец,—группировки сходных элементов под влиянием, главным образом, французского химика Дюма, которого я потом узнал лично,—были уже довольно ясно намечены. Её нам излагал отчётливо «дедушка русской химии» Александр Абр. Воскресенский. У меня уже тогда возникала мысль о различных возможных группировках элементов, но атомные веса, допускаемые согласно господствующим тогда воззрениям общепризнанными авторитетами, не позволяли высвободить естественную классификацию из тогдашней стройности понятий. Первый свет внесли для меня начала Жерара, давшие правильный подход к установлению атомных весов,—и я стал деятельным борцом за эти начала. Это вело меня,—говорил отец,—уже непосредственно к конечной цели».

Я перехожу к вопросу о приоритете отца в открытии периодического закона. История науки бесспорно утвердила теперь право первенства здесь всецело за одним Менделеевым. Но было немало охотников пристроиться к этому открытию. Национальный шовинизм вносил первоначально немалую путаницу. Отец не придавал этим спорам никакого значения, говоря, что субъективные высказывания здесь ничто, что надо найти прочные объективные доказательства, ввести закон в рабочую практику науки и убедить подавляющими данными в нём людей. Он с внутренним удовлетворением сознавал, что всё это он именно и сделал по отношению к периодическому закону, что он, а никто другой изменил с его помощью лицо химии и направил её на новый путь.

«О попытках Ньюландса и Шанкуртуа,—говорил отец,—в период установления мною периодического закона я не знал, да и вообще они лежали вне течения серьёзной науки. В фантазиях часто много верного, но кто же на них опирается? Что же касается до притязаний Лотара Мейера, то в его группировке до появления моих работ не содержалось ничего нового по сравнению со взглядами Дюма, которые мы знали уже на студенческой скамье: идея периодичности свойств элементов в функции атомного веса отсутствовала. Когда же Лотар Мейер усваивает, наконец, эту мысль, он в первом же своём сообщении ссылается именно на мою работу и в сущности только её реферирует—с осторожной оговоркой, что «было бы ошибочно по столь шатким основаниям изменять общепризнанные атомные веса», т.е. отрицает именно то, необходимость чего я доказал, что стоило мне наибольших усилий и утвердило закон окончательно, отрицает, в сущности весь непризнанный им закон как природы. Периодичность удельных объёмов элементов найдена была мною и доложена русскому химическому съезду тоже до Л. Мейера. Я поэтому не могу внутренне признать притязаний Лотара Мейера на соавторство со мною. Может быть, субъективно, он и делал до опубликования своих работ какие-либо построения и попытки, но ведь и я субъективно задолго до опубликования моих работ здесь много думал, и строил, и знал. Такими доводами приоритет не устанавливается»...

«Решающим моментом в развитии моей мысли о периодическом законе,—говорил мне неоднократно отец,—я считаю 1860-й год—Съезд химиков в Карлсруэ, в котором я участвовал, и на этом съезде—идеи высказанные итальянским химиком С. Канниццаро. Его я и считаю настоящим своим предшественником, так как установленные им атомные веса дали мне необходимую точку опоры. У меня тогда же явилась мысль сопоставить эти новые данные с классификацией Дюма и разобраться в этом очень сложном—при тогдашнем состоянии знаний—вопросе. С тех пор субъективно уже созрела уверенность, что я на верном пути. Между тем мне вскоре вернуться в Россию, и здесь первое время я так был занят лекциями и уроками, потом писанием «Органической химии» и своей докторской диссертацией «О соединении спирта с водой», что надолго был отвлечён в сторону. Только получив кафедру и приступив к составлению «Основ химии», мне удалось вернуться, наконец, вновь к самому сердцу вопроса. В короткое время я пересмотрел массу источников, сопоставил огромный материал. Мне надо было, однако, совершить большое усилие, чтобы в имевшихся сведениях отделить главное от второстепенного, решиться изменить ряд общепризнанных атомных весов, отступить от того, что было признано тогда лучшими авторитетами. Сопоставив всё, я с неотразимой ясностью увидел периодический закон и получил полное внутреннее убеждение, что он отвечает глубочайшей природе вещей. В его освещении предо мной раскрылись целые новые области науки. Я в него внутренне поверил—той верой, которую я считаю необходимой для каждого плодотворного дела. Когда я стал окончательно оформлять мою классификацию элементов, я написал на отдельных карточках каждый элемент и его соединения и затем, расположив их в порядке групп и рядов, получил первую наглядную таблицу периодического закона. Но это был лишь заключительный аккорд, итог всего предыдущего труда. Это было в конце 1868 и после 1869 года».

Я беседовал с отцом на эти темы много раз и передал из этих бесед здесь немногое. Общее моё убеждение, вынесенное мною их этих бесед то, что открытие периодического закона для его творца было не счастливым случаем, не неожиданной удачей. Нет, отыскание основного закона мира атомов было сознательным философским устремлением, заданием, поставленным с самого начала. Творец периодического закона шёл на осаду этой тайны природы систематически, с первых своих работ, постепенно и последовательно суживая круг, пока в результате неутомимого жизненного труда с помощью высшего подъёма творческой мысли не взял, наконец, крепости штурмом.

Воспоминания содержат также разделы: 2. Единство вещества; 3. Приёмы труда; 4. Среди современников; 5. Среди современников (продолжение); 6. Миросозерцание; 7. Путешествия; 8. Менделеев —педагог; 9. Менделеев—педагог (продолжение); 10. Разнообразие деятельности; 11. В мире искусства; 12. Семейная жизнь; 13. Нравственный облик.

«То, что он сделал, он сделал вопреки окружающему, благодаря исключительной силе своей личности, признанной со стороны иностранцев и поддержке на родине очень немногих понявших его лиц» —такими словами заканчивает Иван свои воспоминания.

Что способствовало подготовке открытия? Мы начинаем с анализа великого менделеевского открытия, поскольку оно было детально и всесторонне изучено нами в течение многих лет по архивным материалам. Но сначала необходимо сказать несколько слов о его предыстории.

В ходе познания химических элементов можно четко выделить три последовательные ступени, о которых говорилось во введении. Начиная с глубокой древности и вплоть до середины XVIII века элементы открывались и изучались человеком порознь, как нечто единичное. С середины XVIII века начался постепенный переход к открытию и изучению их целыми группами, или семействами, хотя одиночные открытия элементов продолжались и позднее. Групповое их открытие и изучение основывалось на том, что у некоторых из них обнаруживались общие физические или химические свойства, равно как и совместное присутствие ряда элементов в природе.

Так, во второй половине XVIII века в связи с возникновением пневматической (газовой) химии были открыты легкие неметаллы, которые в обычных условиях находятся в газообразном состоянии. Это были водород, азот, кислород и хлор. В тот же период были открыты кобальт и никель в качестве природных спутников железа.

А уже с первых лет XIX века открытие элементов стало происходить целыми группами, члены которых обладали общими химическими свойствами. Так, посредством электролиза были открыты первые щелочные металлы - натрий и калий, а затем щелочноземельные - кальций, стронций и барий. Позднее, в 60-х годах, с помощью спектрального анализа были открыты тяжелые щелочные металлы - рубидий и цезий, а также более тяжелые металлы будущей третьей группы - индий и таллий. Эти открытия основывались на близости химических свойств членов открываемых групп, а потому эти их члены связывались между собою уже в самом процессе их открытия.

В начале того же XIX века было открыто семейство платиновых металлов (кроме рутения, открытого позднее) в качестве природных спутников платины. В течение всего XIX века открывались редкоземельные металлы как члены единого семейства.

Вполне естественно, что первые классификации элементов строились на основе общности их химических свойств. Так, еще в конце XVIII века А. Лавуазье разделил все элементы на металлы и неметаллы. Такого деления придерживался и И. Берцелиус в первой половине XIX века. Тогда же стали выделяться первые естественные группы и семейства элементов. И. Деберейнер, например, выделил так называемые «триады» (скажем, литий, натрий, калий - «триада» щелочных металлов и т. д.). К числу «триад» относились такие, как хлор, бром, йод или сера, селен, теллур. При этом вскрывались такие закономерности, что значения физических свойств среднего члена «триады» (его удельный и атомный веса) оказывались средними по отношению к крайним членам. Что же касается галоидов (галогенов), то агрегатное состояние среднего члена (жидкий бром) было промежуточным по отношению к крайним членам - газообразному хлору и кристаллическому йоду. Позднее число включаемых в одну группу элементов стало увеличиваться до четырех и даже пяти.

Вся эта классификация строилась на основе учета лишь сходства элементов внутри одной естественной группы. Такой подход давал возможность образовывать все новые подобные группы и раскрывать взаимоотношения элементов внутри них. Этим готовилась вероятность последующего создания общей системы, охватывающей все элементы путем объединения уже найденных их групп в одно целое.

Что препятствовало переходу от особенного ко всеобщему? Примерно к началу 60-х годов XIX века ступень особенности в познании элементов практически была уже исчерпана. Возникла необходимость перехода на ступень всеобщности в их познании. Такой переход мог быть осуществлен путем взаимного связывания различных групп элементов и создания их единой общей системы. Подобного рода попытки все чаще стали предприниматься в течение 60-х годов в различных странах Европы - Германии, Англии, Франции. Некоторые из этих попыток содержали в себе уже явные намеки на периодический закон. Таков был, например, «закон октав» Ньюлендса. Однако, когда Дж. Ньюлендс доложил о своем открытии на заседании Лондонского химического общества, ему был задан ехидный вопрос: а не пытался ли автор открыть какой-либо закон, располагая элементы в алфавитном порядке их названий?

Это показывает, насколько чужда была химикам того времени сама идея выйти за пределы групп элементов (особенного) и искать пути раскрытия общего закона, охватывающего их (всеобщего). В самом деле, чтобы составить общую систему элементов, надо было сближать и сопоставлять между собой не только сходные элементы, как это делалось до тех пор внутри групп, но все вообще элементы, в том числе и несходные между собою. Однако в сознании химиков прочно засела мысль, что сближать между собою можно только одни сходные элементы. Эта мысль настолько глубоко укоренилась, что химики не только не ставили перед собой задачи перейти от особенного ко всеобщему, но полностью игнорировали и даже не замечали первых отдельных попыток осуществить такой переход.

В итоге сложилось серьезное препятствие, вставшее на пути открытия периодического закона и создания общей естественной системы всех элементов на его основе. Существование подобного препятствия неоднократно подчеркивал сам Д. Менделеев. Так, в конце своей первой статьи о сделанном им великом открытии он писал: «Цель моей статьи была бы совершенно достигнута, если бы мне удалось обратить внимание исследователей на те отношения в величине атомного веса несходных элементов, на которые, сколько то мне известно, до сих пор не обращалось почти никакого внимания».

Спустя два с лишним года, подводя итог разработке своего открытия, Д. Менделеев вновь подчеркнул, что «между несходными элементами и не искали даже каких-либо точных и простых соотношений в атомных весах, а только этим путем и можно было узнать правильное соотношение между изменением атомных весов и других свойств элементов».

Спустя двадцать лет после открытия в своем Фараде- евском чтении Д. Менделеев вновь вспоминал о препятствии, стоявшем на пути к этому открытию. Он привел первые выкладки на этот счет, в которых «видны действительные задатки и вызов периодической законности». И если последняя «высказана с определенностью лишь к концу 60-х годов, то этому причину... должно искать в том, что сравнению подвергали только элементы, сходственные между собой. Однако мысль сличить

вее элемента по величине их атомного веса... была чужда общему сознанию...». А потому, отмечает далее Д. Менделеев, попытки, подобные «закону октав» Дж. Ньюлендса, «не могли обратить на себя чьего-либо внимания», хотя в этих попытках «видно... приближение к периодическому закону и даже его зародыш».

Эти свидетельства самого Д. Менделеева для нас исключительно важны. Их глубокий смысл заключается в признании того, что основным препятствием на пути открытия периодического закона, то есть на пути перехода ко всеобщему в познании элементов, лежала привычка химиков, ставшая традицией, мыслить элементы в жестких рамках особенного (их сходства внутри групп). Такая привычка в мышлении не давала им возможности выйти за рамки особенного и перейти на ступень всеобщего в познании элементов. В результате открытие общего закона задержалось почти на 10 лет, когда, по свидетельству Д. Менделеева, ступень особенного была уже в основном исчерпана.

ППБ и его функция. Подобное препятствие, которое носит одновременно и психологический и логический (познавательный) характер, мы и называем познавательно-психологическим барьером (ППБ). Такой барьер необходим для развития научной мысли и выступает в качестве ее формы, удерживая ее достаточно долгое время на достигнутой ступени (в данном случае на ступени особенности) с тем, чтобы она (научная мысль) могла полностью исчерпать эту ступень и тем самым подготовить переход на следующую, более высокую ступень всеобщности.

Сейчас мы не можем рассматривать механизм возникновения подобного барьера и ограничимся лишь указанием на то, что он возникает автоматически. Однако после выполнения им своей познавательной функции он продолжает действовать и не снимается столь же автоматически, а как бы закрепляется, окостеневает и из формы развития научной мысли превращается в ее оковы. В таком случае научное окрытие происходит не само собой, легко и просто, но как преодоление стоявшего на пути познания препятствия,ППБ.

Сказанное мы относим пока что к данному разбираемому нами историко-научному событию и не ставим еще задачи выяснить, насколько часто подобная ситуация наблюдается. При этом мы идем не путем индуктивных обобщений, основанных на рассмотрении множества различных открытий а путем теоретического анализа пока только одного открытия, а именно - периодического закона. В дальнейшем нас будет интересовать, каким конкретным способом Д. Менделеев преодолел барьер, стоявший на пути процесса открытия, то есть на пути перехода со ступени особенного на ступень всеобщего в познании химических элементов.

Преодоление ППБ Д. Менделеевым. Периодической закон был открыт Д. Менделеевым 17 февраля (1 марта) 1869 года. (Очень подробно об открытии периодического закона рассказано в книгах Б. М. Кедрова «День одного великого открытия» и «Микроанатомия великого открытия». - Ред.) На обороте только что полученного им письма он стал делать выкладки, положившие начало открытию. Первой такой выкладкой была формула хлорида калия КС1. Что она означала?

Д. Менделеев писал тогда свои «Основы химии». Он только что закончил первую часть и приступил ко второй. Первая часть завершилась главами о галоидах (галогенах), в число которых входил хлор (С1), а вторая начиналась главами о щелочных металлах, к которым относился и калий (К). Это были две крайние, диаметрально противоположные в химическом отношении группы элементов. Однако они сближены в самой природе путем образования, например, хлористых солей соответствующих металлов, скажем, поваренной соли.

Создавая «Основы химии», Д. Менделеев обратил на это внимание и стал искать объяснение этому в близости атомных весов. У обоих элементов - калия и хлора: К = 39,1, 01 = 34,5. Значения обоих атомных весов примыкали непосредственно одно к другому, между ними не было других промежуточных значений, атомных весов других элементов. Два с лишним года спустя после открытия, подводя итоги разработки, Дмитрий Иванович отмечает, что ключом к периодическому закону явилась идея сближения между собой по близости количественной характеристики (атомного веса) элементов, качественно совершенно несходных между собой. Он писал: «Переход от С1 к К и т. п. также во многих отношениях будет соответствовать некоторому между ними сходству, хотя и нет в природе других столь близких по величине атома элементов, которые были бы между собой столь различны».

Как видим, здесь Д. Менделеев обнажил скрытый смысл своей первой записи «КС1», с которой начался процесс открытия. Оговоримся, что нам неизвестно, что натолкнуло его на мысль о сближении калия и хлора по величине их атомного веса. Возможно, он вспомнил в этот момент, что писал о хлористом калии в конце первой или в начале второй части «Основ химии». Но возможно, и какое-либо иное обстоятельство навело его на мысль о сближении калия и хлора по атомному весу. Мы могли зафиксировать лишь ту запись на бумаге, которая появилась из-под пера Д. Менделеева, но не то, что предшествовало ей в его голове. Как увидим ниже, история науки и техники знает немало случаев, когда известен не только первый шаг к открытию, но и мысль, мелькнувшая в голове его авт

Добавим, что теперь мы можем более конкретно разъяснить, в чем состоял переход Д. Менделеева от особенного ко всеобщему в познании элементов. Под их несходством он фактически понимал их химические различия, а сближение несходного по их атомному весу достигалось на основании присущего им общего физического свойства - их массы. Таким образом, переход от особенного ко всеобщему соответствовал переходу от рассмотрения их с химической стороны к рассмотрению с физической стороны.

Ниже мы еще не раз вернемся к подобному же варианту. Однако этот случай нельзя трактовать как переход от учета одних лишь качественных различий элементов к учету количественного их сходства. Количественная характеристика элементов учитывалась уже на ступени особенного, как мы видели на примере «триад» и теории атомности.

Итог преодоления ППБ. Итак, отмеченный Д. Менделеевым барьер был успешно преодолен, и познание элементов в результате этого вышло за пределы ступени особенности и поднялось на ступень всеобщности. Заметим, что до этого момента сам ученый не видел, в чем именно заключается препятствие, стоявшее на пути к открытию периодического закона. В его подготовительных работах, в частности в планах «Основ химии», составленных до 17 февраля (1 марта) 1869 года, нет даже намека на то, что надо сближать друг с другом несходные элементы. Только после того, как он догадался, ^то ключ к решению всей задачи лежит в этом сближении, он понял, в чем заключалось и препятствие, лежавшее на пути к открытию, то есть, говоря нашим языком, что за барьер стоял на этом пути.

Переступив ППБ в первый раз, Д. Менделеев тут же начал в деталях осуществлять переход от особенного к только еще открываемому всеобщему (закону). При этом он показывал, как надлежит включать в строящуюся общую систему элементов одну их группу за другой, то есть сближать несходные между собой элементы по величине их атомных весов. Другими словами, все построение общей системы элементов совершалось в процессе последовательного включения особенного (групп) во всеобщее (в будущую периодическую систему).

«В этих трех группах видна сущность дела. Галоиды обладают меньшими атомными весами, чем щелочные металлы, а эти последние -меньшими, чем щелочноземельные».

Так, осуществляя переход от ступени особенного на ступень всеобщего в познании элементов, Д. Менделеев довел до завершения свой замысел, включив в общую систему не только все уже известные тогда группы элементов, но и отдельные элементы, стоявшие до тех пор вне групп.

Замечу, что некоторые химики и историки химии пытались представить дело так, будто Дмитрий Иванович в своем открытии шел не от групп элементов (особенного), сопоставляя их одну с другой, а непосредственно от отдельных элементов (единичного), образуя из них последовательный ряд в порядке возрастания их атомных весов. Анализ многочисленных черновых записей Д. Менделеева полностью отвергает эту версию и неоспоримо доказывает, что открытие периодического закона было совершено в порядке четко выраженного перехода от особенного к всеобщему. Тем самым подтверждается, что барьер здесь возник именно как познавательно- психологическое препятствие, мешавшее выходу научной мысли химиков за пределы ступени особенного.

Обратим теперь внимание, что в итоговой периодиче-j ской системе элементов представлены в единстве обе ис-^ ходные йроТйвоположности - сходство й несходство (химические) элементов. Это можно показать уже на приведенной выше неполной табличке из трех групп. В ней по горизонтали располагаются химически сходные элементы (то есть группы), а по вертикали - химически несходные, но с близкими атомными весами (образующие периоды).

Так представление о ППБ и о его преодолении позволяет понять механизм и ход сделанного Д. Менделеевым великого открытия.

Конкретнее это открытие можно представить как преодоление барьера, разрывавшего до тех пор элементы на такие противоположные классы, как металлы и неметаллы. Так, уже первая менделеевская запись «КСЬ

свидетельствовала о том, что здесь сближены между собою не вообще несходные элементы, а элементы двух противоположных классов - сильный металл с сильным неметаллом. В итоговой развернутой системе элементов сильные металлы заняли левый нижний угол таблицы, а сильные неметаллы - правый верхний угол. В промежутке же между ними расположились элементы переходного характера, так что открытие Д. Менделеева и в этом отношении преодолевало барьер, мешавший выработать единую систему элементов.

Преодоление еще одного барьера. До сих пор мы говорили о барьере, стоявшем на пути познания от особенного ко всеобщему. Условно такой путь можно сравнить с индуктивным. Однако после открытия закона и даже в самом процессе его открытия возможен был обратный путь - от общего к особенному и единичному, который мы столь же условно можем сравнить с дедуктивным. Так, до открытия периодического закона атомный вес какого-либо элемента устанавливался как нечто сугубо единичное, как отдельный факт, могущий быть проверенным лишь опытным способом. Периодический же закон давал возможность проверять, уточнять и даже исправлять полученные эмпирически значения атомного веса в соответствии с местом, которое должен занять данный элемент в общей системе всех элементов. Например, подавляющее большинство химиков вслед за И. Берцелиусом считало бериллий полным аналогом алюминия и приписывало ему атомный вес Be = 14. Но место, соответствующее этому значению атомного веса в строящейся системе, было прочно занято азотом: N=14. Пустовало же другое место - между литием (Li=7) и бором (В=11) в группе магния. Тогда Д. Менделеев исправил формулу окисла бериллия с глиноземной на магнезиальную, в соответствии с чем получил вместо Ве= = 14 новый атомный вес - Be=9,4, то есть значение, лежащее между 7 и И. Тем самым он показал, что всеобщее (закон) позволяет устанавливать единичное - свойство отдельного элемента, которое подчинено этому закону, причем устанавливать без нового обращения к опытному исследованию,

По этому поводу сам ученый писал через 20 лет после открытия своего закона: «Веса атомов элементов, до периодического закона, представляли числа чисто эмпирического свойства до того, что... могли подлежать критике лишь по методам их определения, а не по их величине, то есть в этой области приходилось идти ощупью, покоряться акту, а не обладать им...»

Можно сказать, что сугубый эмпиризм, или «покорение фактам», исключал возможность определять величину атомного веса, исходя из теоретических соображений, и требовал идти только опытным путем. Соответственно сказанному выше такое препятствие назовем тоже своеобразным барьером, который заставлял химиков быть рабами фактов, подчиняться им, но не владеть ими. Д. Менделеев в ходе построения своей системы преодолел этот барьер, показав, что всеобщее (закон) может служить критерием правильности установленного факта.

При этом и в данном случае мы видим, что на ступени эмпирического познания подобный барьер играет положительную роль (пока эта ступень не исчерпана), препятствуя неоправданному выходу научной мысли за пределы фактов, в область умозрительных натурфилософских построений. Когда же ступень односторонне проводимых эмпирических исследований исчерпана, названный барьер становится препятствием для дальнейшего прогресса научной мысли и должен быть преодолен. Это мы покажем ниже еще на одном примере, который продемонстрировало все то же открытие Д. Менделеева.

Еще о переходе от всеобщего к единичному и особенному. Речь идет о возможности наперед предсказывать не открытые еще элементы с их свойствами на основании пустых мест в только что построенной периодической системе. Уже в день открытия периодического закона Д. Менделеев предсказал три таких неизвестных еще металла; среди них - аналог алюминия с предположительным атомным весом?=68. Вскоре после этого он вычислил теоретически, опираясь на открытый им закон (всеобщее), многие другие свойства этого металла, назвав его условно экаалюминием, в том числе его удельный вес, равный 5,9 - 6, летучесть его соединений (откуда заключил, что он будет открыт с помощью спектроскопа). Именно так и открыл новый металл (галлий) П. Лекок де Буабодран в 1875 году.

Однако удельный вес галлия ой нашел значительно меньшим по сравнению с предсказанным. Поэтому заключил, что галлий - это вовсе не экаалюминий, предвиденный автором закона, а какой-то совершенно другой металл. В результате менделеевское предсказание объявлялось не подтвержденным. Но это не обескуражило Д. Менделеева. Он сразу догадался, что галлий восстанавливался fi помощью металлического натрия, у которого удельный вес очень мал, меньше, чем у воды. Легко было допустить, что первые порции восстановленного галлия были недостаточно хорошо очищены от примесей натрия, который и снизил полученное в опыте значение удельного веса найденного металла. Когда же П. Лекок де Буабодран, следуя совету Дмитрия Ивановича, очистил свой галлий от примесей, то найденное новое значение его удельного веса в точности совпало с предсказанным и оказалось равным 5,95.

Получилось так, что Д. Менделеев своим теоретическим взором видел новый элемент лучше, нежели 11. Лекок де Буабодран, державший этот элемент в руках. Таким образом, и здесь барьер, выступающий как слепое, некритическое отношение к любым полученным на опыте данным, был преодолен, а периодический закон выступил как критерий проверки правильности данных опыта.

Иногда дело представляется так, что сначала Д. Менделеев шел в своем открытии путем индукции (от частного к общему), а потом - путем дедукции (от общего к частному). В действительности же уже в ходе самого открытия нового закона он все время проверял правильность еще только строящейся общей системы элементов посредством дедуктивных умозаключений, как это мы видели на примере бериллия и будущего экаалюминия. Это значит, что индукция и дедукция у Д. Менделеева как логические приемы не были разорваны между собою, а функционировали в полном согласии и единстве, органически дополняя друг друга.

Можно сказать, что до Д. Менделеева в сознании химиков утвердился своего рода барьер, который исключал возможность какого-либо предвидения новых элементов и целенаправленного их поиска. Такой барьер тоже был разрушен сделанным открытием. «До периодического закона, - писал ученый, - простые тела представляли лишь отрывочные, случайные явления природы, не было поводов ждать каких-либо новых, а вновь находимые в своих свойствах были полной неожиданной новинкой. Периодическая законность первая дала возможность видеть неоткрытые еще элементы в такой дали, до которой не вооруженное этой закономерностью химическое зрение до тех лор не достигало и при этом новые элементы, еще не открытые, рисовались с целой массой свойств».

Итак, из анализа истории великого открытия мы уже можем сделать определенные выводы, ответить на вопросы, которые мы поставили в конце нашего методологического введения:

1. ППБ действительно существуют.

2. Они возникают и действуют, не допуская преждевременного выхода за рамки данной ступени развития, пока она себя не исчерпала (ступени особенности).

3. Поскольку, однако, эта функция ППБ выполнена, сами ППБ становятся тормозом для дальнейшего прогресса науки (для перехода ко всеобщему), а потому они преодолеваются, что и составляет самую суть научных открытий.

Но, разумеется, мы отлично понимаем, что нельзя ограничиться разбором одного только открытия, хотя бы и великого, для подтверждения выдвинутого положения о ППБ как общего. Для этого нужно, конечно, рассмотреть другие открытия, причем в достаточно большом числе. Этим мы и займемся в следующих главах, причем начнем издалека.

Введение

Периодический закон и Периодическая система химических элементов Д. И. Менделеева – основа современной химии. Они относятся к таким научным закономерностям, которые отражают явления, реально существующие в природе, и поэтому никогда не потеряют своего значения.

Периодический закон и сделанные на его основе открытия в различных областях естествознания и техники являются величайшим триумфом человеческого разума, свидетельством всё более глубокого проникновения в самые сокровенные тайны природы, успешного преобразования природы на благо человека.

«Редко бывает, чтобы научное открытие оказалось чем-то совершенно неожиданным, почти всегда оно предчувствуется, однако последующим поколениям, которые пользуются апробированными ответами на все вопросы, часто нелегко оценить, каких трудностей это стоило их предшественникам». Д.И. Менделеев.

Цель: Характеризовать понятие периодическая система и периодический закон элементов, периодический закон и его обоснование, дать характеристику структурам периодической системы: подгруппы, периоды и группы. Изучить историю открытия периодического закона и периодической системы элементов.

Задачи: Рассмотреть историю открытия периодического закона и периодической системы. Дать определение периодическому закону и периодической системе. Проанализировать периодический закон и его обоснование. Структуру периодической системы: подгруппы, периоды и группы.

История открытия периодического закона и периодической системы химических элементов

Утверждение атомно-молекулярной теории на рубеже XIIX – XIX веков сопровождалось бурным ростом числа известных химических элементов. Только за первое десятилетие 19 века было открыто 14 новых элементов. Рекордсменом среди первооткрывателей оказался английский химик Гемфри Деви, который за один год с помощью электролиза получил 6 новых простых веществ (натрий, калий, магний, кальций, барий, стронций). А к 1830 году число известных элементов достигло 55.

Существование такого количества элементов, разнородных по своим свойствам, озадачивало химиков и требовало упорядочения и систематизации элементов. Многие учёные занимались поисками закономерностей в списке элементов и добивались определённого прогресса. Можно выделить три наиболее значительные работы, которые оспаривали приоритет открытия периодического закона у Д.И. Менделеева.

В 1860 году состоялся первый Международный химический конгресс, после которого стало ясно, что основной характеристикой химического элемента является его атомный вес. Французский учёный Б. Де Шанкуртуа в 1862 году впервые расположил элементы в порядке возрастания атомных весов и разместил их по спирали вокруг цилиндра. Каждый виток спирали содержал 16 элементов, сходные элементы, как правило, попадали в вертикальные столбцы, хотя были отмечены и значительные расхождения. Работа де Шанкуртуа осталась незамеченной, но выдвинутая им идея сортировки элементов в порядке возрастания атомных весов оказалась плодотворной.

И двумя годами позже, руководствуясь этой идеей, английский химик Джон Ньюлендс разместил элементы в виде таблицы и заметил, что свойства элементов периодически повторяются через каждые семь номеров. Например, хлор по свойствам похож на фтор, калий – на натрий, селен – на серу и т.д. Данную закономерность Ньюлендс назвал «законом октав», практически опередив понятие периода. Но Ньюлендс настаивал на том, что длина периода (равная семи) является неизменной, поэтому его таблица содержит не только правильные закономерности, но и случайные пары (кобальт – хлор, железо – сера и углерод – ртуть).

А вот немецкий учёный Лотар Мейер в 1870 году построил график зависимости атомного объёма элементов от их атомного веса и обнаружил отчётливую периодическую зависимость, причём длина периода не совпадала с законом октав и была переменной величиной.

Во всех этих работах много общего. Де Шанкуртуа, Ньюлендс и Мейер открыли проявление периодичности изменения свойств элементов в зависимости от их атомного веса. Но они не смогли создать единую периодическую систему всех элементов, поскольку в открытых ими закономерностях многие элементы не находили своего места. Никаких серьёзных выводов из своих наблюдений этим учёным так же сделать не удалось, хотя они чувствовали, что многочисленные соотношения между атомными весами элементов являются проявлением какого-то общего закона.

Этот общий закон был открыт великим русским химиком Дмитрием Ивановичем Менделеевым в 1869 году. Менделеев сформулировал периодический закон в виде следующих основных положений:

1. Элементы, расположенные по величине атомного веса, представляют явственную периодичность свойств.

2. Должно ожидать открытия ещё многих неизвестных простых тел, например, сходных с Al и Si элементов с атомным весом 65 – 75.

3. Величина атомного веса элемента иногда может быть исправлена, зная его аналогии.

Некоторые аналогии открываются по величине веса их атома. Первое положение было известно ещё до Менделеева, но именно он придал ему характер всеобщего закона, предсказав на его основе существование ещё не открытых элементов, изменив атомные веса ряда элементов и расположив некоторые элементы в таблице вопреки их атомным весам, но в полном соответствии с их свойствами (главным образом, валентностью). Остальные положения открыты только Менделеевым и являются логическими следствиями из периодического закона

Правильность этих следствий подтверждалась многими опытами в течение последующих двух десятилетий и позволила говорить о периодическом законе как о строгом законе природы.

Используя эти положения, Менделеев составил свой вариант периодической системы элементов. Первый черновой набросок таблицы элементов появился 17 февраля (1 марта по новому стилю) 1869 года.

А 6 марта 1869 года официальное сообщение об открытии Менделеева сделал профессор Меншуткин на заседании Русского химического общества.

В уста учёного вложили такую исповедь: Вижу во сне таблицу, где все элементы расставлены, как нужно. Проснулся, тотчас записал на клочке бумаги – только в одном месте впоследствии оказалась нужной поправка». Как всё просто в легендах! На разработку и поправку ушло более 30 лет жизни учёного.

Процесс открытия периодического закона поучителен и сам Менделеев рассказывал об этом так: «Невольно зародилась мысль о том, что между массой и химическими свойствами необходимо должна быть связь. А так как масса вещества, хотя и не абсолютная, а лишь относительная, выражается окончательно в виде весов атомов, то надо искать функциональное соответствие между индивидуальными свойствами элементов и их атомными весами. Искать же что – либо, хотя бы грибы или какую-нибудь зависимость, нельзя иначе, как смотря и пробуя. Вот я и стал подбирать, написав на отдельных карточках элементы с их атомными весами и коренными свойствами, сходные элементы и близкие атомные веса, что быстро и привело к тому заключению, что свойства элементов стоят в периодической зависимости от их атомного веса, причём, сомневаясь во многих неясностях, я ни минуты не сомневался в общности сделанного вывода, так как случайность допустить не возможно».

В самой первой таблицы Менделеева все элементы до кальция включительно – такие же, как и в современной таблице, за исключением благородных газов. Это можно увидеть по фрагменту страницы из статьи Д.И. Менделеева, содержащей периодическую систему элементов.

Если исходить из принципа увеличения атомных весов, то следующими элементами после кальция должны были быть ванадий (А = 51), хром (А = 52) и титан (А = 52). Но Менделеев поставил после кальция знак вопроса, а следом поместил титан, изменив его атомный вес с 52 до 50. Неизвестному элементу, обозначенному знаком вопроса, был приписан атомный вес А = 45, являющийся средним арифметическим между атомными весами кальция и титана. Затем, между цинком и мышьяком Менделеев оставил место сразу для двух ещё не открытых элементов. Кроме того, он поместил теллур перед йодом, хотя последний имеет меньший атомный вес. При таком расположении элементов все горизонтальные ряды в таблице содержали только сходные элементы, и отчётливо проявлялась периодичность изменения свойств элементов.

В последующие два года Менделеев значительно усовершенствовал систему элементов. В 1871 году вышло первое издание учебника Дмитрия Ивановича «Основы химии», в котором приведена периодическая система в почти современном виде. В таблице образовалось 8 групп элементов, номера групп указывают на высшую валентность элементов тех рядов, которые включены в эти группы, и периоды становятся более близкими к современным, разбитые на 12 рядов. Теперь каждый период начинается активным щелочным металлом и заканчивается типичным неметаллом галогеном.

Второй вариант системы дал возможность Менделееву предсказать существование не 4, а 12 элементов и, бросая вызов учёному миру, с изумительной точностью описал свойства трёх неизвестных элементов, которые он назвал экабор (эка на санскрите означает «одно и то же»), экаалюминий и экасилиций. Современные названия их Se, Ga, Ge.

Учёный мир Запада в начале отнёсся к Менделеевской системе и его предсказаниям скептически, но всё изменилось, когда в 1875 году французский химик П. Лекок де Буабодран, исследуя спектры цинковой руды, обнаружил следы нового элемента, который он назвал галлием в честь своей родины (Галлия – древнеримское название Франции)

Учёному удалось выделитьэтот элемент в чистом виде и изучить его свойства. А Менделеев увидел, что свойства галлия совпадают со свойствами предсказанного им экаалюминия, и сообщил Лекок де Буабодрану, что тот неверно измерил плотность галлия, которая должна быть равна 5,9-6,0 г/см3вместо 4,7 г/см3. И действительно, более аккуратные измерения привели к правильному значению 5,904 г/см3.

В 1879 году шведский химик Л. Нильсон при разделении редкоземельных элементов, полученных из минерала гадолинита, выделил новый элемент и назвал его скандием. Это оказывается предсказанный Менделеевым экабор.

Окончательного признания периодический закон Д.И. Менделеева добился после 1886 года, когда немецкий химик К. Винклер, анализируя серебряную руду, получил элемент, который он назвал германием. Это оказывается экасицилий.


Похожая информация.