Из истории геометрического построения циркулем и линейкой. «Геометрические построения с помощью циркуля и линейки. Глобальные константные переменные и константные массивы

Если вполне естественно, что с допущением большего разнообразия инструментов оказывается возможным решать более обширное множество задач на построение, то можно было бы предвидеть, что, напротив, при ограничениях, налагаемых на инструменты, класс разрешимых задач будет суживаться. Тем более замечательным нужно считать открытие, сделанное итальянцем Маскерони (1750-1800): все геометрические построения, выполнимые с помощью циркуля и линейки, могут быть выполнены с помощью одного только циркуля. Следует, конечно, оговорить, что провести на самом деле прямую линию через две данные точки без линейки невозможно, так что это основное построение не покрывается теорией Маскерони. Вместо того приходится считать, что прямая задана, если заданы две ее точки. Но с помощью одного лишь циркуля удается найти точку пересечения двух прямых, заданных таким образом, или точку пересечения прямой с окружностью.

Вероятно, простейшим примером построения Маскерони является удвоение данного отрезка Решение было уже дано на стр. 185. Далее, на стр. 186 мы научились делить данный отрезок пополам. Посмотрим теперь, как разделить пополам дугу окружности с центром О. Вот описание этого построения. Радиусом проводим две дуги с центрами От точки О откладываем на этих дугах две такие дуги и что Затем находим точку пересечения дуги с центром Р и радиусом и дуги с центром и радиусом Наконец, взяв в качестве радиуса отрезок опишем дугу с центром Р или до пересечения с дугой точка пересечения и является искомой средней точкой дуги Доказательство предоставляем читателю в качестве упражнения.

Рис. 48. Пересечение окружности и прямой, не проходящей через центр

Было бы невозможно доказать основное утверждение Маскерони, указывая для каждого построения, выполнимого с помощью циркуля и линейки, как его можно выполнить с помощью одного циркуля: ведь возможных построений бесчисленное множество. Но мы достигнем той же цели, если установим, что каждое из следующих основных построений выполнимо с помощью одного циркуля:

1. Провести окружность, если заданы центр и радиус.

2. Найти точки пересечения двух окружностей.

3. Найти точки пересечения прямой и окружности.

4. Найти точку пересечения двух прямых.

Любое геометрическое построение (в обычном смысле, с допущением циркуля и линейки) составляется из выполнения конечной последовательности этих элементарных построений. Что первые два из них выполнимы с помощью одного циркуля, ясно непосредственно. Более трудные построения 3 и 4 выполняются с использованием свойств инверсии, рассмотренных в предыдущем пункте.

Обратимся к построению 3: найдем точки пересечения данной окружности С с прямой, проходящей через данные точки Проведем дуги с центрами и радиусами, соответственно равными и кроме точки О, они пересекутся в точке Р. Затем построим точку обратную точке Р относительно окружности С (см. построение, описанное на стр. 186). Наконец, проведем окружность с центром и радиусом (она непременно пересечется с С): его точки пересечения с окружностью С и будут искомыми. Для доказательства достаточно установить, что каждая из точек находится на одинаковых расстояниях от (что касается точек то аналогичное их свойство сразу вытекает из построения). Действительно, Достаточно сослаться на то обстоятельство, что точка, обратная точке отстоит от точек на расстояние, равное радиусу окружности С (см. стр. 184). Стоит отметить, что окружность, проходящая через точки является обратной прямой в инверсии относительно круга С, так как эта окружность и прямая пересекаются

Рис. 49. Пересечение окружности и прямой, проходящей через центр

с С в одних и тех же точках. (При инверсии точки основной окружности остаются неподвижными.)

Указанное построение невыполнимо только в том случае, если прямая проходит через центр С. Но тогда точки пересечения могут быть найдены посредством построения, описанного на стр. 188, как получающихся, когда мы проводим произвольную окружность с центром В, пересекающуюся с С в точках Метод проведения окружности, обратной прямой, соединяющей две данные точки, немедленно дает и построение, решающее задачу 4. Пусть прямые даны точками (рис. 50).

Рис. 50. Пересечение двух прямых

Проведем произвольную окружность С и с помощью указанного выше метода построим окружности, обратные прямым и Эти окружности пересекаются в точке О и еще в одной точке Точка X, обратная точке и есть искомая точка пересечения: как ее построить - уже было разъяснено выше. Что X есть искомая точка, это ясно из того факта, что есть единственная точка, обратная точке, одновременно принадлежащей обеим прямым и следовательно, точка X, обратная должна лежать одновременно и на и на

Этими двумя построениями заканчивается доказательство эквивалентности между построениями Маскерони, при которых разрешается пользоваться только циркулем, и обыкновенными геометрическими построениями с циркулем и линейкой.

Мы не заботились об изяществе решения отдельных проблем, нами здесь рассмотренных, так как нашей целью было выяснить внутренний смысл построений Маскерони. Но в качестве примера мы еще укажем построение правильного пятиугольника; точнее говоря, речь идет о нахождении каких-то пяти точек на окружности, которые могут служить вершинами правильного вписанного пятиугольника.

Пусть А - произвольная точка на окружности К. Так как сторона правильного вписанного шестиугольника равна радиусу круга, то не представит труда отложить на К такие точки что

Известная с античных времён.

В задачах на построение возможны следующие операции:

  • Выбрать произвольную точку на плоскости, точку на одной из построенных линий или точку пересечения двух построенных линий.
  • С помощью циркуля провести окружность с центром в построенной точке с радиусом, равным расстоянию между двух построенных точек.
  • С помощью линейки провести прямую, проходящую через две построенные точки.

Простой пример

Задача. С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

  • Циркулем проводим окружность с центром в точке A радиусом AB .
  • Проводим окружность с центром в точке B радиусом AB .
  • Находим точки пересечения P и Q двух построенных окружностей.
  • Линейкой проводим отрезок, соединяющий точки P и Q .
  • Находим точку пересечения AB и PQ . Это - искомая середина отрезка AB .

Правильные многоугольники

Античным геометрам были известны способы построения правильных для n=2^k\,\! , 3\cdot 2^k , 5\cdot 2^k и 3\cdot5\cdot2^k .

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё в античности:

  • - разбить произвольный угол на три равные части.
  • - построить отрезок, являющийся ребром куба в два раза большего объёма, чем куб с данным ребром.
  • - построить квадрат, равный по площади данному кругу.

Построения одним циркулем и одной линейкой

По теореме Мора-Маскерони (Mohr–Mascheroni theorem) с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.

Легко заметить, что с помощью одной линейки можно проводить только проективно-инвариантные построения (см., например, в теории поверхностей ).

В частности, невозможно даже разбить отрезок на две равные части. Но при наличии на плоскости заранее проведённой окружности с отмеченным центром с помощью линейки можно провести те же построения, что и циркулем и линейкой (теорема Понселе-Штейнера (Poncelet-Steiner theorem), .

См.также

  • - программа, позволяющая делать построения с помощью циркуля и линейки.

Литература

Греческие геометры гордились собой из-за своей логической чистоты; тем не менее, что касается физического пространства, они руководствовались интуицией. Одной из сторон греческой геометрии, на которую особенно влияли физические соображения, была теория построений. Многое из элементарной геометрии прямых линий и кругов можно рассматривать как теорию построений с помощью линейки и циркуля. Само название предмета, линии и круги, отражает инструменты, которые использовались для их проведения. И многие из элементарных проблем геометрии, например, деление пополам отрезка прямой или угла,

построение перпендикуляра или проведение круга через три заданные точки, можно решить построениями с помощью линейки и циркуля.

Когда введены координаты, нетрудно показать, что точки, допускающие построение из точек имеют координаты во множестве чисел, созданном из координат посредством операций и [см. Муаз (1963) или упражнения к разделу 6.3]. Квадратные корни, конечно, появляются вследствие теоремы Пифагора: если построены точки и тогда построено расстояние между ними (раздел 1.6 и рисунок 2.4). Обратно, возможно построение для любой заданной длины I (упражнение 2.3.2).

Рисунок 2.4: Построение расстояния

Если взглянуть с этой точки зрения, то построения с помощью линейки и циркуля выглядят весьма специальными и, маловероятно, что дадут, такие числа так, например, Однако греки очень упорно пытались решить именно эту задачу, которая была известна как удвоение куба (так называемая потому, что для того, чтобы удвоить объем куба, нужно было умножить сторону на Другими печально известными задачами были трисекция угла и квадратура круга. Последняя задача заключалась в построении квадрата, равного по площади заданному кругу, или в построении числа которое равновелико тому же. По-видимому, они никогда не отказывались от этих целей, хотя признавали возможность отрицательного решения и допускали решения посредством менее элементарных средств. В следующих разделах мы увидим некоторые из них.

Невозможность решения этих задач построениями с помощью линейки и циркуля оставалась недоказанной до девятнадцатого столетия. Что касается удвоения куба и трисекции угла, то невозможность показана Вантцелем (1837). Честь решения этих задач, над которыми бились лучшие математики в течение 2000 лет, редко приписывают Вантцелю, возможно, потому, что его методы вытеснила более мощная теория Галуа.

Невозможность квадратуры круга доказана Линдеманом (1882), очень строгим способом, не только неопределимо рациональными операциями и квадратными корнями; оно также трансцендентно, то есть не является корнем какого-либо полиномиального уравнения с рациональными коэффициентами. Как и работа Вантцеля, это был редкий пример значительного результата, доказанного незначительным математиком. В случае Линдемана, объяснение, возможно, заключается

В том, что уже был сделан важный шаг, когда Эрмит (1873) доказал трансцендентность Доступные доказательства обоих этих результатов можно найти у Клейна (1924). Последующая карьера Линдемана была математически непримечательной, даже смущающей. Отвечая скептикам, которые полагали, что его успех с был счастливой случайностью, он нацелился на самую известную нерешенную задачу в математике «последнюю теорему Ферма» (о возникновении этой задачи см. главу 11). Его усилия кончились неудачей в ряде неубедительных статей, каждая из которых исправляла ошибку в предыдущей. Фрич (1984) написал интересную биографическую статью о Линдемане.

Энциклопедичный YouTube

    1 / 5

    Построения циркулем и линейкой, часть 1.

    1 Простейшие построения циркулем и линейкой

    Science show. Выпуск 19. Циркуль и линейка

    Геометрия - Построение правильного треугольника

    Геометрия - Построение восьмиугольника

    Субтитры

Примеры

Задача на бисекцию . С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

  • Циркулем проводим окружности с центром в точках A и B радиусом AB .
  • Находим точки пересечения P и Q двух построенных окружностей (дуг).
  • По линейке проводим отрезок или линию, проходящую через точки P и Q .
  • Находим искомую середину отрезка AB - точку пересечения AB и PQ .

Формальное определение

В задачах на построение рассматриваются множество следующих объектов: все точки плоскости, все прямые плоскости и все окружности плоскости. В условиях задачи изначально задается (считается построенными) некоторое множество объектов. К множеству построенных объектов разрешается добавлять (строить):

  1. произвольную точку;
  2. произвольную точку на заданной прямой;
  3. произвольную точку на заданной окружности;
  4. точку пересечения двух заданных прямых;
  5. точки пересечения/касания заданной прямой и заданной окружности;
  6. точки пересечения/касания двух заданных окружностей;
  7. произвольную прямую, проходящую через заданную точку
  8. прямую, проходящую через две заданные точки;
  9. произвольную окружность с центром в заданной точке
  10. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками.
  11. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками.

Требуется с помощью конечного количества этих операций построить другое множество объектов, находящееся в заданном соотношении с исходным множеством.

Решение задачи на построение содержит в себе три существенные части:

  1. Описание способа построения заданного множества.
  2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
  3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

Известные задачи

Другая известная и неразрешимая с помощью циркуля и линейки задача - построение треугольника по трём заданным длинам биссектрис . Интересно, что эта задача остаётся неразрешимой даже при наличии инструмента, выполняющего трисекцию угла .

Допустимые отрезки для построения с помощью циркуля и линейки

С помощью этих инструментов возможно построение отрезка, который по длине:

Для построения отрезка с длиной численно равной произведению, частному и квадратному корню из длин заданных отрезков необходимо задание на плоскости построения единичного отрезка (то есть отрезка длины 1). Извлечение корней из отрезков с иными натуральными степенями, не являющимися степенью числа 2, невозможны с помощью циркуля и линейки. Так, например, невозможно при помощи циркуля и линейки из единичного отрезка построить отрезок длиной . Из этого факта, в частности, следует неразрешимость задачи об удвоении куба.

Возможные и невозможные построения

С формальной точки зрения, решение любой задачи на построение сводится к графическому решению некоторого алгебраического уравнения , причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому можно сказать, что задача на построение сводится к отысканию действительных корней некоторого алгебраического уравнения.

Поэтому удобно говорить о построении числа - графического решения уравнения определенного типа.

Исходя из возможных построений отрезков возможны следующие построения:

  • Построение решений линейных уравнений .
  • Построение решений уравнений, сводящихся к решениям квадратных уравнений .

Иначе говоря, возможно строить лишь отрезки, равные арифметическим выражениям с использованием квадратного корня из исходных чисел (заданных длин отрезков).

Важно отметить, что существенно, что решение должно выражаться при помощи квадратных корней, а не радикалов произвольной степени. Если даже алгебраическое уравнение имеет решение в радикалах, то из этого не следует возможность построения циркулем и линейкой отрезка, равного его решению. Простейшее такое уравнение: x 3 − 2 = 0 , {\displaystyle x^{3}-2=0,} связанное со знаменитой задачей на удвоение куба, сводящаяся к этому кубическому уравнению. Как было сказано выше, решение этого уравнения ( 2 3 {\displaystyle {\sqrt[{3}]{2}}} ) невозможно построить циркулем и линейкой.

Возможность построить правильный 17-угольник следует из выражения для косинуса центрального угла его стороны:

cos ⁡ (2 π 17) = − 1 16 + 1 16 17 + 1 16 34 − 2 17 + {\displaystyle \cos {\left({\frac {2\pi }{17}}\right)}=-{\frac {1}{16}}\;+\;{\frac {1}{16}}{\sqrt {17}}\;+\;{\frac {1}{16}}{\sqrt {34-2{\sqrt {17}}}}\;+\;} + 1 8 17 + 3 17 − 34 − 2 17 − 2 34 + 2 17 , {\displaystyle +{\frac {1}{8}}{\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}},} что, в свою очередь, следует из возможности сведения уравнения вида x F n − 1 = 0 , {\displaystyle x^{F_{n}}-1=0,} где F n {\displaystyle F_{n}} - любое простое число Ферма , с помощью замены переменной к квадратному уравнению.

Вариации и обобщения

  • Построения с помощью одного циркуля. По теореме Мора - Маскерони с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.
  • Построения с помощью одной линейки. Очевидно, что с помощью одной линейки можно проводить только проективно-инвариантные построения. В частности,
    • невозможно даже разбить отрезок на две равные части,
    • также невозможно найти центр данной окружности.
Однако,
  • при наличии на плоскости заранее проведённой окружности с отмеченным центром с одной линейкой можно провести те же построения, что и циркулем и линейкой (

Если вполне естественно, что с допущением большего разнообразия инструментов оказывается возможным решать более обширное множество задач на построение, то можно было бы предвидеть, что, напротив, при ограничениях, налагаемых на инструменты, класс разрешимых задач будет суживаться. Тем более замечательным нужно считать открытие, сделанное итальянцем Маскерони (1750-1800): все геометрические построения, выполнимые с помощью циркуля и линейки, могут быть выполнены с помощью одного только циркуля. Следует, конечно, оговорить, что провести на самом деле прямую линию через две данные точки без линейки невозможно, так что это основное построение не покрывается теорией Маскерони. Вместо того приходится считать, что прямая задана, если заданы две ее точки. Но с помощью одного лишь циркуля удается найти точку пересечения двух прямых, заданных таким образом, или точку пересечения прямой с окружностью.

Вероятно, простейшим примером построения Маскерони является удвоение данного отрезка АВ. Решение было уже дано на стр. 174-175. Далее, на стр. 175-176 мы научились делить данный отрезок пополам. Посмотрим теперь, как разделить пополам дугу окружности АВ с центром О. Вот описание этого построения (рис. 47). Радиусом АО проводим две дуги с центрами A и В. От точки О откладываем на этих дугах две такие дуги ОР и OQ, что OP = OQ = АВ . Затем находим точку R пересечения дуги с центром Р и радиусом РВ и дуги с центром Q и радиусом QA. Наконец, взяв в качестве радиуса отрезок OR, опишем дугу с центром Р или Q до пересечения с дугой AВ - точка пересечения и является искомой средней точкой дуги АВ. Доказательство предоставляем читателю в качестве упражнения.

Было бы невозможно доказать основное утверждение Маскерони, указывая для каждого построения, выполнимого с помощью циркуля и линейки, как его можно выполнить с помощью одного циркуля: ведь возможных построений бесчисленное множество. Но мы достигнем той же цели, если установим, что каждое из следующих основных построений выполнимо с помощью одного циркуля:

  1. Провести окружность, если заданы ее центр и радиус.
  2. Найти точки пересечения двух окружностей.
  3. Найти точки пересечения прямой и окружности.
  4. Найти точку пересечения двух прямых.

Любое геометрическое построение (в обычном смысле, с допущением циркуля и линейки) составляется из выполнения конечной последовательности этих элементарных построений. Что первые два из них выполнимы с помощью одного циркуля, ясно непосредственно. Более трудные построения 3 и 4 выполняются с использованием свойств инверсии, рассмотренных в предыдущем пункте.

Обратимся к построению 3: найдем точки пересечения данного круга С с прямой, проходящей через данные точки А и В. Проведем дуги с центрами А и В и радиусами, соответственно равными АО и ВО, кроме точки О, они пересекутся в точке Р. Затем построим точку Q, обратную точке Р относительно окружности С (см. построение, описанное на стр. 174). Наконец, проведем окружность с центром Q и радиусом QO (она непременно пересечется с С): ее точки пересечения Х и Х" окружностью С и будут искомыми. Для доказательства достаточно установить, что каждая из точек X и X" находится на одинаковых расстояниях от О и P (что касается точек А и В, то аналогичное их свойство сразу вытекает из построения). Действительно, достаточно сослаться на то обстоятельство, что точка, обратная точке Q, отстоит от точек X и Х" на расстояние, равное радиусу круга С (см. стр. 173). Стоит отметить, что окружность, проходящая через точки X, X" и О, является обратной прямой АВ в инверсии относительно окружности С, так как эта окружность и прямая АВ пересекаются с С в одних и тех же точках. (При инверсии точки основной окружности остаются неподвижными.) Указанное построение невыполнимо только в том случае, если прямая АВ проходит через центр С. Но тогда точки пересечения могут быть найдены посредством построения, описанного на стр. 178, как середины дуг С, получающихся, когда мы проводим произвольную окружность с центром В, пересекающуюся с С в точках В 1 и В 2 .

Метод проведения окружности, обратной прямой," соединяющей две данные точки, немедленно дает и построение, решающее задачу 4. Пусть прямые даны точками А, В и A", В" (рис. 50) Проведем произвольную окружность С и с помощью указанного выше метода построим окружности, обратные прямым АВ и А"В". Эти окружности пересекаются в точке О и еще в одной точке Y, Точка X, обратная точке Y, и есть искомая точка пересечения: как ее построить - уже было разъяснено выше. Что X есть искомая точка, это ясно из того факта, что Y есть единственная точка, обратная точке, одновременно принадлежащей обеим прямым АВ и А"В", следовательно, точка X, обратная Y, должна лежать одновременно и на АВ, и на А"В".

Этими двумя построениями заканчивается доказательство эквивалентности между построениями Маскерони, при которых разрешается пользоваться только циркулем, и обыкновенными геометрическими построениями с циркулем и линейкой.

Мы не заботились об изяществе решения отдельных проблем, нами здесь рассмотренных, так как нашей целью было выяснить внутренний смысл построений Маскерони. Но в качестве примера мы еще укажем построение правильного пятиугольника; точнее говоря, речь идет о нахождении каких-то пяти точек на окружности, которые могут служить вершинами правильного вписанного пятиугольника.

Пусть Л- произвольная точка на окружности К. Так как сторона правильного вписанного шестиугольника равна радиусу круга, то не представит труда отложить на К такие точки В, С, D, что АВ = ВС = CD = 60° (рис. 51). Проводим дуги с центрами А и D радиусом, равным АС; пусть они пересекаются в точке X. Тогда, если О есть центр K, дуга с центром А и радиусом ОХ пересечет К в точке F, являющейся серединой дуги ВС (см. стр. 178). Затем радиусом, равным радиусу K, опишем дуги с центром F, пересекающиеся с K в точках G и H. Пусть Y есть точка, расстояния которой от точек G и Н равны ОХ и которая отделена от X центром О. В таком случае отрезок AY как раз и есть сторона искомого пятиугольника. Доказательство предоставляется читателю в качестве упражнения. Интересно отметить, что при построении используются только три различных радиуса.

В 1928 г. датский математик Ельмслев нашел в книжной лавке в Копенгагене экземпляр книги под названием Euclides Danicus , опубликованной в 1672 г. никому не известным автором Г. Мором. По титульному листу можно было сделать заключение, что это просто один из вариантов евклидовых "Начал", снабженный, может быть, редакторским комментарием. Но по внимательном рассмотрении оказалось, что в ней содержится полное решение проблемы Маскерони, найденное задолго до Маскерони.

Упражнения. В дальнейшем дается описание построений Мора. Проверьте их правильность. Почему можно утверждать, что они решают проблему Маскерони?

Вдохновляясь результатами Маскерони, Якоб Штейнер (1796-1863) предпринял попытку исследования построений, выполнимых с помощью одной только линейки. Конечно, одна только линейка не выводит за пределы данного числового поля, и потому она недостаточна для выполнения всех геометрических построений в классическом их понимании. Но тем более замечательны результаты, полученные Штейнером при введенном им ограничении - пользоваться циркулем только один раз. Он доказал, что все построения на плоскости, выполнимые с помощью циркуля и линейки, выполнимы также с помощью одной линейки при условии, что задан единственный неподвижный круг вместе с центром. Эти построения подразумевают применение проективных методов и будут описаны позднее (см. стр. 228).

* Без круга, и притом с центром, обойтись нельзя. Например, если дан круг, но не указан его центр, то найти центр с помощью одной линейки невозможно. Мы сейчас докажем это, ссылаясь, однако, на факт, который будет установлен позднее (см. стр. 252): существует такое преобразование плоскости самой в себя, что а) заданная окружность остается неподвижной, b) всякая прямая линия переходит в прямую, с) центр неподвижной окружности не остается неподвижным, а смещается. Само существование такого преобразования свидетельствует о невозможности построить центр данной окружности, пользуясь одной линейкой. В самом деле, какова бы ни была процедура построения, она сводится к ряду отдельных этапов, заключающихся в проведении прямых линий и нахождении их пересечений друг с другом или с данной окружностью. Представим себе теперь, что вся фигура в целом - окружность, а все прямые, проведенные по линейке при выполнении построения центра, подвергнуты преобразованию, существование которого мы здесь допустили. Тогда ясно, что фигура, полученная после преобразования, также удовлетворяла бы всем требованиям построения; но указываемое этой фигурой построение приводило бы к точке, отличной от центра данной окружности. Значит, построение, о котором идет речь, невозможно.