Элементы которые составляют около 98 массы клетки. Что такое постоянство химического состава. Основные биогенные элементы клетки

Подробное решение Раздел стр. 14 по биологии для учащихся 9 класса, авторов С.Г. Мамонтов, В.Б. Захаров, И.Б. Агафонова, Н.И. Сонин 2016

2. Неорганические вещества, водящие в состав клетки

Вопрос 1. Какие химические элементы составляют большую часть массы клетки?

Около 98 % массы клетки образуют четыре элемента: водород, кислород, углерод и азот. Это главные компоненты всех органических соединений. Вместе с серой и фосфором, являющимися необходимыми компонентами молекул биологических полимеров (от греч. полис – много, мерос – часть) – белков и нуклеиновых кислот, их часто называют биоэлементами.

Вопрос 2. Что такое микроэлементы? Приведите примеры и охарактеризуйте их биологическое значение.

Все остальные элементы (цинк, медь, йод, фтор, кобальт, марганец, молибден, бор и др.) содержатся в клетке в очень малых количествах. Общий их вклад в её массу – всего 0,02 %. Поэтому их называют микроэлементами. Однако и они имеют жизненно важное значение. Микроэлементы входят в состав ферментов, витаминов и гормонов – веществ, обладающих большой биологической активностью. Так, йод входит в состав гормона щитовидной железы – тироксина; цинк – в состав гормона поджелудочной железы – инсулина; кобальт – необходимый компонент витамина В12.

Микроэлементы нужны в биотических дозах и их недостаток или избыток в поступлении в организм сказываются на изменении обменных процессов и др. Минеральные вещества играют огромную физиологическую роль в организме человека и животных, входят в состав всех клеток и соков, обусловливают структуру клеток и тканей; в организме они необходимы для обеспечения всех жизненных процессов дыхания, роста, обмена веществ, образования крови, кровообращении, деятельности центральной нервной системы и оказывают влияние на коллоиды тканей и ферментативные процессы. Они входят в состав или активируют до трехсот ферментов.

Марганец (Мn). Марганец содержится во всех органах и тканях человека. Особенно много его в коре мозга, сосудистых системах. Марганец участвует в белковом и фосфорном обмене, в половой функции и в функции опорно-двигательного аппарата, участвует в окислительно-восстановительных процессах, при его участии происходят многие ферментативные процессы, а также процессы синтеза витаминов группы В и гормонов. Дефицит марганца сказывается на работе центральной нервной системы и стабилизации мембран нервных клеток, на развитии скелета, на кроветворении и реакциях иммунитета, на тканевом дыхании. Печень - депо марганца, меди, железа, но с возрастом содержание их в печени снижается, но потребность их в организме остается, возникают злокачественные заболевания, сердечно-сосудистые и др. Содержание марганца в пищевом рационе 4...36 мг. Суточная потребность 2-10 мг. Содержится в рябине обыкновенной, шиповнике коричневом, яблоне домашней, абрикосе, винограде винном, женьшене, клубнике, инжире, облепихе, а также хлебопродуктах, овощах, печени, почках.

Бром (Вr). Наибольшее содержание брома отмечают в мозговом веществе, почках, щитовидной железе, ткани головного мозга, гипофизе, крови, спинномозговой жидкости. Соли брома участвуют в регуляции деятельности нерв ной системы, активируют половую функцию, увеличивая объем эякулята и количество сперматозоидов в нем. Бром при чрезмерном накоплении угнетает функцию щитовидной железы, препятствуя поступлению в нее йода, вызывает кожное заболевание бромодерму и угнетение центральной нервной системы. Бром входит в состав желудочного сока, влияя (наряду с хлором) на его кислотность. Рекомендуемая суточная потребность брома взрослым человеком составляет около 0,5-2,0 мг. Содержание брома в суточном пищевом рационе 0,4-1,1 мг. Основным источником брома в питании человека являются хлеб и хлебопродукты, молоко и молочные продукты, бобовые - чечевица, фасоль, горох.

Медь (Си). Медь влияет на рост и развитие живого организма, участвует в деятельности ферментов и витаминов. Главной биологической функцией ее является участие в тканевом дыхании и кроветворении. Медь и цинк усиливают действие друг друга. Дефицит меди вызывает нарушение образования гемоглобина, развивается анемия, нарушается психическое развитие. Возникает потребность в меди при всяком воспалительном процессе, эпилепсии, анемии, лейкозе, циррозе печени, инфекционных заболеваниях. Нельзя кислые пищевые продукты или напитки держать в медной или латунной посуде. Избыток меди оказывает на организм токсическое действие, могут возникнуть рвота, тошнота, понос. Содержание меди в суточном пищевом рационе 2-10 мг и накапливается преимущественно в печени, костях. Во всех витаминах с микроэлементами медь содержится в пределах нормы, в растительных - айва (1,5 мг %). рябина, яблоня домашняя, абрикос обыкновенный, инжир, крыжовник, ананас - 8,3 мг % на 1 кг, хурма до 0,33 мг %.

Никель (Ni). Никель обнаружен в поджелудочной железе, гипофизе. Наибольшее содержание обнаруживается в волосах, коже и органах эктодермального происхождения. Подобно кобальту никель благотворно влияет на процессы кроветворения, активирует ряд ферментов. При избыточном поступлении никеля в организм в течение длительного времени отмечаются дистрофические изменения в паренхиматозных органах, нарушения со стороны сердечнососудистой системы, нервной и пищеварительной систем, изменения в кроветворении, углеводном и азотистом обмене, нарушении функции щитовидной железы и репродуктивной функции. Много никеля в растительных продуктах, морской рыбе и продуктах моря, печени.

Кобальт (Со). В организме человека кобальт выполняет разнообразные функции, в частности оказывает влияние на обмен веществ и рост организма, и принимает непосредственное участие в процессах кроветворения; он способствует синтезу мышечных белков, улучшает ассимиляцию азота, активизирует ряд ферментов, участвующих в обмене веществ; является незаменимым структурным компонентом витаминов группы В, способствует усвоению кальция и фосфора, понижает возбудимость и тонус симпатической нервной системы. Содержание в суточном пищевом рационе 0,01-0,1 мг. Потребность 40-70 мкг. Кобальт содержится в плодах яблони домашней, абрикоса, винограда винного, клубнике, орехе грецком, молоке, хлебопродуктах, овощах, говяжьей печени, бобовых.

Цинк (Zn). Цинк участвует в деятельности более 20 ферментов, является структурным компонентом гормона поджелудочной железы, влияет на развитие, рост, половое развитие мальчиков, центральную нервную систему. Недостаток цинка ведет к инфантильности у мальчиков и к заболеваниям центральной нервной системы. Считается, что цинк канцерогенный, поэтому его влияние на организм зависит от дозы. Содержание в суточном пищевом рационе 6-30 мг. Суточная доза цинка 5-20 мг. Содержится в субпродуктах, в мясных продуктах, не шлифованном рисе, грибах, устрицах, других морских продуктах, дрожжах, яйцах, горчице, в семенах подсолнуха, хлебопродуктах, мясе, овощах, а также содержится в большинстве лекарственных растений, в плодах яблони домашней.

Молибден (Мо). Молибден входит в состав ферментов, оказывает влияние на вес и рост, препятствует кариесу зубов, задерживает фтор. При недостатке молибдена происходит замедление роста. Содержание в суточном пищевом рационе 0,1-0,6 мг. Суточная доза молибдена - 0,1-0,5 мг Молибден присутствует в рябине черноплодной, яблоне домашней, бобовых, печени, почках, хлебопродуктах.

Селен (Se). Селен принимает участие в обмене серосодержащих аминокислот и предохраняет витамин Е от преждевременного разрушения, защищает клетки от свободных радикалов, но большие дозы селена могут быть опасными и принимать пищевые добавки с селеном нужно только по рекомендации врача. Суточная доза селена 55 мкг. Основной причиной дефицита селена является его недостаточное поступление с пищей, особенно с хлебом и хлебобулочными и мучными изделиями.

Хром (Сr). В последние годы доказана роль хрома в углеводном и жировом обмене. Оказалось, что нормальный углеводный обмен невозможен без органического хрома, содержащегося в натуральных углеводных продуктах. Хром участвует в образовании инсулина, регулирует сахар в крови и жировой обмен, снижает уровень холестерина в крови, защищает сосуды сердца от склеротизирования, препятствует развитию сердечно-сосудистых заболеваний. Недостаток хрома в организме может привести к ожирению, задержке жидкости в тканях и повышению артериального давления. Половина населения земли испытывает дефицит хрома из-за рафинирован ной пищи. Ежедневная суточная норма хрома 125 мкг. В ежедневном рационе питания должны быть сведены к минимуму рафинированные, очищенные продукты - белая мука и изделия из нее, белый сахар, соль, каши быстрого приготовления, разнообразные хлопья зерновых. Необходимо включить в питание натуральные нерафинированные продукты, содержащие хром: хлеб из цельного зерна, каши из натурального зерна (гречки ядрицы, неочищенного риса, овса, пшена), субпродукты (печень, почки и сердце животных и птиц) рыбу и морепродукты. Хром содержат желтки куриных яиц, мед, орехи, грибы, коричневый сахар. Из круп больше всего хрома содержит перловка, затем гречка, из овощей много хрома в свекле, редисе, из фруктов - в персиках. Хороший источник хрома и других микроэлементов - пивные дрожжи, пиво, сухое красное вино. Соединения хрома обладают высокой степенью летучести, происходит значительная потеря хрома при варке продуктов.

Йод (J). Йод принимает участие в образовании гормона щитовидной железы - тироксина. При недостаточном поступлении йода развивается заболевание щитовидной железы (зоб эндемический). При недостатке йода в пищевых продуктах, главным образом в воде, применяют йодированную соль и лекарственные препараты йода. Избыток поступления йода в организм приводит к развитию гипотиреоза. Содержание в суточном пищевом рационе 0,04-0,2 мг. Суточная потребность в йоде 50-200 мкг. Йод находится в рябине черноплодной, до 40 мг %, груше обыкновенной до 40 мг %, фейхоа 2-10 мг % на 1 кг, молоке, овощах, мясе, яйцах, морской рыбе.

Литий (Li). Литий обнаружен в крови человека. Соли лития с остатками органических кислот применяются для лечения подагры. В основе подагры лежит нарушение пуринового обмена с недостаточным выделением мочекислых солей, вызывающее повышенное содержание мочевой кислоты в крови и отложение её солей в суставах и тканях организма. Развитию подагры способствует избыточное питание продуктами, богатыми пуриновыми основаниями (мясо, рыба и пр.), злоупотребление алкоголем, сидячий образ жизни. Карбонат лития применяется в гомеопатии при расстройствах окислительных процессов в организме с явлениями мочекислого диатеза и подагры.

Кремний (Si). Кремний находится в плазме крови, как и железо, он нужен для образования эритроцитов. Соединения кремния необходимы для нормального развития и функционирования соединительной и эпителиальной тканей. Он способствует биосинтезу коллагенов и образованию костной ткани (после перелома количество кремния в костной мозоли увеличивается почти в 50 раз). Полагают, что присутствие кремния в стенках сосудов препятствует проникновению в плазму крови липидов и их отложению в сосудистой стенке, что соединения кремния необходимы для нормального протекания процессов липидного обмена. Суточная потребность в диоксиде кремния составляет 20-30 мг. Кремний обнаружен в коже, волосах, щитовидной железе, гипофизе, надпочечниках, легких, меньше всего в мышцах и крови. Источником его является вода и растительные пищевые продукты. Наибольшее количество кремния содержится в корневых овощах, фруктах: абрикосах, бананах, вишнях, клубнике, землянике, овсе, огурцах, пророщенных зернах злаков, в цельном зерне пшеницы, просе, питьевой воде. Недостаток кремния приводит к ослаблению кожи и волос. Пыль кремнийсодержащих неорганических соединений может вызвать развитие заболевания легких - силикоз. Повышенное поступление кремния в организм может вызвать нарушение фосфорно-кальциевого обмена, образование мочевых камней.

Сера (S). В организме человека сера участвует в образовании кератина белка, находящегося в суставах, волосах и ногтях. Сера входит в состав почти всех белков и ферментов в организме, участвует в окислительно-восстановительных реакциях и других метаболических процессах, способствует секреции желчи в печени. Много серы содержится в волосах. Атомы серы входит в состав тиамина и биотина-витаминов группы В, а также в состав жизненно важных аминокислот - цистеина и метионина. Дефицит серы в организме человека встречается очень редко - при недостаточном употреблении продуктов, содержащих белок. Физиологическая потребность в сере не установлена.

Фториды (F-). Содержание в пищевом рационе 0,4-0,8 мг. Суточная потребность фторидов 2-3 мг. Преимущественно накапливается в костях и зубах. Фториды применяются от кариеса зубов, стимулируют кроветворение и иммунитет, участвуют в развитии скелета. Избыток фторидов дает крапчатость зубной эмали, вызывает заболевание флюороз, подавляет защитные силы организма. В организм фтор поступает с пищевыми продуктами, из которых наиболее богаты им овощи и молоко. В составе пищи человек получает около 0,8 мг фтора, остальное его количество должно поступать с питьевой водой.

Серебро (Аg). Серебро - микроэлемент, являющийся необходимой составной частью тканей любого живого организма. В суточном рационе человека должно содержаться в среднем около 80 мкг серебра. Исследования показали, что даже длительное употребление человеком питьевой воды, содержащей 50 мкг на литр серебра, не вызывает нарушений функции органов пищеварения и каких- либо патологических сдвигов в состоянии организма в целом. Такое явление, как дефицит серебра в организме, нигде не описано. Бактерицидные свойства серебра общеизвестны. В официальной медицине широко применяются препараты коллоидного серебра и нитрат серебра. В организме человека серебро обнаружено в мозге, железах внутренней секреции, печени, почках и костях скелета. В гомеопатии серебро применяется как в элементарном виде серебро металлическое, так и в виде нитрата серебра. Препараты серебра в гомеопатии обычно назначают при упорных и длительных заболеваниях, сильно истощающих нервную систему. Однако физиологическая роль серебра в организме человека и животных изучена недостаточно.

Вопрос 3. Каковы особенности пространственной организации молекулы воды, обусловливающие её биологическое значение?

Функции воды во многом определяются её химическими и физическими свойствами. Эти свойства связаны главным образом с малыми размерами молекул воды и их полярностью, а также способностью соединяться друг с другом водородными связями.

Одна часть молекулы воды несёт небольшой положительный заряд, а другая – отрицательный. Такую молекулу называют диполем. Положительно заряженные части одной молекулы воды притягивают к себе отрицательно заряженные части других молекул, молекулы воды как будто склеиваются. Эти взаимодействия, более слабые, чем ионные связи, называют водородными связями. Вода – превосходный растворитель для полярных веществ, участвующих в обменных процессах.

Вопрос 4. Какие минеральные соли входят в состав живых организмов?

Большая часть неорганических веществ клетки находится в виде солей – либо в состоянии ионов, либо в виде твёрдой нерастворимой соли. Среди первых большое значение имеют катионы К+, Na+, Ca2+, которые обеспечивают такое важнейшее свойство живых организмов, как раздражимость.

Концентрация катионов и анионов в клетке и в окружающей её среде резко различна. Внутри клетки превалируют ионы К+ и крупные органические ионы, в околоклеточных жидкостях всегда больше ионов Na+ и Cl-. Вследствие этого образуется разность зарядов внешней и внутренней поверхностей мембраны клетки, между ними возникает разность потенциалов, обуславливающая такие важные процессы как передача возбуждения по нерву или мышце.

Соединения азота, фосфора, кальция и другие неорганические вещества служат источником строительного материала для синтеза органических молекул (аминокислот, белков, нуклеиновых кислот и др.) и входят в состав ряда опорных структур клетки и организма.

Некоторые неорганические ионы (например, ионы кальция и магния) являются активаторами и компонентами многих ферментов, гормонов и витаминов. При недостатке этих ионов нарушаются жизненно важные процессы в клетке.

Вопрос 5. Какие вещества обусловливают буферные свойства клетки? От концентрации солей внутри клетки зависят буферные свойства клетки.

Буферностью называют способность клетки поддерживать слабощелочную реакцию своего содержимого на постоянном уровне. Внутри клетки буферность обеспечивается главным образом анионами H2PO4− и НРО42−. Во внеклеточной жидкости и в крови роль буфера играют Н2СО3 и HCO3−. Анионы слабых кислот и слабые щёлочи связывают ионы водорода и гидроксил-ионы (ОН−), благодаря чему реакция внутри клетки, т. е. величина рН, практически не меняется.

Вопрос 6. Согласны ли вы с утверждением, что вода - колыбель всего живого? Объясните, почему жизнь зародилась именно в водной среде.

Все экологические ниши, пригодные для жизни, заняты биосферой. Возникла биосфера одновременно с возникновением жизни на Земле, первоначально (около 4 млрд. лет тому назад) в виде примитивных биоценозов (протобиоценозов) в первичном Мировом океане.

Только благодаря очень медленному процессу эволюции отдельные виды, получившие название амфибий, смогли покинуть водную среду и частично приспособиться к жизни на суше. Дальнейшие адаптационные процессы позволили некоторым из этих земноводных навсегда покинуть водное пространство и сделать сушу постоянной средой своего обитания. Прямое доказательство того, что вода - первоначальная среда обитания живых организмов, было получено при изучении состава плазмы крови (ее жидкого компонента) и внеклеточной жидкости различных животных. Данные жидкости по своему составу близки к морской воде.

Вопрос 7. Предложите свою классификацию химических элементов, входящих в состав живых организмов.

Можно предложить следующую классификацию химических элементов, входящий в состав клетки:

1. Элементы 1 порядка (водород, кислород, углерод и азот)

2. Элементы 2 порядка (цинк, бор, медь, йод, железо, марганец)

Вопрос 8. Составьте и заполните таблицу «Химические элементы и их значение в живой природе».

Ответы к школьным учебникам

Элементы, встречающиеся в живой природе, широко распространены и в неживой природе - атмосфере, воде, земной коре. Нет таковых элементов, которые встречались бы исключительно в живых организмах. Но соотношение химических элементов, их вклад в образование веществ, составляющих живой организм и неживое тело, резко различаются. В живом организме большая часть элементов находится в виде химических соединений - веществ, растворенных в воде. Исключительно в живых организмах содержатся органические вещества: белки, жиры, углеводы и нуклеиновые кислоты.

2. Сходен ли химический состав растительной и животной клеток?

Химический состав растительной и животной клеток подобен. Все живые организмы состоят из одних и тех же элементов, неорганических и органических соединений. Однако содержание различных элементов в разных клетках различается. В каждый тип клеток входит неодинаковое количество определенных органических молекул. В растительных клетках преобладают сложные углеводы (клетчатка, крахмал), в животных - больше белков и жиров. Каждая из групп органических веществ (белки, углеводы, жиры, нуклеиновые кислоты) в любом типе клеток выполняет свойственные ей функции (нуклеиновая кислота - хранение и передачу наследственной информации, углеводы - энергетическую и т. д.).

3. Перечислите элементы, наиболее распространенные в живых организмах.

В состав клетки входит около 80 химических элементов. Зависимо от того, в котором числе содержатся химические элементы в составе веществ, образующих живой организм, принято выделять несколько их групп. Одну группу образуют четыре элемента, составляющие около 98% массы клетки: кислород, водород, углерод и азот. Их называют макроэлементами. Это доминирующие составляющие всех органических соединений.

В другую группу входят сера и фосфор, калий и натрий, кальций и магний, марганец, железо и хлор. Они находятся в клетках в меньших количествах (десятые и сотые доли процента). Каждый из них выполняет в клетке важную функцию. К примеру, кальций и фосфор участвуют в образовании костной ткани, определяя прочность кости. Железо входит в состав гемоглобина - белка красных кровяных телец (эритроцитов), участвующего в переносе кислорода от легких к тканям.

4. Какие вещества относятся к органическим?

К органическим веществам относятся белки, нуклеиновые кислоты, жиры, углеводы, а также гормоны, пигменты, АТФ и некоторые др. Они составляют в среднем 20-30% массы клетки живого организма.

5. В чем заключается роль белков в клетке?

Среди органических веществ клетки белки занимают первое место как по количеству, так и по значению. У животных на них приходится около 50% сухой массы клетки.

Роль белков в клетке чрезвычайно велика и разнообразна. Одна из важнейших функций белков - строительная: белки участвуют в формировании мембран и органоидов не мембранного строения. Важное значение имеет и другая функция - каталитическая: определенные белки ускоряют химические реакции, протекающие в клетке, в десятки и сотни тысяч раз.

Двигательная функция организма обеспечивается сократительными белками. Эти белки участвуют во всех видах движения, к которым способны клетки и организмы животных.

Транспортная функция белков заключается в присоединении химических элементов (например, кислорода) или биологически активных веществ (гормонов) и переносе их к различным тканям и органам тела.

При поступлении в организм чужеродных белков или микроорганизмов в белых кровяных тельцах (лейкоцитах) образуются особые белки - антитела. Они связывают и обезвреживают несвойственные организму вещества. В этом выражается защитная функция белков.

Белки служат и одним из источников энергии в клетке, т. е. выполняют энергетическую функцию.

6. Какие вещества являются основным источником энергии?

Основным источником энергии в клетках животных и растений являются углеводы. К ним относятся глюкоза, сахароза, клетчатка, крахмал и др. «Сжигая» глюкозу, организм получает необходимую энергию для проходящих в нем процессов обмена веществ. Живые организмы могут запасать углеводы в виде крахмала (у растений) и гликогена (у животных и грибов). В клубнях картофеля крахмал может составлять до 80% массы, а у животных особенно много углеводов в клетках печени и мышцах - до 5%.

Углеводы выполняют и другие функции, например опорную и защитную. Клетчатка входит в состав древесины, хитин образует наружный скелет насекомых, ракообразных и других членистоногих.

7. Охарактеризуйте роль жиров в организме.

Жиры выполняют в организме ряд функций, например служат запасным источником энергии. Они дают организму до 30% всей необходимой ему энергии. Выполняют жиры и строительную функцию, входя обязательными компонентами в состав клеточной и ядер- ной мембран. У некоторых животных жиры накапливаются в больших количествах и служат теплоизолятором, т. е. предохраняют организм от потери тепла (например, у китов толщина жирового слоя достигает 1 м).

Большое значение имеют жиры и как внутренний резерв воды: в результате расщепления 1 кг жира образуется до 1,1 кг воды. Это очень важно для животных, впадающих в зимнюю спячку, - сусликов, сурков: благодаря своим подкожным жировым запасам, они могут не пить в это время до двух месяцев. Верблюды во время переходов по пустыне обходятся без питья до двух недель - необходимую организму воду они извлекают из своих горбов - вместилищ жира.

8. Какова роль воды в клетке?

Самое распространенное неорганическое соединение в живых организмах - вода. Ее содержание колеблется в широких пределах: в клетках эмали зубов - около 10%, а в клетках развивающегося зародыша - более 90%. В среднем в многоклеточном организме вода составляет около 80% массы тела. Прежде всего, вода определяет физические свойства клетки, ее объем, упругость. Многочисленные химические реакции проходят именно в водной среде, так как вода - хороший растворитель. Да и сама вода участвует во многих химических превращениях.

Вода помогает удалению из организма ненужных и вредных веществ, образующихся в результате обмена (выделительная функция), способствует перемещению кислорода, углекислого газа и питательных веществ по организму (транспортная функция).

Вода обладает хорошей теплопроводностью и большой теплоемкостью. При изменении температуры окружающей среды вода поглощает или выделяет теплоту. Вследствие этого температура внутри клетки остается неизменной или ее колебания оказываются значительно меньшими, чем в окружающей клетку среде (теплорегулирующая функция).

9. Назовите известные вам углеводы.

К углеводам относят следующие природные органические соединения: глюкозу, фруктозу, сахарозу, мальтозу, лактозу, хитин, крахмал, гликоген и целлюлозу.

10. Какую роль выполняют в клетке нуклеиновые кислоты?

Нуклеиновые кислоты ответственны за хранение и передачу наследственных признаков от родителей к потомству. Они входят в состав хромосом - особых структур, расположенных в клеточном ядре. Нуклеиновые кислоты находятся также в цитоплазме и ее органоидах.

11. Каков химический состав живых организмов?

Наиболее распространенные элементы в живых организмах - кислород, углерод, водород и азот. В состав живых организмов входят органические вещества (белки, жиры, углеводы, нуклеиновые кислоты) и неорганические вещества (вода, минеральные соли).

Клетки живых организмов по своему химическому составу значительно отличаются от окружающей их неживой среды и по структуре химических соединений, и по набору и содержанию химических элементов. Всего в живых организмах присутствует (обнаружено на сегодняшний день) около 90 химических элементов, которые, в зависимости от их содержания, разделяют на 3 основных группы: макроэлементы , микроэлементы и ультрамикроэлементы .

Макроэлементы.

Макроэлементы в значительных количествах представлены в живых организмах, начиная от сотых долей процента до десятков процентов. Если содержание какого-либо химического вещества в организме превышает 0.005% от массы тела, такое вещество относят к макроэлементам. Они входят в состав основных тканей: крови, костей и мышц. К ним относятся, например, следующие химические элементы: водород, кислород, углерод, азот, фосфор, сера, натрий, кальций, калий, хлор. Макроэлементы в сумме составляют около 99% от массы живых клеток, причем большая часть (98%) приходится именно на водород, кислород, углерод и азот.

В таблице ниже представлены основные макроэлементы в организме:

Для всех четырех самых распространенных в живых организмах элементов (это водород, кислород, углерод, азот, как было сказано ранее) характерно одно общее свойство. Этим элементам не хватает одного или нескольких электронов на внешней орбите для образования стабильных электронных связей. Так, атому водорода для образования стабильной электронной связи не хватает одного электрона на внешней орбите, атомам кислорода, азота и углерода — двух, трех и четырех электронов соответственно. В связи с этим, эти химические элементы легко образуют ковалентные связи за счет спаривания электронов, и могут легко взаимодействовать друг с другом, заполняя свои внешние электронные оболочки. Кроме этого, кислород, углерод и азот могут образовывать не только одинарные, но и двойные связи. В результате чего существенно увеличивается количество химических соединений, которые могут образовываться из этих элементов.

Кроме того, углерод, водород и кислород — наиболее легкие среди элементов, способных образовывать ковалентные связи. Поэтому они оказались наиболее подходящими для образования соединений, входящих в состав живой материи. Необходимо отметить отдельно еще одно важное свойство атомов углерода — способность образовывать ковалентные связи сразу с четырьмя другими атомами углерода. Благодаря этой способности создаются каркасы из огромного количества разнообразных органических молекул.

Микроэлементы.

Хотя содержание микроэлементов не превышает 0,005% для каждого отдельного элемента, а в сумме они составляют всего лишь около 1% массы клеток, микроэлементы необходимы для жизнедеятельности организмов. При их отсутствии или недостаточном содержании могут возникать различные заболевания. Многие микроэлементы входят в состав небелковых групп ферментов и необходимы для осуществления их каталитической функции.
Например, железо является составной частью гема, который входит в состав цитохромов, являющихся компонентами цепи переноса электронов, и гемоглобина — белка, который обеспечивает транспорт кислорода от легких к тканям. Дефицит железа в организме человека вызывает развитие анемии. А недостаток йода, входящего в состав гормона щитовидной железы — тироксина, приводит к возникновению заболеваний, связанных с недостаточностью этого гормона, таких как эндемический зоб или кретинизм.

Примеры микроэлементов представлены в таблице ниже:

Ультрамикроэлементы.

В состав группы ультрамикроэлементов входят элементы, содержание которых в организме крайне мало (менее 10 -12 %). К ним относятся бром, золото, селен, серебро, ванадий и многие другие элементы. Большинство из них также необходимы для нормального функционирования живых организмов. Например, нехватка селена может привести к возникновению раковых заболеваний, а недостаток бора — причина некоторых заболеваний у растений. Многие элементы этой группы также, как и микроэлементы, входят в состав ферментов.

Все живые системы содержат в различных соотношениях химические элементы и построенные из них химические соединения, как органические, так и неорганические.

По количественному содержанию в клетке все химические элементы делят на 3 группы: макро-, микро- и ультрамикроэлементы.

Макроэлементы составляют до 99% массы клетки, из которых до 98% приходится на 4 элемента: кислород, азот, водород и углерод. В меньших количествах клетки содержат калий, натрий, магний, кальций, серу, фосфор, железо.

Микроэлементы - преимущественно ионы металлов (кобальта, меди, цинка и др.) и галогенов (йода, брома и др.). Они содержатся в количествах от 0,001% до 0,000001%.

Ультрамикроэлементы. Их концентрация ниже 0,000001%. К ним относят золото, ртуть, селен и др.

Химическое соединение - это вещество, в котором атомы одного или нескольких химических элементов соединены друг с другом посредством химических связей. Химические соединения бывают неорганическими и органическими. К неорганическим относят воду и минеральные соли. Органические соединения - это соединения углерода с другими элементами.

Основными органическими соединениями клетки являются белки, жиры, углеводы и нуклеиновые кислоты.

Химические элементы и неорганические вещества клетки

Различие между живой и неживой природой отчетливо проявляется в их химическом составе. Так, земная кора на 90 % состоит из кислорода, кремния, алюминия и натрия (O, Si, Al, Na), а в живых организмах около 95 % составляют углерод, водород, кислород и азот (C, H, O, N). Кроме того, к этой группе макроэлементов относятся еще восемь химических элементов: Na - натрий, Cl - хлор, S - сера, Fe - железо, Mg - магний, P - фосфор, Ca - кальций, K - калий, содержание которых исчисляется десятыми и сотыми долями процента. В гораздо меньших количествах встречаются столь же необходимые для жизни микроэлементы: Cu - медь, Mn - марганец, Zn - цинк, Mo - молибден, Co - кобальт, F - фтор, J - йод и др.

Только 27 элементов (из 105, которые известны сегодня) выполняют определенные функции в организмах. И как мы уже отмечали, всего лишь четыре - С, H, O, N - служат основой живых организмов. Именно из них главным образом состоят органические вещества (белки, нуклеиновые кислоты, углеводы, жиры и т. д.).

Первое место среди макроэлементов принадлежит углероду. Он характеризуется способностью образовывать почти все типы химических связей. Углерод в большей степени, чем прочие элементы, способен к формированию крупных молекул. Его атомы могут соединяться между собой, образуя кольца и цепи. В результате возникают сложные молекулы больших размеров, характеризующиеся огромным разнообразием (на сегодня описано более 10 млн органических веществ). Кроме того, атомы углерода в одном и том же химическом соединении проявляют и окислительные, и восстановительные свойства.

Углерод выступает основой всех органических соединений. Высокое же содержание кислорода и водорода связано с наличием у них ярко выраженных окислительных и восстановительных свойств. Благодаря только трем элементам - C, H, O - существует все множество углеводов (сахаров), обобщенная формула которых выглядит как CnH2nOn (где n - число атомов). К этим трем элементам в составе белков добавляются еще атомы N и S, а в составе нуклеиновых кислот - N и P.

Существенная роль в живых организмах принадлежит и всем остальным элементам, названным выше. Так, атомы Mg входят в состав хлорофилла, а Fe - гемоглобина. Йод содержится в составе молекулы тироксина (гормона щитовидной железы), а Zn - молекулы инсулина (гормона поджелудочной железы). Наличие ионов Na и К необходимо для проведения нервного импульса, для осуществления транспорта через клеточную мембрану. Соли P и Са в большом количестве есть в костях, раковинах моллюсков, что обеспечивает высокую прочность этих образований.

Необходимо отметить, что наибольшая часть (до 85 %) химического состава живых организмов - это вода. Поскольку она универсальный растворитель для многих неорганических и органических веществ, то и оказывается идеальной средой для осуществления различных химических реакций. Вода участвует в различных биохимических реакциях (например, при фотосинтезе). С ней выводятся из организма избытки солей, продукты жизнедеятельности. Свойственные воде высокая теплоемкость и относительно высокая теплопроводность имеют существенное значение для терморегуляции организмов (при испарении пота, например, происходит охлаждение кожи).

Все живые системы на планете содержат в себе в разных объёмах химические элементы, а также органические и неорганические химические соединения.

Химическое строение клетки

В зависимости от того, какое количество того или иного химического элемента содержится в клетке, выделяют три группы химических элементов:

Макроэлементы;

Микроэлементы;

Ультра микроэлементы.

98% массы клетки составляют четыре макроэлемента: водород, углерод, азот и кислород. В значительно меньших количествах в клетке присутствуют такие макроэлементы как натрий, магний, калий, фосфор, железо и сера.

Микроэлементы формируют собой ионы галогенов и металлов (медь, кобальт, цинк, бром, йод). Микроэлементы в живой клетке содержаться в очень малых количествах (0, 00001%). К ультра микроэлементам относят ртуть, золото, селен (менее чем 0, 000001% массы клетки).

Химические соединения

Химические соединения представляют собой вещество, которое состоит из соединённых атомов двух или нескольких химических элементов. Химические соединения делятся на две группы:

Органические химические соединения (минеральные соли и вода);

Неорганические химические соединения (соединение химических элементов с углеродом).

К числу основных органических химических соединений относят белки, углеводы, жиры и нуклеиновые кислоты.

Понятие и функции белков

Белки – это высокомолекулярное органическое вещество, состоящее из остатков альфа аминокислот, соединёнными между собой пептидными связями. Белки являются очень важным веществом в процессе жизнедеятельности человека.

Функции белков:

Защитная функция. При попадании в организм вируса, белок начинает усиленное синтезирование в организме, тем самым ликвидируя его.

Структурная функция. Благодаря содержанию в белках такого компонента как коллаген, происходит процесс рубцевания повреждений в организме человека.

Двигательная. Белок принимает непосредственное участие в процессе сокращения мышечных тканей.

Транспортная. Атомы белка переносят кислород и питательные вещества к клеткам.

Энергетическая. При распаде белок освобождает энергию, необходимую человеку для жизнедеятельности.

Помимо этого белки также выступают катализаторами всех химических реакций, происходящих в организме.

Углеводы, их роль в жизнедеятельности

Углеводы – органические поли- и мономеры, содержащие в своем составе кислород, водород и углерод. Главной функцией углеводов является энергетическая функция – распад 1г углеводов освобождает 17 кДж энергии.

Углеводы в виде целлюлозы формируют стенки многих видов растений. Благодаря углеводам живые организмы также запасают питательные вещества, которые сохраняются в виде крахмала.

Жиры

К числу органических химических веществ относят также жиры . Жиры делятся на две группы: сложные и простые. Простые липиды состоят из остатков жирных кислот и глицерина. Сложные жиры представляют собой синтез простых липидов с углеводами и белками.