Что такое многогранный угол. Понятие о многогранном угле. Трехгранный угол

МНОГОГРАННЫЕ УГЛЫ

Многогранный угол является пространственным аналогом многоугольника. Напомним, что многоугольником на плоскости называется фигура, образованная простой замкнутой ломаной и ограниченной ею внутренней областью. Будем считать аналогом точки на плоскости луч в пространстве и аналогом отрезка на плоскости плоский угол в пространстве. Тогда аналогом простой замкнутой ломаной на плоскости является поверхность, образованная конечным набором плоских углов A 1 SA 2 , A 2 SA 3 , …, A n -1 SA n , A n SA 1 с общей вершиной S (рис. 1), в которых соседние углы не имеют общий точек, кроме точек общего луча, а несоседние углы не имеют общих точек, кроме общей вершины. Фигура, образованная указанной поверхностью и одной из двух частей пространства, ею ограниченных, называется многогранным углом . Общая вершина S называется вершиной многогранного угла. Лучи SA 1 , …, SA n называются ребрами многогранного угла, а сами плоские углы A 1 SA 2 , A 2 SA 3 , …, A n -1 SA n , A n SA 1 гранями многогранного угла. Многогранный угол обозначается буквами SA 1 … A n , указывающими вершину и точки на его ребрах. В зависимости от числа граней многогранные углы называются трехгранными, четырехгранными, пятигранными (рис. 2) и т. д.

Многогранный угол называется выпуклым , если он является выпуклой фигурой, т.е. вместе с любыми двумя своими точками содержит и соединяющий их отрезок. На рисунке 2 трехгранный и четырехгранный углы выпуклые, а пятигранный угол – нет.
Рассмотрим некоторые свойства треугольников и аналогичные им свойства трехгранных углов.
Свойство 1 (Неравенство треугольника). Каждая сторона треугольника меньше суммы двух других его сторон.
Аналогичным свойством для трехгранных углов является следующее свойство.
Свойство 1 ". Каждый плоский угол трехгранного угла меньше суммы двух других его плоских углов.
Доказательство. Рассмотрим трехгранный угол SABC . Пусть наибольший из его плоских углов есть угол ASC . Тогда выполняются неравенства

ASB ASC < ASC + BSC ;BSC ASC < ASC + ASB .

Таким образом, остается доказать неравенство ASС < ASB + BSC .
Отложим на грани ASC угол ASD , равный ASB , и точку B выберем так, чтобы SB = SD (рис. 3). Тогда треугольники ASB и ASD равны (по двум сторонам и углу между ними) и, следовательно, AB = AD . Воспользуемся неравенством треугольника AC < AB + BC . Вычитая из обеих его частей AD = AB , получим неравенство DC < BC. В треугольниках DSC и BSC одна сторона общая (SC ), SD = SB и DC < BC. В этом случае против большей стороны лежит больший угол и, следовательно, DSC < BSC . Прибавляя к обеим частям этого неравенства угол ASD , равный ASB , получим требуемое неравенство ASС < ASB + BSC .

Следствие 1. Сумма плоских углов трехгранного угла меньше 360 ° .
Доказательство. Пусть SABC – данный трехгранный угол. Рассмотрим трехгранный угол с вершиной A , образованный гранями ABS, ACS и углом BAC . В силу доказанного свойства, имеет место неравенство BAС < BAS + CAS . Аналогично, для трехгранных углов с вершинами B и С имеют место неравенства: ABС < ABS + CBS , ACB < ACS + BCS . Складывая эти неравенства и учитывая, что сумма углов треугольника ABC равна 180 ° , получаем 180 ° < BAS +CAS + ABS + CBS +BCS + ACS = 180 ° - ASB + 180 ° - BSC + 180 ° - ASC . Следовательно, ASB + BSC + ASC < 360 ° .
Следствие 2. Сумма плоских углов выпуклого многогранного угла меньше 360.
Доказательство аналогично предыдущему.
Следствие 3. Сумма двугранных углов трехгранного угла больше 180 ° .
Доказательство. Пусть SABC – трехгранный угол. Выберем какую-нибудь точку P внутри него и опустим из нее перпендикуляры PA 1 , PB 1 , PC 1 на грани (рис. 4).

Плоские углы B 1 PC 1 , A 1 PC 1 , A 1 PB 1 дополняют соответствующие двугранные углы с ребрами SA, SB, SC до 180 ° . Следовательно, сумма этих двугранных углов равна 540 ° - (B 1 PC 1 +A 1 PC 1 + A 1 PB 1 ). Учитывая, что сумма плоских углов трехгранного с вершиной P угла меньше 360 ° , получаем, что сумма двугранных углов исходного трехгранного угла больше 180 ° .
Свойство 2. Биссектрисы треугольника пересекаются в одной точке.
Свойство 2". Биссектральные плоскости двугранных углов трехгранного угла пересекаются по одной прямой.
Доказательство аналогично плоскому случаю. А именно, пусть SABC – трехгранный угол. Биссектральная плоскость двугранного угла SA является ГМТ угла, равноудаленных от его граней ASC и ASB . Аналогично, биссектральная плоскость двугранного угла SB является ГМТ угла, равноудаленных от его граней BSA и BSC . Линия их пересечения SO будет равноудалена от всех граней трехгранного угла и, следовательно, через нее будет проходить биссектральная плоскость двугранного угла SC .
Свойство 3. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
Свойство 3". Плоскости, проходящие через биссектрисы граней трехгранного угла и перпендикулярные этим граням, пересекаются по одной прямой.
Доказательство аналогично доказательству предыдущего свойства.
Свойство 4. Медианы треугольника пересекаются в одной точке.
Свойство 4". Плоскости, проходящие через ребра трехгранного угла и биссектрисы противоположных граней пересекаются по одной прямой.
Доказательство. Рассмотрим трехгранный угол SABC, SA = SB = SC (рис. 5). Тогда биссектрисы SA 1 , SB 1 , SC 1 углов BSC, ASC, ASB являются медианами соответствующих треугольников. Поэтому AA 1 , BB 1 , CC 1 – медианы треугольника ABC . Пусть O – точка их пересечения. Прямая SO содержится во всех трех рассматриваемых плоскостях и, следовательно, является линией их пересечения.

Свойство 5. Высоты треугольника пересекаются в одной точке.
Свойство 5 ". Плоскости, проходящие через ребра трехгранного угла и перпендикулярные противоположным граням, пересекаются по одной прямой.
Доказательство. Рассмотрим трехгранный угол с вершиной S и ребрами a, b, c. Обозначим a 1 , b 1 , c 1 – линии пересечения граней с плоскостями, проходящими через соответствующие ребра и перпендикулярные этим граням (рис. 6). Зафиксируем точку C на ребре c и опустим из нее перпендикуляры CA 1 и CB 1 на прямые a 1 и b 1 . Обозначим A и B пересечения прямых CA 1 и CB 1 с прямыми a и b . Тогда SA 1 является проекцией AA 1 на грань BSC . Так как BC перпендикулярна SA 1 , то она перпендикулярна и AA 1 . Аналогично, AC перпендикулярна BB 1 . Таким образом, AA 1 и BB 1 являются высотами треугольника ABC . Пусть O – точка их пересечения. Плоскости, проходящие через прямые a и a 1 , b и b 1 перпендикулярны плоскости ABC и, следовательно, линия их пересечения SO перпендикулярна ABC . Значит, SO перпендикулярна AB . С другой стороны, CO перпендикулярна AB . Поэтому плоскость, проходящая через ребро c и SO будет перпендикулярна противоположной грани.
Свойство 6 (теорема синусов). В треугольнике ABC со сторонами a, b, c соответственно, имеют место равенства a : sin A = b : sin B = c : sin C.
Свойство 6". Пусть a , b , g - плоские углы трехгранного угла, a, b, c – противолежащие им двугранные углы. Тогда sin a : sin a = sin b : sin b = sin g : sin c .
Доказательство. Пусть SABC – трехгранный угол. Опустим из точки C перпендикуляр CC 1 на плоскость ASB и перпендикуляр CA 1 на ребро SA (рис. 7). Тогда угол CA 1 C 1 будет линейным углом двугранного угла a . Поэтому CC 1 = CA 1 sin a = SC sin b sin a. Аналогично показывается, что CC 1 = CB 1 sin b = SC sin a sin b. Следовательно, имеет место равенство sin b sin a = sin a sin b и, значит, равенство sin a : sin a = sin b : sin b . Аналогичным образом доказывается, что имеет место равенство sin b : sin b = sin g : sin c .

Свойство 7. Если в выпуклый четырехугольник можно вписать окружность, то суммы противоположных сторон равны.
Свойство 7". Если в выпуклый четырехгранный угол можно вписать сферу, то суммы противоположных плоских углов равны.

Литература
1. Адамар Ж. Элементарная геометрия. Часть II. Стереометрия. – М.: Учпедгиз, 1938.
2. Перепелкин Д.И. Курс элементарной геометрии. Часть II. Геометрия в пространстве. – М.-Л.: Гостехиздат, 1949.
3. Энциклопедия элементарной математики. Книга IV. Геометрия. - М.; 1963.
4. Смирнова И.М. В мире многогранников. – М.: Просвещение, 1995.

Фигура, образованная тремя лучами, исходящими из одной точки О и не лежащими в одной плоскости, и тремя частями плоскостей, заключенных между этими лучами, называется трехгранным углом (рис. 352).

Точка О называется вершиной угла, лучи а, b, с - его ребрами, части плоскостей . Грани суть плоские углы, называемые также плоскими углами данного трехгранного угла. Углы между плоскими гранями называются двугранными углами данного трехгранного угла.

Теорема 1. В трехгранном угле каждый плоский угол меньше суммы двух других.

Доказательство. Достаточно доказать теорему для наибольшего из плоских углов. Пусть наибольший плоский угол трехгранного угла на рис. 353. Построим в плоскости угол , равный углу его сторона b пройдет внутри угла угол наибольший из плоских углов!).

Отложим на прямых с и b какие-либо равные отрезки Проведем через точки произвольную плоскость, пересекающую лучи а и b в точках N и М соответственно.

Треугольники равны, как имеющие равные углы, заключенные между равными сторонами. Покажем, что угол с вершиной О в больше угла с той же вершиной в . Действительно, эти углы заключены между парами равных сторон, третья же сторона больше в треугольнике

Отсюда видно, что сумма двух плоских углов больше третьего плоского угла что и требовалось доказать.

Теорема 2. Сумма плоских углов трехгранного угла меньше четыре прямых.

Доказательство. Возьмем три точки А, В и С на ребрах трехгранного угла и проведем через них секущую плоскость, как показано на рис. 354. Сумма углов треугольника ABC равна Следовательно, сумма шести углов ОАС, ОАВ, ОСА, ОСВ, ОВС, ОВА больше, чем как по предыдуще теореме . Но сумма углов трех треугольников ОАВ, ОВС, ОСА в гранях трехгранного угла равна . Таким образом, на долю плоских углов трехгранного угла остается меньше четырех прямых: . Эта сумма может быть сколь угодно малой («трехгранный шпиль») или сколь угодно близкой к если уменьшать высоту пирамиды SABC на рис. 355, сохраняя ее основание, то сумма плоских углов при вершине S будет стремиться к

Сумма двугранных углов трехгранного угла также имеет границы. Ясно, что каждый из двугранных углов и потому сумма их менее . Для той же пирамиды на рис. 355 эта сумма по мере уменьшения высоты пирамиды приближается к своей границе Можно также показать, что сумма эта всегда хотя может отличаться от сколь угодно мало.

Таким образом, для плоских и двугранных углов трехгранного угла имеют место неравенства

Имеется существенное сходство между геометрией треугольника на плоскости и геометрией трехгранного угла. При этом можно проводить аналогию между углами треугольника и двугранными углами трехгранного угла, с одной стороны, и между сторонами треугольника и плоскими углами трехгранного угла - с другой. Например, при указанной замене понятий сохраняют силу теоремы о равенстве треугольников. Приведем соответствующие формулировки параллельно:

Однако два трехгранных угла, у которых равны соответственные двугранные углы, равны между собой. Между тем два треугольника, углы которых соответственно равны, подобны, но не обязательно равны. Для трехгранных углов, как и для треугольников, ставится задача решения трехгранного угла, т. е. задача отыскания одних его элементов по другим заданным. Приведем пример подобной задачи.

Задача. Даны плоские углы трехгранного угла. Найти его двугранные углы.

Решение. Отложим на ребре а отрезок и проведем нормальное сечение ABC двугранного угла а. Из прямоугольного треугольника ОАВ находим Также имеем

Для ВС находим по теореме косинусов примененной к треугольнику ВАС (для краткости плоские углы обозначаем просто ab, ас, bс, двугранные - а, b, с)

Теперь применим теорему косинусов к треугольнику ВОС:

Отсюда находим

и аналогично

По этим формулам можно найти двугранные углы, зная плоские углы. Отметим еще без доказательства замечательное соотношение

называемое теоремой синусов.

Объяснение глубокой аналогии между геометрией трехгранного угла и геометрией треугольника нетрудно получить, если провести следующее построение. Поместим в вершину трехгранного угла О центр сферы единичного радиуса (рис. 357).

Тогда ребра пересекут поверхность сферы втрехточках А, В, С, грани угла высекут на сфере дуги больших кругов АС, АВ, ВС. На сфере образуется фигура ABC, называемая сферическим треугольником. Дуги («стороны» треугольника) измеряются плоскими углами трехгранного угла, углы при вершинах суть плоские углы двугранных углов. Поэтому решение трехгранных углов есть не что иное, как решение сферических треугольников, которое составляет предмет сферической тригонометрии. Соотношения (243.1) и (243.2) относятся к числу основных соотношений сферической тригонометрии. Сферическая тригонометрия имеет важное значение для астрономии. Таким образом, теория трехгранных углов есть теория сферических треугольников и потому во многом сходна с теорией треугольника на плоскости. Различие этих теорий состоит в том, что: 1) у сферического треугольника и углы и стороны измеряются в угловой мере, поэтому, напрнмер, в теореме синусов фигурируют не стороны, а синусы сторон АВ, АС, ВС;

Двугранным углом называется фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой. Полуплоскости называются гранями, а ограничивающая их прямая - ребром двугранного угла.

На рисунке 142 изображен двугранный угол с ребром а и гранями а и (3.

Плоскость, перпендикулярная ребру двугранного угла, пересекает его грани по двум полупрямым. Угол, образованный этими полупрямыми, называется линейным углом двугранного угла. За меру двугранного угла принимается мера соответствующего ему линейного угла. Если через точку А ребра а двугранного угла провести плоскость у, перпендикулярную этому ребру, то она пересечет плоскости а и (3 по полупрямым (рис. 142); линейный угол данного двугранного угла. Градусная мера этого линейного угла является градусной мерой двугранного угла. Мера двугранного угла не зависит от выбора линейного угла.

Трехгранным углом называется фигура, составленная из трех плоских углов (рис. 143). Эти углы называются гранями трехгранного угла, а их стороны - ребрами. Общая вершина плоских углов называется вершиной трехгранного угла. Двугранные углы, образуемые гранями и их продолжениями, называются двугранными углами трехгранного угла.

Аналогично определяется понятие многогранного угла как фигуры, составленной из плоских углов (рис. 144). Для многогранного угла определяются понятия граней, ребер и двугранных углов так же, как и для трехгранного угла.

Многогранником называют тело, поверхность которого состоит из конечного числа плоских многоугольников (рис. 145).

Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого многоугольника на его поверхности (рис. 145, а, б). Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью. Грани выпуклого многогранника - выпуклые многоугольники. Стороны граней называются ребрами многогранника, а вершины - вершинами многогранника.

Рассмотрим три луча а, Ь, с, исходящие из одной точки и не лежащие в одной плоскости. Трехгранным углом (abc) называется фигура, составленная "из трех плоских углов (аЬ), (Ьс) и (ас) (рис. 2). Эти углы называются гранями трехгранного угла, а их стороны -- ребрами, общая вершина плоских углов называется вершиной трехгранного угла. Двугранные углы, образованные гранями трехгранного угла, называются двугранными углами трехгранного угла.

Аналогично определяется понятие многогранного угла (рис. 3).

Многогранник

В стереометрии изучаются фигуры в пространстве, называемые телами. Наглядно (геометрическое) тело надо представлять себе как часть пространства, занятую физическим телом и ограниченную поверхностью.

Многогранник -- это такое тело, поверхность которого состоит из конечного числа плоских многоугольников (рис. 4). Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью. Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называются ребрами многогранника, а вершины -- вершинами многогранника.

Поясним сказанное на примере знакомого вам куба (рис. 5). Куб есть выпуклый многогранник. Его поверхность состоит из шести квадратов: ABCD, BEFC, .... Они являются его гранями. Ребрами куба являются стороны этих квадратов: АВ, ВС, BE,... . Вершинами куба являются вершины квадратов: А, В, С, D, Е, .... У куба шесть граней, двенадцать ребер и восемь вершин.

Простейшим многогранникам -- призмам и пирамидам, которые будут основным объектом нашего изучения,-- мы дадим такие определения, которые, по существу, не используют понятие тела. Они будут определены как геометрические фигуры с указанием всех принадлежащих им точек пространства. Понятие геометрического тела и его поверхности в общем случае будет дано позже.

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

В планиметрии одним из объектов изучения является угол.

Угол - это геометрическая фигура, состоящая из точки - вершины угла и двух лучей, исходящих из этой точки.

Два угла одна сторона, которых общая и две другие являются продолжением одна другой, в планиметрии называются смежными.

Циркуль можно рассматривать как модель плоского угла.

Вспомним понятие двухгранного угла.

Это фигура, образованная прямой а и двумя полуплоскостями с общей границей а, не принадлежащими одной плоскости в геометрии называется двугранным углом. Полуплоскости - это грани двугранного угла. Прямая а - это ребро двугранного угла.

Крыша дома наглядно демонстрирует двухгранный угол.

Но крыша дома на рисунке два выполнена в виде фигуры образованной из шести плоских углов с общей вершиной так, что углы берутся в определенном порядке и каждая пара соседних углов, включая первый и последний, имеет общую сторону. Как называется такая форма крыши?

В геометрии фигура, составленная из углов

А углы из которых составлен этот угол называются плоскими углами. Стороны плоских углов называются ребрами многогранного угла. Точка О называется вершиной угла.

Примеры многогранных углов можно найти в тетраэдре и параллелепипеде.

Грани тетраэдра DBA, ABC, DBC образуют многогранный угол ВADC. Чаще он называется трёхгранным углом.

В параллелепипеде грани АА1D1D, ABCD, AA1B1B образую трехгранный угол AA1DB.

Ну а крыша дома выполнена в форме шестигранного угла. Она состоит из шести плоских углов.

Для многогранного угла справедлив ряд свойств. Сформулируем их и докажем. Здесь говорится, что утверждение

Во-первых, для любого выпуклого многогранного угла существует плоскость, пересекающая все его рёбра.

Рассмотри для доказательства многогранный угол ОА1А2 А3…Аn.

По условию он выпуклый. Угол называется выпуклым, если он лежит по одну сторону от плоскости каждого из своих плоских углов.

Так как по условию этот угол выпуклый, то точки О, А1, А2 ,А3, Аn лежат по одну сторону от плоскости ОА1А2

Проведем среднюю линию KM треугольника ОА1А2 и выберем из ребер ОА3, ОА4, ОАn то ребро которое образует с плоскостью ОКМ, наименьший двугранный угол. Пусть это будет ребро ОАi.(оа итое)

Рассмотрим полуплоскость α с границей КМ, делящую двугранный угол ОКМАi на два двухгранных угла. Все вершины от А до Аn лежат по одну сторону от плоскости α, а точка О по другую сторону. Следовательно, плоскость α пересекает все ребра многогранного угла. Утверждение доказано.

Выпуклые многогранные углы обладают ещё одним важным свойством.

Сумма плоских углов выпуклого многогранного угла меньше 360°.

Рассмотрим выпуклый многогранный угол с вершиной в точке О. В силу доказанного утверждения существует плоскость, которая пересекает все его ребра.

Проведем такую плоскость α, пусть она пересекает рёбра угла в точках А1, А2, А3 и так далее Аn.

Плоскость α от внешней области плоского угла будет отсекать треугольник. Сумма углов которого 180°. Получим, что сумма всех плоских углов от А1ОА2 до АnОА1 равна выражению преобразуем, данное выражение перегруппируем слагаемые, получим

В данном выражении суммы указанные в скобках, являются суммами плоских углов трехгранного угла, а как известно они больше третьего плоского угла.

Данное неравенство можно записать для всех трёхгранных углов образующих данный многогранный угол.

Следовательно, получим следующее продолжение равенства

Полученный ответ доказывает, что сумма плоских углов выпуклого многогранного угла меньше 360 градусов.