Краткая история времени стивен хокинг содержание. Краткая история времени. От Большого взрыва до черных дыр

Важнейшая книга.

Я считаю, что данное произведение должно входить в обязательную программу изучения, как Букварь или Таблица Менделеева. «Краткая история времени» не просто формирует мировоззрение - она способна его изменить. Я легко могу представить себе человека, приверженца определенной религии, который после прочтения поменяет свои взгляды на мир. А если и не поменяет, то вынужден будет не согласится со многим написанным, что по определению глупо и бессмысленно, ибо в основе данного произведения лежат исключительно научные, подтвержденные экспериментально, факты.

Эта книга дает ответы на все основные вопросы (в том числе и те, которые некоторым людям никогда в голову не приходили): что такое время и пространство, возможно ли существование высшего разума (если возможно, то какие на него накладываются ограничения), чем является вселенная, как она возникла и как погибнет (если погибнет вообще), детерминировано (т.е. обладает ли свободой воли) человеческое сознание... На последний вопрос ответ кстати внятно не дан - объяснено только что квантовые частицы непредсказуемы в своем поведении; но синонимична ли непредсказуемость свободе воли? И какую роль играют эти частицы в человеческом мозге/сознании? Если их роль мала (или вообще сводится к нулю), то не может ли быть квантовый компьютер в большей степени человеком чем сам человек (ведь его мышление, основано на квантовых процессах, и следовательно, не является детерминированным вовсе).

Это произведение - единственное в своем роде, состыковало разрозненные теории (большинство из которых любой человек хоть раз в жизни да слышал) в единую, стройную и непротиворечивую концепцию. Сразу становится понятно - что в этой вселенной возможно (хотя бы теоретически), а что нет; то есть после нее смотреть какие нибудь псевдо-научные передачи по Рен-тв/НТВ без смеха уже невозможно - сразу срабатывает внутренний переключатель, информирующий что данная информация - сказки, а вот эта, да - может являтся реальным фактом.

Ну и наконец, эта книга действительно способна напугать: меня, от некоторых концепций трясло больше, чем от любой хоррор-книги! Это ведь черт возьми реальность - все это происходит здесь и сейчас; непосредственно со мной! И это РЕАЛЬНО производит впечатление - от жути до восторга.

Итог: библия от науки; упрощенная для простых смертных, но тем не менее достаточно четко и полно описывающая законы бытия; саму суть того мира, в котором мы с вами живем, логику его развития и функционирования. Абсолютный онтологический колосс!

p.s. в действительности я читал именно «Кратчайшую историю времени», но разница между двумя этими версиями книги, как я понял, не так уж велика, так что оставлю отзыв здесь.

Оценка: 10

Комментировать основное содержание этой книги не берусь. Думаю, на всей Земле найдется не больше тысячи человек, способных сказать по этому поводу что-нибудь по-настоящему дельное. Хочу выразить восхищение автором. Человек, потерявший способность двигаться и говорить, но сохранивший интерес к работе, любовь к жизни и даже чувство юмора. Один из крупнейших физиков современности, излагающий свои и чужие идеи на языке, понятном каждому. И тому, кто физику давно забыл, и тому, кто ее толком и не учил. Единственное условие, необходимое для чтения - интерес к вопросам развития Вселенной. Что касается отсутствия формул - без них, конечно, физика не физика, но и они не делают изложенный материал доказанным на вечные времена. Теория Птолемея тоже имела математическое обоснование, почти безупречное для своего времени.

Самым интересным космологическим вопросом, на мой дилетантский взгляд, является даже не стрела времени (своего рода кульминация книги Хокинга), а так и не решенный вопрос о соотношении главных физических констант. Антропный принцип - только признание факта, но не его объяснение. Почему полтора десятка констант (да пусть бы даже одна) имеют в нашем мире именно такие значения, при которых возможно возникновение жизни? При любом отклонении не возникли бы не только живые существа, но даже молекулы и атомы. Все ответы, в том числе и Хокинговский, сводятся к одному из трех принципиально неопровержимых вариантов. Первый подход - мир создал Бог, и он создал физические законы и соотношение констант именно такими, какие нужны для правильного развития Вселенной. Второй подход - существует огромное множество Вселенных (или областей внутри неоднородной Вселенной), где действуют разные законы. При достаточно большом их числе в одной из них должны сложиться нужные соотношения. (Как неубедительный вариант - есть одна Вселенная, и в ней чисто случайно все сложилось, как нам надо. Повезло.) Третий вариант - есть только Я Единственный, а время, пространство, Вселенная и ее обитатели существуют только в моем сознании. Этот вариант обсуждать даже не хочется, но он так же неуязвим, как и два первых. Остается верить в то, во что привык - в Бога, в законы больших чисел или в Себя Единственного. Хотя первые два подхода совместимы.

Оценка: 10

Звездным небом нельзя не восхищаться. Оно притягивает взоры людей с очень давних времен и не отпускает по сей день. Ведь ничто сильнее не привлекает человека, чем секреты окружающего мира, которые он на протяжении всего своего существования пытается раскрыть и дать «правильное» объяснение.

Наша Вселенная - это одна большая загадка, которая находится рядом, и в то же время невообразимо далеко.

Многие стороной обходят подобного рода книги, так как зачастую основу содержания составляют заумные формулы на всю страницу с не менее заумным объяснением. Но только не в этой книге! Автор старается по максимуму уменьшить количество непонятного текста. Естественно, совсем без специфической терминологии не обойтись, но если школьный курс физики не был для вас неподъемным грузом, то проблем с прочтением возникнуть не должно.

Мы часто задаем себе вопросы: Как велика Вселенная? Сколько в ней звезд? Почему все устроено именно так? Есть ли разумная жизнь еще где-либо? Существуют ли черные дыры и что это такое? Существуют ли другие Вселенные рядом с нами? Что было до Вселенной? А что будет после? А что такое Время, которого нам всегда не хватает?

Нет, эта книга не дает окончательных ответов на все вопросы. Автор лишь пытается объяснить процессы, происходящие в нашей Вселенной с точки зрения современной науки. И даже на вопрос о месте Бога во Вселенной автор приводит свои рассуждения.

Нет, в этой книге нет привычных для современной литературы гоблинов, эльфов, орков. Зато здесь есть квазары и галактики, черные дыры и пульсары, туманности и сверхновые звезды.

Прочитав книгу, вы по-другому будете смотреть в ночное небо, так как часть тайны нашей Вселенной будет для вас уже приоткрыта великим астрофизиком Стивеном Хоккингом.

И даже если вы не все поймете из прочитанного, то удивить увлекательным рассказом свою вторую половинку вы точно сможете.

Оценка: 10

Отличнейшая научно-популярная книга, которая рассказывает обывателю о тех вещах, которые студенты-физики учат годами в университетах и над доказательством которых не один десяток лет бьются ученые. А Стивен Хокинг умудрился изъяснить все эти сверхзаумные астрофизические теории простым и понятным языком, понятным не только корифеям физических наук, но и даже простым домохозяйкам и прочим далеким от сложных наук людям. Вот уж точно - книга лучший подарок, особенно если эта книга - рассчитанная на самые что ни есть широкие массы «Краткая история времени».

Говоря об этой книге, нельзя не вспомнить о ее мужественном авторе, который не смотря на тяжелую болезнь приковавшую его к креслу и синтезатору речи, живет намного активнее и продуктивнее большинства своих читателей. Вот настоящий пример для подражания молодому поколению.

Оценка: 9

Без сомнения, книга очень интересная и важная, так как она касается самых глубинных физических основ онтологии. Правда, я бы не назвал её очень уж простой, доступной (в полной мере) всем и каждому. Конечно, популяризаторский талант автора очень высок, но зато очень непрост предмет его рассмотрения. Прекрасно, если горячие поклонники фантастической литературы из числа «гуманитариев» найдут в этой книге что-то для себя полезное. Иначе, я думаю, и быть не может.

На мой взгляд, в книге полнее и лучше всего рассказано о природе черных дыр. Убедительно обоснована и направленность времени. А вот «мнимое время» - результат, мне кажется, игр с уравнениями, к которым подчас склонны физики-теоретики (фактически, математики). Едва ли мнимое время имеет не только математический (в математике, как известно, возможно всё,) но и реальный физический (онтологический) смысл. Это уже, скорее, из области НФ. Впрочем, в данном случае подобная идея, скорее украшает, чем портит книгу, показывает, что для решения проблем космологии и космогонии требуется особое воображение.

Оценка: 9

Со Стивеном Хокингом я познакомился когда то в его серии документальных фильмов «Вселенная Стивена Хокинга». Еще тогда поразило, что человек с действительной тяжким и серьезным заболеванием (боковой амиотрофический склероз)не упал духом и не просто продолжил свою научную деятельность, но и по-сути стал ведущим ученым мира в своем вопросе.

«Краткая история времени» примечательна как раз тем, что дает понятие о формировании взглядов человечества и основных понятиях астрофизики языком, доступным для обывателя. Когда то физик-шутник Ричард Фейнман сказал «Если вы ученый, квантовый физик, но не можете в двух словах обьяснить пятилетнему ребенку,чем вы занимаетесь - вы шарлатан». Хокинг не квантовый физик, но однозначно не шарлатан и действительно разбирается в вопросах строения звезд и современных теориях возникновения Вселенной.

Так же хочу заметить, что часто люди не берутся за подобную литературу, опасаясь сложных математических изложений и логических выводов. Но в случае с данной книгой - бояться абсолютно нечего! логика повествования понятна и проста,а математического аппарата нет вообще (ну точнее - одна формула таки есть - эйнштейновское Е=mc^2).

Я считаю, что «Краткую историю времени» можно советовать читать любому человеку, не зависимо от его пола, возраста, образования и статуса. Это просто замечательная книга для легкого, но в то же время интересного и информационно насыщенного чтения. И вполне возможно, что именно она откроет вам безграничный мир научно-популярной литературы.

Оценка: 10

Отличная книга. Перед любым выпускником физической направленности рано или поздно, а скорее всего неоднократно, встаёт вопрос: куда послать гуманитария, спрашивающего «почитать чего-нибудь, чтобы окультуриться в области физики». Когда понятно, что давать учебник - глупо и грубо, а посылать в википедию - еще глупее. И Хокинг спасал меня неоднократно. За что ему спасибо. Большое и человеческое. Популярная наука, какой она должна быть (не путать с наукой).

Оценка: 9

А я не буду повторять всеобщий восторг, который льётся из всех остальных отзывов обширным потоком. Да, книжка интересная, в целом познавательная; личность автора достойна уважения его силой и волей, судьбой. Но. Особо никаких ответов она не даёт и давать не может, в чём автор признаётся ещё с самого начала и что я, например, тоже уважаю. Автор, в отличии от многих форумчан в дискуссиях, не вещает безапелляционным тоном, о том что постиг тайны вселенной, или что современная наука их постигла.

Более того он пишет, что по сути версия плоского мира на черепахе и современная теория большого взрыва равнозначны! А именно не могут считаться истинными, просто одна из них лучше сообразуется с наблюдениями и экспериментами, а другая хуже. Завтра могут придумать другую теорию (и автор надеется на это), которая будет делать это ещё лучше.

Представление о расширяющейся Вселенной не исключает Создателя, но налагает ограничения на возможную дату его трудов!

и ещё более прямо:

Было бы очень тяжело объяснить, почему вселенная должна была начаться именно таким образом, кроме как актом Бога, предназначенным для сотворения существ, подобных нам.

Я не буду здесь пытаться найти все цитаты книги, где автор размышляет на эту тему, но размышляет он в этом ключе не мало. Чем был, признаться, несколько удивлён, но уважаю: если автор что-то не может объяснить или отвергнуть, то он так и пишет, или пытается сопоставить возможные объяснения, стараясь не быть голословным в отличии от многих, и мыслит он очень широко. Итак он сопоставляет креационистскую теорию и возможные «научные» теории возникновения Вселенной, в основном варианты теории Большого взрыва, но по автору они не противоречат одна другой: пытаясь постичь механизмы возникновения Вселенной наука не может опровергнуть, что пытается всего лишь постичь путь, механизм Творения. Мне было бы интересно почитать размышления автора, если бы он сопоставил ещё одну оригинальную теорию - что мы все живем в виртуальной симуляции - встретил я недавно и такую весьма веселую теорию, которая может объяснить почти что угодно.

Оценка: 10

По сути, «Краткая история времени» - пересказ доступным языком существующей парадигмы в теоретической физике. И несмотря на доступность языка, местами приходилось «зависать» над некоторыми предложениями или абзацами, чтобы понять мысль автора. Ведь речь идёт о настолько умозрительных вещах, что их практически невозможно представить. Впрочем, Хокингу хватило таланта, чтобы максимально упростить объяснение столь тяжёлой для обывателя (и тем более гуманитария) темы без потери смысла. В этом-то и состоит заслуга автора. Он искренне хочет докопаться до ответов на фундаментальные вопросы физики (и не только физики), и надеется передать свой научно-исследовательский интерес читателю. Для этого нужно уметь внятно и понятно доносить свои идеи. С этим Хокинг справился.

Конечно, после прочтения книги специалистом в области квантовой механики и общей теории относительности читатель не станет. Но в качестве примера хорошей научно-популярной книги «Краткая история времени» подходит. Вполне определённые представления о предмете исследований современных физиков (думаю, вопросы, освещённые Хокингом в этом произведении, актуальны до сих пор), о происхождении Вселенной, о чёрных дырах, начале и конце времени и даже о роли Бога в этих всех процессах получить можно. Спасибо за это автору.

Стивен Хокинг

КРАТКАЯ ИСТОРИЯ ВРЕМЕНИ.

От большого взрыва до черных дыр

Благодарности

Книга посвящается Джейн

Я решил попробовать написать популярную книгу о пространстве и времени после того, как прочитал в 1982 г. курс Лёбовских лекций в Гарварде. Тогда уже было немало книг, посвященных ранней Вселенной и черным дырам, как очень хороших, например книга Стивена Вайнберга «Первые три минуты», так и очень плохих, которые здесь незачем называть. Но мне казалось, что ни в одной из них фактически не затрагиваются те вопросы, которые побудили меня заняться изучением космологии и квантовой теории: откуда взялась Вселенная? как и почему она возникла? придет ли ей конец, а если придет, то как? Эти вопросы интересуют всех нас. Но современная наука очень насыщена математикой, и лишь немногочисленные специалисты достаточно владеют последней, чтобы разобраться в этом. Однако основные представления о рождении и дальнейшей судьбе Вселенной можно изложить и без помощи математики так, что они станут понятны даже людям, не получившим научного образования. Это я и пытался сделать в моей книге. Читателю судить о том, насколько я преуспел.

Мне сказали, что каждая включенная в книгу формула вдвое уменьшит число покупателей. Тогда я решил вообще обходиться без формул. Правда, в конце я все-таки написал одно уравнение – знаменитое уравнение Эйнштейна Е=mc^2. Надеюсь, оно не отпугнет половину моих потенциальных читателей.

Если не считать того, что я заболел боковым амиотрофическим склерозом, то почти во всем остальном мне сопутствовала удача. Помощь и поддержка, которые мне оказывали моя жена Джейн и дети Роберт, Люси и Тимоти, обеспечили мне возможность вести довольно-таки нормальный образ жизни и добиться успехов в работе. Мне повезло и в том, что я выбрал теоретическую физику, ибо она вся вмещается в голове. Поэтому моя физическая немощь не стала серьезным минусом. Мои научные коллеги, все без исключения, оказывали мне всегда максимальное содействие.

На первом, «классическом» этапе моей работы моими ближайшими помощниками и сотрудниками были Роджер Пенроуз, Роберт Герок, Брендон Картер и Джордж Эллис. Я благодарен им за помощь и за совместную работу. Этот этап завершился изданием книги «Крупномасштабная структура пространства-времени», которую мы с Эллисом написали в 1973 г. (Хокинг С., Эллис Дж. Крупномасштабная структура пpoстранства-времени. M.: Мир, 1976).

На втором, «квантовом» этапе моей работы, начавшемся в 1974 г., я в основном работал с Гари Гиббонсом, Доном Пэйджем и Джимом Хартлом. Я очень многим им обязан, как и своим аспирантам, которые оказывали мне огромную помощь и в «физическом», и в «теоретическом» смысле этого слова. Необходимость не отставать от аспирантов была чрезвычайно важным стимулом и, как мне кажется, не позволяла мне застрять в болоте.

В работе над книгой мне очень много помогал Брайен Уитт, один из моих студентов. В 1985 г., набросав первый, примерный план книги, я заболел воспалением легких. Пришлось лечь на операцию, и после трахеотомии я перестал говорить, а тем самым почти лишился возможности общаться. Я думал, что не смогу закончить книгу. Но Брайен нс только помог мне ее переработать, но и научил пользоваться компьютерной программой общения Living Center, которую мне подарил Уолт Уолтош, сотрудник фирмы Words Plus, Inc., Саннивейл (шт. Калифорния). С ее помощью я могу писать книги и статьи, а также разговаривать с людьми посредством синтезатора речи, подаренного мне другой саннивейлской фирмой Speech Plus. Дэвид Мэйсон установил на моем кресле-коляске этот синтезатор и небольшой персональный компьютер. Такая система все изменила: мне стало даже легче общаться, чем до того как я потерял голос.

Многим из тех, кто ознакомился с предварительными вариантами книги, я благодарен за советы, касающиеся того, как ее можно было бы улучшить. Так, Петер Газзарди, мой редактор издательства Bantam Books, слал мне письмо за письмом с замечаниями и вопросами по тем местам, которые, по его мнению, были плохо объяснены. Признаться, я был сильно раздражен, получив огромный список рекомендуемых исправлений, но Газзарди оказался совершенно прав. Я уверен, книга стала лучше благодаря тому, что Газзарди тыкал меня носом в ошибки.

Я выражаю глубокую благодарность моим помощникам Колину Уилльямсу, Дэвиду Томасу и Рэймонду Лэфлемму, моим секретарям Джуди Фелле, Энн Ральф, Шерил Биллингтон и Сью Мэйси и моим медсестрам. Я бы ничего не смог достичь, если бы все расходы на научные исследования и необходимую медицинскую помощь не взяли на себя Гонвилл-энд-Кайюс-колледж, Совет по научным и техническим исследованиям и фонды Леверхулма, Мак-Артура, Нуффилда и Ральфа Смита. Всем им я очень благодарен.

Предисловие

Мы живем, почти ничего не понимая в устройстве мира. Не задумываемся над тем, какой механизм порождает солнечный свет, который обеспечивает наше существование, не думаем о гравитации, которая удерживает нас на Земле, не давая ей сбросить нас в пространство. Нас не интересуют атомы, из которых мы состоим и от устойчивости которых мы сами существенным образом зависим. За исключением детей (которые еще слишком мало знают, чтобы не задавать такие серьезные вопросы), мало кто ломает голову над тем, почему природа такова, какова она есть, откуда появился космос и не существовал ли он всегда? не может ли время однажды повернуть вспять, так что следствие будет предшествовать причине? есть ли непреодолимый предел человеческого познания? Бывают даже такие дети (я их встречал), которым хочется знать, как выглядит черная дыра, какова самая маленькая частичка вещества? почему мы помним прошлое и не помним будущее? если раньше и правда был хаос, то как получилось, что теперь установился видимый порядок? и почему Вселенная вообще существует?

В нашем обществе принято, что родители и учителя в ответ на эти вопросы большей частью пожимают плечами или призывают на помощь смутно сохранившиеся в памяти ссылки на религиозные легенды. Некоторым не нравятся такие темы, потому что в них живо обнаруживается узость человеческого понимания.

Но развитие философии и естественных наук продвигалось вперед в основном благодаря подобным вопросам. Все больше взрослых людей проявляют к ним интерес, и ответы иногда бывают совершенно неожиданными для них. Отличаясь по масштабам как от атомов, так и от звезд, мы раздвигаем горизонты исследований, чтобы охватить как очень маленькие, так и очень большие объекты.

Весной 1974 г., примерно за два года до того, как космический аппарат «Викинг» достиг поверхности Марса, я был в Англии на конференции, организованной Лондонским королевским обществом и посвященной возможностям поиска внеземных цивилизаций. Во время перерыва на кофе я обратил внимание на гораздо более многолюдное собрание, проходившее в соседнем зале, и из любопытства вошел туда. Так я стал свидетелем давнего ритуала – приема новых членов в Королевское общество, которое является одним из старейших на планете объединений ученых. Впереди молодой человек, сидевший в инвалидном кресле, очень медленно выводил свое имя в книге, предыдущие страницы которой хранили подпись Исаака Ньютона. Когда он, наконец, кончил расписываться, зал разразился овацией. Стивен Хокинг уже тогда был легендой.

Сейчас Хокинг в Кембриджском университете занимает кафедру математики, которую когда-то занимал Ньютон, а позже П. А. М. Дирак – два знаменитых исследователя, изучавшие один – самое большое, а другой – самое маленькое. Хокинг – их достойный преемник. Эта первая популярная книга Хокипга содержит массу полезных вещей для широкой аудитории. Книга интересна не только широтой своего содержания, она позволяет увидеть, как работает мысль ее автора. Вы найдете в ней ясные откровения о границах физики, астрономии, космологии и мужества.

Осилил книжку Стивена Хокинга "Кратчайшая история времени". Сам автор многим примелькался - это тот самый гениальный физик, прикованный к инвалидному креслу.

Книжка интересная, написана хорошо и доступно. Что особенно поразило воображение в моём кратком изложении:
1) Если вы проложите на географической карте линейкой прямую линию между двумя точками, то эта прямая не будет являться кратчайшим расстоянием между двумя точками. Кратчайшей будет кривая в виде арки, радиус которой равен радиусу Земли.
2) В присутствии материи четырехмерное пространство-время искажается, вызывая искривление траекторий тел в трехмерном пространстве. Хотя это трудно изобразить, масса Солнца искривляет пространство-время таким образом, что Земля, следуя по кратчайшему пути в четырехмерном пространстве-времени, представляется нам движущейся по почти круговой орбите в трехмерном пространстве.
3) Общая теория относительности объявляет, что ход времени различен для наблюдателей, находящихся в разных гравитационных полях. Если один из близнецов живет на вершине горы, а другой - у моря, первый будет стареть быстрее второго.
4) Если бы мы знали состояние системы в данный момент и знали бы законы развития системы, мы бы могли предсказывать положение системы в любой момент времени. Так вот, принцип непределённости Гейзенберга обобщённо гласит, что как бы мы не пыжились, мы ни хрена не можем определить состояние Вселенной в настоящий момент. И это не связано с уровнем развития науки. Это ближе к философскому принципу - мы в принципе не можем познать положение любой системы в любой конкретный момент. Мы знаем в любой момент либо скорость частицы, либо её расположение. Ровно одно из двух, но никак не оба значения сразу.
Следовательно, смиритесь - любое предсказание в нашей Вселенной принципе невозможно. С чисто философской точки зрения. Любое.
5) Если мы пошлём электрон в стену, и на пути у него поставим две щели для прохода, то он, сцуко, пройдёт через обе щели сразу. Пауза для осмысления. В общем, электрон может находиться во всех возможных положениях одновременно. Ибо, тварь такая мелкая, он не только частица, а когда ему захочется - ещё и волна. Привязка электрона к конкретным орбитам атома связана ровно с тем, что именно на этих орбитах электро не интерферирует сам с собой, т.е. не гасит сам себя. Ещё раз - электрон, летя от одной точки до другой, летит по всем возможным траекториям сразу. Он по сути способен находиться во всех точках пространства одновременно, и только там его нет, где он сам с собой интерферирует.
6) Чисто теоретически, путешествие во времени в прошлое возможно. Решение уравнений теории относительности показывает, что да, это так. Одно но - для пуешествия назад во времени обязательно нужно двигаться быстрее скорости света. И наоборот - движение быстрее скорости света невозможно без одновременного движения в прошлое.
Те, кто в курсе, что нельзя двигаться быстрее скорости света, облегчённо вздыхают. Но есть ещё одна проблема - чисто, опять-таки, гипотетически, путешествие быстрее сокрости света тоже является возможным. Возможным в случае существования кротовых дыр в пространстве-времени. А чёртовы уравнения покаывают, что да, такие дыры могут существовать. А раз могут, то где-то существуют.
7) Новейшая теория, которая просто обалденно описывает последние открытия в науке и предвосхищает их - это теория струн. Ничего особенного, просото всё, что предсказывается этой теорией, подтверждается потом экспериментами один в один. И это конкретно напрягает. Напрягает, ибо теория струн берёт в качестве допущения одно маленькое утверждение - мы живём не в четырёхмерном мире, а в 26-мерном. Причём, 4 измерения развёрнуты, и мы по ним можем передвигаться, а ещё 22 - свёрнуты в точку. Физики бы с радостью отказались от этой теории, но ничего более внятного в плане математики пока не придумали, а эксперименты продолжают идеально совпадать с предсказаниями, выдвинутыми на основании этой теории.

В общем, сдаётся мне, что Вселенная наша, как тот электрон, способна находиться во всех состояниях одновременно, за исключением тех состояний, в которых она сама себя интерферирует. И я сейчас одновременно нахожусь в Краснодаре и в Москве и на Альфе-центавре. И одновременно с этим нет меня вообще. Но мысль ента явно достойна разжёвывания в отдельной заумной философской книжке.

Шрифт: Меньше Аа Больше Аа

Leonard Mlodinow

A Briefer History of Time

© Stephen Hawking and Leonard Mlodinow, 2005

© ООО «Издательство АСТ», 2017 (перевод на русский язык)

* * *

Предисловие

Название этой книги отличается от названия первой, вышедшей в 1988 году, всего лишь одним словом. «Краткая история времени» оставалась в списке бестселлеров лондонской газеты The Sunday Times на протяжении 237 недель – было продано примерно по одному экземпляру на 750 жителей Земли, мужчин, женщин и детей. Это невероятный успех для книги, посвященной одному из самых трудных аспектов современной физики. Но ведь самое трудное – всегда самое интересное, поскольку речь идет о важных, фундаментальных вопросах: что нам, в сущности, известно о Вселенной? откуда мы это знаем? как возникла Вселенная и какая судьба ожидает ее? В этих вопросах суть «Краткой истории времени», и они же остаются в центре внимания этой книги. За годы, прошедшие с появления на полках «Краткой истории», я получил множество писем со всего мира от читателей всех возрастов и профессий. Одна из наиболее частых просьб – написать новую «Краткую историю», сохранив суть прежней, но изложив основные идеи более ясно и неторопливо. Конечно, можно было назвать эту книгу «Чуть менее краткая история времени», но, как я понял, едва ли кто-то захочет получить внушительных размеров том, походящий на университетский курс космологии.

Итак, несколько слов о характере этой книги. При написании «Кратчайшей истории времени» мы придерживались логики первого издания, но расширили его, держа в уме, что новая книга должна легко читаться и быть не слишком длинной. История получилась действительно сокращенной, поскольку я исключил некоторые чересчур сложные, технические моменты, но это удалось с лихвой компенсировать углубленным подходом к материалу, лежащему в основе книги.

Мы также воспользовались возможностью дополнить издание, включив новые наблюдательные и теоретические данные. В «Кратчайшей истории времени» описываются недавние достижения физиков-теоретиков, бьющихся над единой теорией всех физических сил. В частности, мы говорим о прогрессе теории струн, а также дуализме, или о взаимных соответствиях между на первый взгляд совершенно разными физическими теориями, которые можно рассматривать как свидетельство существования единой теории – фундамента всей физической науки. В книге также представлены важные новые наблюдения, сделанные спутником COBE (англ. Cosmic Background Explorer – «Исследователь реликтового излучения») и космическим телескопом «Хаббл».

Лет сорок тому назад Ричард Фейнман сказал: «Нам очень повезло жить в тот век, когда мы все еще делаем открытия. Это подобно открытию Америки – его совершаешь лишь однажды. Время, в которое мы живем, – эпоха открытий фундаментальных законов природы». Сегодня мы как никогда близко подошли к пониманию природы Вселенной, и на этих страницах мы хотим разделить с читателем восторг от знакомства с этими открытиями и новой картиной мира, которую они формируют на наших глазах.

Глава 1. Размышления о Вселенной

Мы живем в странной и удивительной Вселенной. Нужно недюжинное воображение, чтобы понять и оценить ее возраст, размеры, бурный нрав и красоту. И кажется, что мы занимаем совсем незначительное место в этом огромном космосе, и нам хочется понять его и осознать свою роль во Вселенной. Несколько десятилетий назад известный ученый (говорят, это был Бертран Рассел), читая публичную лекцию об астрономии, рассказывал, как Земля движется по орбите вокруг Солнца и как Солнце в свою очередь движется по орбите вокруг центра огромного сборища звезд под названием Галактика. Когда лекция закончилась, маленькая пожилая женщина в самом конце аудитории сказала: «Все, что тут говорили, – полная ерунда. Мир – это плоская тарелка на спине гигантской черепахи». Ученый снисходительно улыбнулся и спросил: «А на чем же стоит черепаха?» «Ну вы же очень умный молодой человек, – сказала пожилая женщина, – черепаха стоит на другой черепахе, та – на следующей, и так до конца!»

В наше время большинство сочтут картину Вселенной в виде бесконечной башни из черепах нелепой. А откуда мы знаем, что наше представление о мире лучше? Давайте на минутку забудем все, что мы знаем или думаем, что знаем о космосе, и просто взглянем на ночное небо. Ну что сказать об этих светящихся точках? Может, это маленькие огоньки? Нам на самом деле трудно представить себе их истинную сущность, потому что это далеко за пределами нашего повседневного опыта. Если вы любите смотреть на звездное небо, то, возможно, обратили внимание на расплывчатую светлую точку вблизи горизонта во время сумерек. Это планета Меркурий, но она совсем не похожа на нашу Землю. Сутки там длятся две трети местного года. Температура освещенной Солнцем части поверхности планеты достигает 400°С и выше, а на ночной, не освещенной стороне, падает до –200°С. Но несмотря на все его отличие от нашей собственной планеты, еще меньше общего у Меркурия с типичной звездой, представляющей собой исполинскую печь, где каждую секунду сгорают миллиарды килограмм вещества, а температура в ядре достигает десятков миллионов градусов.

А еще очень трудно вообразить, насколько далеки от нас планеты и звезды. В Древнем Китае строили каменные башни в надежде рассмотреть звезды поближе. Представлять себе звезды и планеты расположенными гораздо ближе, чем они находятся на самом деле, вполне естественно – в конце концов, в обычной жизни нам не приходится сталкиваться с колоссальными космическими расстояниями. Они столь велики, что нет смысла пытаться их измерить в метрах и сантиметрах, как в случае большинства расстояний и длин в нашей повседневной жизни. Космические расстояния принято измерять в световых годах. Световой год – это расстояние, которое свет проходит за один год. За одну секунду луч света проходит около 300 000 километров. Так что световой год – это очень большое расстояние. Ближайшая к нам после Солнца звезда – Проксима Центавра (она также известна под названием Альфа Центавра C) – находится на расстоянии около 4 световых лет. Это так далеко, что самому быстрому из реально проектируемых космических кораблей потребуется не менее 10 000 лет, чтобы преодолеть разделяющее нас пространство.

Люди в древности очень старались понять устройство Вселенной, но у них еще не было современной математики и вообще современной науки. Сейчас в нашем распоряжении очень мощные мыслительные инструменты, такие как математика и научный метод, а также технические средства вроде компьютеров и телескопов. Благодаря этому нам удалось многое узнать о космосе. Но что же на самом деле нам известно о Вселенной и откуда мы все это знаем? Как возникла Вселенная? Что ждет ее в будущем? Было ли у Вселенной начало, а если было, то что было до него? Какова природа времени? Закончится ли оно когда-нибудь? Можно ли двигаться по времени вспять? Ответы на некоторые из этих давних вопросов удается получить благодаря последним прорывам в физике, которым мы, в частности, обязаны появлению новых технологий. Когда-нибудь мы сочтем эти ответы такими же очевидными, как то, что Земля обращается вокруг Солнца. А может быть такими же нелепыми, как представление о башне из черепах. Только время (чем бы оно ни было) покажет.

Глава 2. Наша картина Вселенной вчера и сегодня

Хотя еще во времена Христофора Колумба многие считали Землю плоской (да и сегодня такие люди встречаются), основы современной астрономии были заложены еще в Древней Греции. Примерно 340 лет до нашей эры греческий философ Аристотель написал трактат «О небе». В нем он изложил множество доказательств того, Земля имеет форму шара, а не плоская как тарелка.

Одно из таких соображений основано на наблюдении лунных затмений. Аристотель понял, что причиной этих затмений является прохождение Земли между Солнцем и Луной. При этом Земля отбрасывает на Луну тень, и мы это видим как затмение. Аристотель обратил внимание, что тень Земли всегда имеет форму круглую форму, что естественно, если Земля имеет форму шара. Но, разумеется, это было бы не так, если бы Земля имела форму плоского диска. В таком случае тень была бы круглой, только если во время затмения Солнце расположено в точности под центром диска. При любом другом расположении тень оказалась бы вытянутой, в форме эллипса (вытянутого круга).

У древних греков были и другие аргументы в пользу шарообразности Земли. Если бы Земля была плоской, то идущий к берегу корабль должен был сначала выглядеть как маленькая едва заметная точка. Потом, по мере приближения корабля, на нем можно было бы различить отдельные детали – паруса и корпус. А на самом деле все совсем не так. Когда корабль возникает на горизонте, то сначала мы видим только его паруса. И только потом появляется корпус. То, что расположенные высоко над корпусом вершины мачт корабля первыми появляются из-за горизонта, свидетельствует о шарообразности формы Земли.

Появление над горизонтом. Земля имеет форму шара. Поэтому, когда корабль приближается к нам, сначала мы видим над горизонтом его мачты и паруса, а уже потом появляется его корпус


Греки не обошли также своим вниманием и звездное небо. Ко времени Аристотеля они уже на протяжении многих сотен лет изучали движения огоньков ночном небе. Они заметили, что хотя тысячи огоньков перемещаются по небосводу как одно целое, пять светил, не считая Луны, движутся не так, как остальные. Они иногда сворачивают с проторенного пути с востока на запад и даже временами даже движутся вспять. Эти светила были названы планетами от греческого слова, означающего «странники». Греки видели только пять планет, потому что только они доступны невооруженному глазу: Меркурий, Венера, Марс, Юпитер и Сатурн. Сейчас-то мы знаем, почему планеты движутся по небу столь необычным образом: движение звезд относительно нашей Солнечной системы почти незаметно, а вот планеты обращаются по орбитам вокруг Солнца и поэтому выписывают гораздо более сложные траектории на фоне далеких звезд.

Аристотель считал Землю неподвижной, а также полагал, что Солнце, Луна, планеты и звезды обращаются по круговым орбитам вокруг Земли. Он так считал исходя из мистических соображений, полагая, что Земля является центром Вселенной и движение по кругу наиболее совершенно. Во II веке нашей эры греческий ученый Птолемей построил на основе этой идеи полную модель неба. Птолемей был страстным исследователем, недаром ему принадлежат слова: «Что я смертен, я знаю, и что дни мои сочтены, но когда я в мыслях неустанно и жадно выслеживаю орбиты созвездий, тогда я больше не касаюсь ногами Земли: за столом Зевса наслаждаюсь амброзией, пищей богов».

В модели мира Птолемея нас окружают восемь вложенных друг в друга вращающихся сфер наподобие матрешки, а в центре всех этих сфер находится Земля. Представления о том, что находилось вне самой большой сферы, были самые туманные, но в любом случае это было за пределами наблюдаемой человеком Вселенной. Таким образом, самая внешняя сфера представляла собой своего рода границу Вселенной. На этой сфере были закреплены звезды, и поэтому при ее вращении взаимные положения звезд оставались неизменными – именно так, как мы это наблюдаем в действительности. На внутренних сферах располагались планеты. В отличие от звезд они не были прикреплены к своим сферам, а каждая планета двигалась относительно своей сферы по малому кругу, называемому эпициклом. Весьма сложные некруговые видимые траектории планет не небе удавалось объяснить сочетанием движения по эпициклу и вращения сферы.


Модель Птолемея. В модели Птолемея Земля находилась в центре Вселенной, окруженная восемью сферами, несущими на себе все известные в то время небесные тела


Модель Птолемея позволяла довольно точно предсказывать положение светил на небе. Но для того, чтобы добиться согласия предсказаний с наблюдениями, Птолемею пришлось предположить, что расстояние от Земли до Луны может меняться в два раза! А это означало, что видимый размер Луны должен иногда быть в два раза больше, чем в другое время! Птолемей сознавал этот недостаток своей системы, что, тем не менее, не помешало (почти) всеобщему признанию его картины мира. Христианская церковь приняла Птолемееву систему, поскольку сочла ее не противоречащей Священному Писанию: за пределами сферы неподвижных звезд оставалось достаточно места для рая и ада.

Но в 1514 году польский священник Николай Коперник предложил другую модель. (Правда, вначале, опасаясь быть обвиненным Церковью в ереси, Коперник распространял свои идеи анонимно.) Революционность идеи Коперника состояла в предположении, что все небесные тела обращаются вокруг Земли. Коперник полагал, что Солнце неподвижно и расположено в центре Солнечной системы, а Земля и планеты движутся вокруг него по круговым орбитам. Модель Коперника оказалась не хуже модели Птолемея, но она все же не совсем точно предсказывала наблюдения. Она была гораздо проще модели Птолемея, поэтому можно было ожидать, что люди примут ее. Однако понадобилось почти столетие, чтобы эту идею восприняли всерьез. Одними из первых в пользу теории Коперника стали публично высказываться двое ученых – немецкий астроном Иоганн Кеплер и итальянский астроном Галилео Галилей.

В 1609 году Галилей начал наблюдать ночное небо в телескоп, который только что изобрел . Взглянув на планету Юпитер, Галилей обнаружил несколько обращающихся вокруг него небольших спутников. Отсюда следовало, что не все небесные тела обращаются вокруг Земли, как считали Аристотель и Птолемей. Примерно в то же время Кеплер уточнил теорию Коперника, предположив, что планеты двигаются не по круговым орбитам, а по эллипсам, благодаря чему удалось добиться согласия предсказания теории с наблюдениями. Все это окончательно добило систему мира Птолемея.

Хотя предположение об эллиптических орбитах сделало модель Коперника более точной, Кеплер рассматривал это лишь как математический трюк, поскольку его представления об устройстве природы не основывались на наблюдениях. Подобно Аристотелю, Кеплер считал эллипсы менее совершенными фигурами, чем окружности. Сама мысль о том, что планеты могут двигаться по таким несовершенным траекториям, казалась ему слишком безобразной, чтобы быть правдой. К тому же Кеплеру не нравилось, что предположение об эллиптических орбитах не согласовывались с его идеей о магнитных силах как причине движения планет вокруг Солнца. Насчет магнетизма он, конечно, ошибался, но мы должны отдать ему должное за саму мысль о том, что движение планет должно быть вызвано некой силой. Правильное объяснение причины движения планет вокруг Солнца было дано гораздо позже в 1687 году сэром Исааком Ньютоном в трактате «Математические начала натуральной философии» – пожалуй, важнейшей из когда-либо опубликованных работ по физике.

В этом труде Ньютон сформулировал закон, согласно которому тело, находящееся в покое, остается в состоянии покоя, если только на него не действует какая-либо сила, а также описал, как движение тела меняется под действием силы. Так почему же планеты движутся вокруг Солнца по эллиптическим орбитам? Согласно Ньютону за это отвечает совершенно определенная сила – та самая, которая заставляет отпущенное (уроненное) тело падать на землю, а не оставаться в состоянии покоя. Он назвал эту силу тяготением и разработал математический аппарат, позволяющий вычислять, каким образом тела реагируют на приложенную к ним силу, например силу тяготения, а также решил соответствующие уравнения. Таким образом, Ньютону удалось показать, что под действием тяготения Солнца Земля и другие планеты должны двигаться по эллиптическим орбитам в точности как предсказал Кеплер! Ньютон предположил, что его законы справедливы для всего, что есть во Вселенной, от падающего яблока до звезд и планет. Движения планет и движения тел на Земле впервые в истории удалось объяснить как следствие одних и тех же законов, и это стало рождением современной физики и современной астрономии.

В отсутствие птолемеевых сфер отпала необходимость и в предположении о наличии у Вселенной некой внешней границы. Более того, поскольку у звезд не обнаруживалось никакого движения, кроме общего суточного движения небосвода, вызванного вращением Земли, то было естественно предположить, что это такие же тела, как наше Солнце, только расположенные гораздо дальше. Таким образом, ученые не только отказались от представления о центральном положении Земли во Вселенной, но также и от идеи об уникальности нашего Солнца да и всей Солнечной системы. Новый взгляд на мир ознаменовал фундаментальные изменения в человеческом мышлении, начало нового современного научного понимания нашей Вселенной.

Глава 3. Природа научной теории

Прежде чем рассуждать о природе Вселенной и отвечать на вопросы о том, было ли у нее начало и есть ли конец, следует сформировать четкое представление, что такое научные теории. Будем придерживаться простого взгляда на теорию – как на модель Вселенной или какой-либо ее части в совокупности с набором правил, связывающих параметры этой модели с нашими наблюдениями. Она существует только в нашем сознании и никак иначе реально не существует (что бы это ни значило). Теория считается хорошей, если она удовлетворяет двум требованиям. Во-первых, она должна правильно описывать большой класс наблюдений на основе модели с небольшим числом произвольных элементов, и во-вторых, она должна позволять с достаточной определенностью предсказывать результаты будущих наблюдений. Например, Аристотель верил в теорию Эмпедокла, согласно которой все в мире состоит из четырех стихий: земли, воздуха, огня и воды. Это была довольно простая теория, но она не позволяла делать какие-либо точные предсказания. С другой стороны, теория тяготения Ньютона была основана на еще более простой модели, в которой тела притягиваются друг другу с силой, пропорциональной величине, которые он назвал массой, и обратно пропорциональной квадрату расстояния между телами. И при этом теория Ньютона позволяет с очень высокой точностью предсказывать движение Солнца, Луны и планет.

Любая физическая теория по природе своей временная в том смысле, что это всего лишь гипотеза, которую невозможно доказать. Сколько бы экспериментов ни подтверждали эту теорию, никогда нельзя быть уверенным, что очередной результат не будет ей противоречить. С другой стороны, для опровержения теории достаточно единственного наблюдения, результаты которого противоречат ее предсказаниям. Как отметил философ науки Карл Поппер, хорошая теория та, что позволяет делать множество предсказаний, которые в принципе могут быть опровергнуты или, как это называет Поппер, фальсифицированы наблюдением. С каждым новым экспериментом, результаты которого согласуются с предсказаниями теории, степень нашего доверия к ней повышается, а сама теория укрепляется. Однако первое же противоречащее теории наблюдение является основанием отвергнуть или существенным образом изменить ее.

Во всяком случае, так должно быть в идеале, хотя, конечно, всегда можно поставить под сомнение квалификацию наблюдателя или экспериментатора.

На практике новая теория часто представляет собой расширение предыдущей. Например, очень точные наблюдения планеты Меркурий выявили небольшие расхождения между наблюдаемым движением и предсказаниями ньютоновской теории тяготения. Движение планеты, рассчитанное согласно эйнштейновской общей теории относительности, слегка отличалось от того, что предсказывала ньютоновская теория. Согласие предсказанного теорией Эйнштейна движения Меркурия с наблюдениями при отсутствии такого согласия для ньютоновской теории стало одним из ключевых подтверждений новой теории. Тем не менее мы до сих пор продолжаем пользоваться ньютоновской теорией для большинства практических задач, потому что в ситуациях, с которыми нам обычно приходится сталкиваться, ее предсказания отличаются от предсказаний общей теории относительности очень незначительно. (К тому же ньютоновская теория гораздо проще теории Эйнштейна!)

Конечная цель науки состоит в создании единой теории для описания всей Вселенной. Но в реальности подход большинства ученых сводится к разделению проблемы на две части. Во-первых, есть законы, управляющие тем, как Вселенная меняется со временем. (Если мы знаем состояние Вселенной в определенный момент времени, то такие физические законы позволяют нам определить, как она будет выглядеть в любой другой момент.) Второй вопрос – это начальное состояние Вселенной. Некоторые считают, что наука должна заниматься только первой проблемой, а вопрос о начальном состоянии скорее относится к компетенции метафизики или религии. Они считают, что Бог, будучи всемогущим, мог создать Вселенную любым желаемым образом. Может быть это и так, но тогда Бог мог также заставить Вселенную развиваться совершенно произвольным образом. Однако похоже, что Богу было угодно, чтобы Вселенная развивалась в соответствии с четко определенными законами. И поэтому представляется вполне разумно предположить, что начальное состояние Вселенной тоже подчинялось четко определенным законам.

Создать теорию, сразу описывающую всю Вселенную, оказалось очень трудным делом. Вместо этого ученые разделили проблему на множество частей и построили множество частных теорий. Каждая из этих частных теорий описывает и предсказывает определенный ограниченный класс наблюдений, пренебрегая влиянием других факторов, или представляя их в виде простых наборов чисел. Вполне возможно, что этот подход в корне неверен. Если во Вселенной все фундаментальным образом взаимозависимо, то получить полное решение, исследуя проблему по частям в отрыве от целого, конечно же, невозможно. Тем не менее до сих пор этот подход обеспечивал прогресс науки. Опять классическим примером может служить теория тяготения Ньютона, согласно которой сила взаимного притяжения тел зависит только от присущей каждому из тел числовой характеристики – его массы – и совершенно не зависит от того, из чего же состоят эти тела. Таким образом, орбиты планет можно рассчитывать, не вдаваясь в подробности их структуры и внутреннего строения .

Сейчас для описания Вселенной используют две фундаментальные частные теории – общую теорию относительности и квантовую механику. Это два великих интеллектуальных достижения первой половины XX века. Общая теория относительности описывает силу тяжести и крупномасштабную структуру Вселенной, то есть ее строение на масштабах от нескольких километров до миллиона миллиона миллиона миллионов (единица с двадцатью четырьмя нулями) километров – размера наблюдаемой Вселенной. С другой стороны, квантовая механика имеет дело с явлениями на чрезвычайно малых масштабах, такими как миллионная часть миллионной доли сантиметра. Но, к сожалению, эти две теории, как известно, несовместимы друг с другом и поэтому не могут обе быть правильными. Одним из главных направлений исследований в физике сегодня и главной темой этой книги является разработка новой теории, которая бы объединила в себе оба частных случая – квантовую теорию гравитации. Такой теории пока еще нет, и быть может, мы все еще далеки от ее создания, но нам уже известны многие из свойств, которыми она должна обладать. И как будет видно в последующих главах, мы уже знаем довольно много неизбежных предсказаний квантовой теории гравитации.


От атомов до галактик. В первой половине XX века физики, строя предположения об устройстве мира, попытались охватить не только привычный мир Исаака Ньютона: появились теории, описывающие предельно большие и предельно малые объекты


Так что если считать, что Вселенная устроена не произвольным образом, а подчиняется определенным законам, необходимо будет в конце концов объединить частные теории в одну всеобъемлющую теорию, которая сможет описать все во Вселенной. Но поиск такой полной единой теории связан с фундаментальным парадоксом. Описанное выше представление о научных теориях предполагает, что мы являемся разумными существами, которые свободны наблюдать Вселенную желаемым образом и делать логические выводы из увиденного. В такой схеме есть основания полагать, что мы можем продвигаться все ближе к законам, которым подчиняется наша Вселенная. Но если бы полная объединенная теория действительно существовала, то она, скорее всего, также определяла бы и сами наши действия, то есть в том числе и результат нашего поиска! И почему же из нее должно следовать, что мы на основании полученных данных придем к правильным выводам? А не будет ли из теории следовать, что мы придем к ошибочным выводам? Или вообще не получим никаких выводов?

Единственный способ решить эту проблему основан на дарвиновском принципе естественного отбора. Идея заключается в том, что особи в любой популяции самовоспроизводящихся организмов будут неизбежно различаться по своему генетическому материалу и воспитанию. А это значит, что некоторые особи смогут лучше, чем другие, делать правильные выводы об окружающем их мире и действовать соответствующим образом. Они будут с большей вероятностью выживать и воспроизводиться, поэтому их образ поведения и мысли станут преобладающими. Конечно, в прошлом интеллект и научные открытия не один раз становились преимуществом для выживания. Не совсем ясно, так ли это до сих пор: ведь наши научные открытия вполне могут полностью уничтожить всех нас, и даже если этого не произойдет, всеобъемлющая единая теория может и не играть особо важной роли для наших шансов на выживание. Однако если Вселенная эволюционирует закономерным образом, то можно ожидать, что данные нам естественным отбором разумные способности также проявятся в нашем поиске всеобъемлющей единой теории и поэтому не приведут нас к неправильным выводам.

Поскольку уже имеющихся частных теорий достаточно для точных предсказаний во всех ситуациях, кроме самых экстремальных, поиск окончательной теории Вселенной трудно обосновать чисто практическими соображениями. (Заметим, однако, что аналогичные доводы можно было высказать и в отношении теории относительности и квантовой механики, а ведь благодаря этим теориям мы овладели ядерной энергией и совершили революцию в микроэлектронике.) Так что от построения полной единой теории особого проку для выживания нас как вида может и не быть, да и на нашем образе жизни это может никак не сказаться. Но уже на заре цивилизации люди не хотели довольствоваться восприятием мира как набора несвязанных и необъяснимых событий и явлений. Мы стремились к пониманию лежащего в основе мироздания порядка. И сегодня нам хочется понять, почему мы здесь и откуда мы родом. Глубокое стремление человечества к знаниям – достаточное оправдание для наших продолжающихся поисков, и наша цель – это не больше и не меньше, чем полное описание Вселенной, в которой мы живем.

Телескоп как зрительную трубу первым изобрел голландский очковый мастер Иоганн Липперсгей в 1608 году, но Галилей первым направил телескоп на небо в 1609 году и использовал его для астрономических наблюдений.

Это не совсем так. Внутренним строением гравитирующих тел можно пренебречь, только если распределение плотности в них сферически симметрично (то есть зависит только от расстояния до центра тела). В случае планет и Солнца это строго говоря не так – эти тела как минимум слегка сплюснуты у полюсов. Например, сплюснутость Солнца – одна из причин прецессии перигелия Меркурия. У планет земной группы бывают и другие неоднородности распределения плотности. Исследования гравитационного поля Земли и других небесных тел составляют предмет отдельной области науки – гравиметрии.

Купить и скачать за 349 (€ 4,80 )

Британский ученый Стивен Хокинг, известный как самая яркая звезда в современной астрофизике, умер в возрасте 76 лет.

Хокинг относится к числу ученых, которые оказали наибольшее влияние на современное понимание Вселенной своим изучением черных дыр и научно-популярными произведениями, такими как «Краткая история времени». Родившийся в 1942 г., британец считался одним из величайших умов в мире и, по мнению некоторых, был самым известным ученым в современном мире. Для других ученых он был символом неограниченных возможностей человеческого разума.

«Его уход оставил интеллектуальный вакуум. Но он не пустой. Думайте об этом как своего рода энергии, проникающей в ткань пространства-времени, которое не поддается измерению» , написал в твиттере всемирно известный астрофизик и научный автор Нил Деграсс Тайсон.

В возрасте 21 года профессору Хокингу диагностировали редкую форму болезни моторных нейронов, и врачи отводили ему всего несколько лет жизни. Его заболевание, однако, развивалось необычно медленно, благодаря чему он работал более полувека, будучи прикованным к инвалидной коляске. Фактически Хокинг был медицинским чудом – только 5 процентов людей, которые имеют такую форму болезни, живут более десяти лет после постановки диагноза, а он жил с ней более пяти десятилетий. Он сам говорил, что его физическое состояние не было существенным препятствием для его научной работы в области теоретической физики и даже в некотором смысле помогало ему.

Хокинг потерял голос после тяжелой пневмонии и осложнений. Какое-то время единственным для него способом общения было произношение слов буквально по буквам, поднимая брови, когда кто-то указывал на правильную букву на специальной карточке. Позже компьютерный эксперт из Калифорнии по имени Уолт Уолтоу отправил ему свою компьютерную программу под названием «Эквалайзер», с помощью которой профессор мог выбирать слова из меню на экране, управляемым кнопкой в его руке. Это, в сочетании с синтезатором речи, стало «электронным» голосом – торговой маркой Хокинга.

Болезнь не мешала его личной жизни. В 1965 г. он женился на своей юношеской любви Джейн Уайлд, хотя на тот момент ему уже был поставлен страшный диагноз. Их брак длился 26 лет и закончился недопониманием, но Хокинг стал отцом троих детей.

В 1995 г. он заключил свой второй брак с Элейн Мейсон, медсестрой, которая затем заботилась о нем. Они оставались вместе до 2006 г.
Хокинг со своей второй женой Элейн Мейсон

Британский ученый был известен своей работой над черными дырами и относительностью, и относится к числу ученых, которые в наибольшей степени повлияли на современное понимание Вселенной.

В возрасте 17 лет Хокинг получил место в Оксфорде. В 1971 г. вместе с сэром Роджером Пенроузом они дали математическое обоснование, подкрепляющее теорию Большого взрыва: они показали, что если теория относительности верна, то в пространстве-времени должна существовать точка червоточины. Они также создали теорию Хокинга-Пенроуза о раннем развитии Вселенной после Большого взрыва и ее экспоненциальном расширении после состояния с гораздо более высокой температурой и плотностью.
Хокинг считал, что будущее человеческого вида находится в космосе.

Хокинг также предполагал, что сразу после Большого взрыва образовались первичные черные дыры, которые почти мгновенно испарились. Позже он обнаружил, что черные дыры излучают энергию и испаряются – явление, которое позже стало известно как «Излучение Хокинга».

На протяжении многих лет он работал над другими теориями о черных дырах, в том числе о том, что через них возможен переход в другие Вселенные.

В начале 80-х он выдвинул предположение, что, хотя Вселенная не имеет границ, она имеет конечный размер в пространстве-времени. Математическое доказательство этой теории было дано чуть позже. По его словам, Вселенная безгранична, но конечна.

Работа Стивена Хокинга в области астрофизики ставит его в ряды самых престижных ученых в современном мире. Он был удостоен 12-и почетных титулов, ордена Британской империи и Президентской медали Свободы США. В течение 30 лет он был Лукасовским профессором математики Кембриджского университета – должность, которую занимал Исаак Ньютон и другие известные ученые. Хотя в 2009 г. Хокинг ушел в отставку, он продолжал работать в университете. Барак Обама вручает Хокингу американскую Президентскую медаль Свободы

Его труды по популяризации науки принесли ему широкую известность и славу. Книга «Краткая история времени», изданная в 1988 году, была бестселлером в рейтинге «Санди таймс» на протяжении 237 недель – почти пять лет – с более 10 миллионами копий и переводом на десятки языков. Книга описывает на понятном языке структуру, происхождение и развитие Вселенной, исследуя такие явления, как Большой взрыв и основы квантовой механики.

В интервью для New Scientist незадолго до своего 70-летия физик сказал, что одним из величайших достижений физики в его карьере было открытие спутником COBE малых вариаций температуры реликтового излучения (космического микроволнового фона), оставшихся после Большого взрыва.

Хокинг верил, что будущее человеческого вида находится в космосе. Он неоднократно заявлял, что люди не выживут, если будут оставаться только на Земле из-за нашего инвазивного характера.

Его уникальная жизнь неоднократно привлекала внимание документалистов и кинорежиссеров, а в 2014 г. о нем был снят биографический фильм «Вселенная Стивена Хокинга» с Эдди Редмэйном в роли Хокинга. Кроме того, ученый появился в нескольких телевизионных шоу, в том числе The Simpsons, Red Dwarf и The Big Bang Theory.
На премьере биографического фильма «Вселенная Стивена Хокинга»

Кроме научной работы Хокинг также был известен своими дальновидными высказываниями. Вот некоторые из них:

Моя цель проста. Это полное понимание вселенной, почему она такая, какая есть, и почему она существует вообще.

На мой взгляд, мозг – это компьютер, который перестает работать, когда его компоненты выходят из строя. Нет рая или загробной жизни для сломанных компьютеров; это сказочная история для людей, боящихся темноты.

Я считаю, что самое простое объяснение в том, что Бога нет. Никто не создал Вселенную, и никто не руководит нашей судьбой. Это приводит меня к глубокому осознанию того, что, вероятно, нет ни рая, ни загробной жизни. У нас есть одна жизнь, чтобы оценить великий дизайн Вселенной, и за это я чрезвычайно благодарен.

Не забывайте смотреть на звезды, а не под ноги.

Жизнь была бы трагичной, если бы не была смешной.

Мои ожидания были сведены к нулю, когда мне был 21 год. Все с тех пор стало бонусом.

Люди, которые хвастаются своим уровнем интеллекта, – неудачники.

Мы лишь прогрессивный вид обезьян на маленькой планете очень маленькой звезды. Но мы можем понять вселенную. Это превращает нас в нечто особенное.

Метки: ,