Как определить направление напряженности. Определение напряженности в любой точке электрического поля

Инструкция

Если в электрическое поле, создаваемое зарядом Q, поместить еще один заряд Q0, то оно будет воздействовать на него с определенной силой. Это называется напряженностью электрического поля E. Она представляет собой отношение силы F, с которое поле действует на положительный электрический заряд Q0 в определенной точке пространства, к значению этого заряда: E = F/Q0.

В зависимости от конкретной точки пространства, значение напряженности поля E может меняться, что выражается формулой Е = Е (x, y, z, t). Поэтому напряженность электрического поля относится к векторным физическим величинам.

Поскольку напряженность поля зависит от силой, действующей на точечный заряд, то вектор напряженности электрического поля E одинаков с вектором силы F. Согласно закону Кулона, сила, с которой взаимодействуют две заряженные частицы в вакууме, направлена по , которая соединяет эти заряды.

Видео по теме

Объектами векторной алгебры являются отрезки прямой, имеющие направление и длину, называемую модулем. Чтобы определить модуль вектора , следует извлечь квадратный корень из величины, представляющей собой сумму квадратов его проекций на координатные оси.

Инструкция

Векторы характеризуются двумя основными свойствами: длиной и направлением. Длина вектора или нормой и представляет собой скалярное значение, расстояние от точки начала до точки конца. Оба применяются для графического изображения различных или действий, например, физических сил, движения элементарных частиц и пр.

Местоположение вектора в двухмерном или трехмерном пространстве не влияет на его свойства. Если перенести его в другое место, то изменятся лишь координаты его концов, однако модуль и направление останутся прежними. Эта независимость позволяет использовать векторной алгебры в различных вычислениях, например, углов между пространственными прямыми и плоскостями.

Каждый вектор можно задать координатами его концов. Рассмотрим для начала двухмерное пространство: пусть начало вектора находится в точке А (1, -3), а – в точке В (4, -5). Чтобы найти их проекции, опустите перпендикуляры на ось абсцисс и ординат.

Определите проекции самого вектора , которые можно вычислить по формуле:АВх = (xb - xa) = 3;ABy = (yb - ya) = -2, где:ABx и ABy – проекции вектора на оси Ох и Оу;xa и xb – абсциссы точек А и В;ya и yb – соответствующие ординаты.

В графическом изображении вы увидите прямоугольный треугольник, образованный катетами с длинами, равными проекциям вектора . Гипотенузой треугольника является величина, которую нужно вычислить, т.е. модуль вектора . Примените теорему Пифагора:|АВ|² = ABx² + ABy² → |AB| = √((xb - xa)² + (yb – ya)²) = √13.

Пусть в рассмотренном примере za = 3, zb = 8, тогда:zb – za = 5;|AB| = √(9 + 4 + 25) = √38.

Видео по теме

Для того чтобы определить модуль точечных зарядов одинаковой величины, измерьте силу их взаимодействия и расстояние между ними и произведите расчет. Если же нужно найти модуль заряда отдельных точечных тел, вносите их в электрическое поле с известной напряженностью и измеряйте силу, с которой поле действует на эти заряды.

1 .Два рода электрических зарядов и их свойства. Наименьший неделимый электрический заряд. Закон сохранения электрических зарядов. Закон Кулона. Единица заряда. Электростатическое поле. Способ обнаружения поля. Напряженность как характеристика электростатического поля. Вектор напряженности, его направление. Напряженность электрического поля точечного заряда. Единицы напряженности. Принцип суперпозиции полей.

Электрический заряд - величина инвариантная, т.е. не зависит от системы отсчета, а потому не зависит от того, движется заряд или он покоится.

два рода (типа) эл.зарядов : заряды положительные и заряды отрицательные.

Экспериментально установили, что одноименные заряды отталкиваются, а разноименные притягиваются.

Электрически нейтральное тело должно иметь равное количество положительных и отрицательных зарядов, но и их распределение по объему тела должно быть равномерным.

Закон сохранения эл. заряда : алгебраическая сумма элек. зарядов любой замкнутой системы (системы не обменивающейся зарядами с внешними тепами) остается неизменной, какие бы процессы не происходили внутри этой системы.

Элек. заряды самопроизвольно не создаются и не возникают, они лишь могут разделяться и передаваться от одного тела к другому.

Существует наименьший заряд, его назвали элементарным зарядом - это заряд, который имеет электрон и заряд на теле кратен этому элементарному заряду: е=1,6*10 -19 Кл . Отрицательный элементарный заряд связан с электроном, а положительный- с позитроном, у которого заряд и масса количественно совпадают с зарядом и массой электрона. Однако из-за того, что время жизни позитрона мало, на телах они отсутствуют и поэтому положительную или отрицательную заряженность тел объясняют или недостатком или избытком электронов на телах.

Закон Кулона: силы взаимодействия двух точечных зарядов, находящихся в однородной и изотропной среде, прямо пропорциональны произведению этих зарядов и обратно пропорциональны квадрату расстояния между ними, равны между собой и направлены по прямой, проходящей через эти заряды. г- расстояние между зарядами q 1 и q 2 , k-коэффициент пропорциональности, зависящий от выбора системы физических единиц.

м/Ф, а =8,85*10 -12 Ф/м - диэлектрическая постоянная

Под точечным зарядом следует понимать заряды, сосредоточенные на телах, линейные размеры которых малы по сравнению с расстояниями между ними.

При этом заряд измеряется в кулонах - количество электричества, протекающее через поперечное сечение проводника в одну секунду при токе в 1 ампер.

Сила F направлена вдоль прямой, соединяющей заряды, т.е. является центральной силой и соответствующей притяжению (F<0) в случае разноименных зарядов и отталкиванию (F>0) в случае одноименных зарядов. Эту силу называют кулоновская сила.

Позднейшие исследования Фарадея показали, что электрическое взаимодействие между заряженными телами зависят от свойств среды, в которой происходят эти взаимодействия.

12. Диэлектрики в эл.поле. Молекулы полярных и неполярных диэлектриков в эл.поле. Поляризация диэлектриков. Виды поляризации.

1. Полярные диэлектрики.

В отсутствии поля каждый из диполей обладает электрическим моментом, но вектора электрических моментов молекул расположены в пространстве хаотично и сумма проекций электрических моментов на любое направление равна нулю:

Если теперь диэлектрик поместить в электрическое поле (рис. 18), то на каждый диполь начнет действовать пара сил, которая создаст момент под действием которого диполь будет поворачиваться вокруг оси, перпендикулярной плечу, стремясь к конечному положению, когда вектор электрического момента будет параллелен вектору напряженности электрического поля. Последнему будет мешать тепловое движение молекул, внутреннее трение и т.д. и поэтому

электрические моменты диполей будут составлять некоторые углы с направлением вектора внешнего поля, но теперь уже у большего числа молекул будут составляющие проекции электрических моментов на направление, совпадающее, например, с напряженностью поля и сумма проекций всех электрических моментов уже будет отлична от нуля.

Величина, показывающая способность диэлектрика созда-вать большую или меньшую поляризацию, то есть харак-теризующая податливость диэлектрика к поляризации называется диэлектрической восприимчивостью или поляризуемостью диэлектрика ().

16. Поток вектора эл.индукции(однородного и неоднород-ного опля). Поток через замкнутую поверхность. Т.Гаусса для эл. Поля в среде.

Подобно потоку вектора напряженности можно ввести и понятие потока вектора индукции , оставив то же свойство, что и для напряженности-вектор индукции пропорционален числу линий, проходящих через единицу площади поверхности. Можно указать следующие свойства:

1.Поток через плоскую поверхность в однородном поле (рис. 22).В этом случае вектор индукции направлен по полю и поток линии индукции может быть выражен следующим образом:

2. Поток вектора индукции через поверхность в неоднородном поле подсчитывают путем разбиения поверхности на элементы столь малые, чтобы их можно было считать плоскими, а поле вблизи каждого элемента однородным. Полный поток вектора индукции будет равен:

3. Поток вектора индукции через замкнутую поверхность.

Рассмотрим поток вектора индукции пересекающего замкнутую поверхность (рис.23). Условимся направление внешних нормалей считать положительными. Тогда в тех точках поверхности, где вектор индукции направлен по касательной к линии индукции наружу, угол

и поток линий индукции будет положительным, а там, где вектор D индукции будет положительным, а там, где вектор D направлен внутрь поверхности, поток линий индукции будет отрицательным, т.к и .Таким образом общий поток линий индукции пронизывающих замкнутую поверхность насквозь равен нулю.

На основании теоремы Гаусса получаем, что внутри замкнутой поверхности, проведенной в проводнике, некомпенсированные электрические заряды отсутствуют. Это свойство сохраняется и в том случае, когда проводнику сообщен избыточный заряд

На противоположной стороне возникнет равный по величине, но положительный заряд. В результате внутри проводника возникнет индуцированное электрическое поле Е инд , направленное навстречу внешнему полю, которое будет расти до тех пор, пока оно не сравняется с внешним полем и таким образом результирующее поле внутри проводника становится равно нулю. Этот процесс происходит в течение очень короткого времени.

Индуцированные заряды располагаются на поверхности проводника в очень тонком слое.

Потенциал во всех точках проводника остается одинаков, т.е. внешняя поверхность проводника является эквипотенциальной.

Замкнутый полый проводник экранирует только поле внешних зарядов. Если электрические заряды находятся внутри полости, то индукционные заряды возникнут не только на внешней поверхности проводника, но и на внутренней и замкнутая проводящая полость уже не экранирует поле электрических зарядов помещенных внутрь ее.

. Напряженность поля вблизи проводника прямо пропорциональна поверхностной плотности заряда на нем.

Цель урока: дать понятие напряжённости электрического поля и ее определения в любой точке поля.

Задачи урока:

  • формирование понятия напряжённости электрического поля; дать понятие о линиях напряжённости и графическое представление электрического поля;
  • научить учащихся применять формулу E=kq/r 2 в решении несложных задач на расчёт напряжённости.

Электрическое поле – это особая форма материи, о существовании которой можно судить только по ее действию. Экспериментально доказано, что существуют два рода зарядов, вокруг которых существуют электрические поля, характеризующиеся силовыми линиями.

Графически изображая поле, следует помнить, что линии напряженности электрического поля:

  1. нигде не пересекаются друг с другом;
  2. имеют начало на положительном заряде (или в бесконечности) и конец на отрицательном (или в бесконечности), т. е. являются незамкнутыми линиями;
  3. между зарядами нигде не прерываются.

Рис.1

Силовые линии положительного заряда:


Рис.2

Силовые линии отрицательного заряда:


Рис.3

Силовые линии одноименных взаимодействующих зарядов:


Рис.4

Силовые линии разноименных взаимодействующих зарядов:


Рис.5

Силовой характеристикой электрического поля является напряженность, которая обозначается буквой Е и имеет единицы измерения или . Напряженность является векторной величиной, так как определяется отношением силы Кулона к величине единичного положительного заряда

В результате преобразования формулы закона Кулона и формулы напряженности имеем зависимость напряженности поля от расстояния, на котором она определяется относительно данного заряда

где: k – коэффициент пропорциональности, значение которого зависит от выбора единиц электрического заряда.

В системе СИ Н·м 2 /Кл 2 ,

где ε 0 – электрическая постоянная, равная 8,85·10 -12 Кл 2 /Н·м 2 ;

q – электрический заряд (Кл);

r – расстояние от заряда до точки в которой определяется напряженность.

Направление вектора напряженности совпадает с направлением силы Кулона.

Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным. В ограниченной области пространства электрическое поле можно считать приблизительно однородным, если напряженность поля внутри этой области меняется незначительно.

Общая напряженность поля нескольких взаимодействующих зарядов будет равна геометрической сумме векторов напряженности, в чем и заключается принцип суперпозиции полей:

Рассмотрим несколько случаев определения напряженности.

1. Пусть взаимодействуют два разноименных заряда. Поместим точечный положительный заряд между ними, тогда в данной точке будут действовать два вектора напряженности, направленные в одну сторону:

Согласно принципу суперпозиции полей общая напряженность поля в данной точке равна геометрической сумме векторов напряженности Е 31 и Е 32 .

Напряженность в данной точке определяется по формуле:

Е = kq 1 /x 2 + kq 2 /(r – x) 2

где: r – расстояние между первым и вторым зарядом;

х – расстояние между первым и точечным зарядом.


Рис.6

2. Рассмотрим случай, когда необходимо найти напряженность в точке удаленной на расстояние а от второго заряда. Если учесть, что поле первого заряда больше, чем поле второго заряда, то напряженность в данной точке поля равна геометрической разности напряженности Е 31 и Е 32 .

Формула напряженности в данной точке равна:

Е = kq1/(r + a) 2 – kq 2 /a 2

Где: r – расстояние между взаимодействующими зарядами;

а – расстояние между вторым и точечным зарядом.


Рис.7

3. Рассмотрим пример, когда необходимо определить напряженность поля в некоторой удаленности и от первого и от второго заряда, в данном случае на расстоянии r от первого и на расстоянии bот второго заряда. Так как одноименные заряды отталкиваются, а разноименные притягиваются, имеем два вектора напряженности исходящие из одной точки, то для их сложения можно применить метод противоположному углу параллелограмма будет являться суммарным вектором напряженности. Алгебраическую сумму векторов находим из теоремы Пифагора:

Е = (Е 31 2 +Е 32 2) 1/2

Следовательно:

Е = ((kq 1 /r 2) 2 + (kq 2 /b 2) 2) 1/2


Рис.8

Исходя из данной работы, следует, что напряженность в любой точке поля можно определить, зная величины взаимодействующих зарядов, расстояние от каждого заряда до данной точки и электрическую постоянную.

4. Закрепление темы.

Проверочная работа.

Вариант № 1.

1. Продолжить фразу: “электростатика – это …

2. Продолжить фразу: электрическое поле – это ….

3. Как направлены силовые линии напряженности данного заряда?

4. Определить знаки зарядов:

Задачи на дом:

1. Два заряда q 1 = +3·10 -7 Кл и q 2 = −2·10 -7 Кл находятся в вакууме на расстоянии 0,2 м друг от друга. Определите напряженность поля в точке С, расположенной на линии, соединяющей заряды, на расстоянии 0,05 м вправо от заряда q 2 .

2. В некоторой точке поля на заряд 5·10 -9 Кл действует сила 3·10 -4 Н. Найти напряженность поля в этой точке и определите величину заряда, создающего поле, если точка удалена от него на 0,1 м.

5. Электростатика

Закон Кулона

1. Заряженные тела взаимодействуют. В природе существует два вида зарядов, их условно называют положительными и отрицательными. Заряды одного знака (одноименные) отталкиваются, заряды противоположных знаков (разноименные) притягиваются. Единица измерения зарядов в системе СИ – кулон (обозначается

2. В природе существует минимально возможный заряд. Его называют

элементарным и обозначают e . Численное значение элементарного зарядаe ≈ 1,6 10–19 Кл, Заряд электронаq электр = –e , заряд протонаq протона = +e . Все заряды

в природе кратны элементарному заряду.

3. В электрически изолированной системе алгебраическая сумма зарядов остается неизменной. Например, если соединить два одинаковых металлических шарика с зарядами q 1 = 5 нКл = 5 10–9 Кл иq 2 = – 1 нКл, то заряды распределятся

между шариками поровну и заряд q каждого из шариков станет равным

q = (q 1 + q 2 ) / 2= 2 нКл.

4. Заряд называется точечным, если его геометрические размеры значительно меньше расстояний, на которых изучается действие этого заряда на другие заряды.

5. Закон Кулона определяет величину силы электрического взаимодействия двух неподвижных точечных зарядов q 1 иq 2 , расположенных на расстоянииr друг от друга (рис.1)

k |q | |q

F = | F

|= |F

Здесь F 12 - сила, действующая на первый заряд со стороны второго,F 21 - сила,

действующая на второй заряд со стороны первого, k ≈ 9 10 9 Н м2 /Кл2 – постоянная в законе Кулона. В системе СИ эту постоянную принято записывать в виде

k = 4 πε 1 0 ,

где ε 0 ≈ 8,85 10 − 12 Ф/м – электрическая постоянная.

6. Сила взаимодействия двух точечных зарядов не зависит от наличия вблизи этих зарядов других заряженных тел. Это утверждение называют принципом суперпозиции.

Вектор напряженности электрического поля

1. Поместим вблизи неподвижного заряженного тела (или нескольких тел) точечный заряд q . Будем считать, что величина зарядаq настолько мала, что он не вызывает перемещение зарядов в других телах (такой заряд называют пробным).

Со стороны заряженного тела на неподвижный пробный заряд q будет действовать силаF . В соответствии с законом Кулона и принципом суперпозиции силаF будет пропорциональна величине зарядаq . Это означает, что, если величину пробного заряда увеличить, например в 2 раза, то величина силыF возрастет тоже в 2 раза, если знак зарядаq сменить на противоположный, то и сила сменит направление на противоположное. Такую пропорциональность можно выразить формулой

F = qE.

Вектор E называется вектором напряженности электрического поля. Этот вектор зависит от распределения зарядов в телах, создающих электрическое поле, и

от положения точки, в которой указанным способом определен вектор E . Можно сказать, что вектор напряженности электрического поля равен силе, действующей на единичный положительный заряд, помещенный в данную точку пространства.

Определение E G = F G /q можно обобщить и на случай переменных (зависящих от времени) полей.

2. Вычислим вектор напряженности электрического поля, созданного неподвижным точечным зарядом Q . Выберем некоторую точкуA , расположенную на расстоянииr от точечного зарядаQ . Чтобы определить вектор напряженности в этой точке, мысленно поместим в нее положительный пробный зарядq . На

пробный заряд со стороны точечного заряда Q будет действовать сила притяжения или отталкивания в зависимости от знака зарядаQ . Величина этой силы равна

F = k| Q| q. r2

Следовательно, модуль вектора напряженности электрического поля, созданного неподвижным точечным зарядом Q в точкеA , удаленной от него на расстояниеr , равен

E = k r |Q 2 |.

Вектор E G начинается в точкеA и направлен от зарядаQ , еслиQ > 0 , и к зарядуQ ,

если Q < 0 .

3. Если электрическое поле создается несколькими точечными зарядами, то вектор напряженности в произвольной точке можно найти при помощи принципа суперпозиции полей.

4. Силовой линией (линией вектора E ) называют геометрическую линию,

касательная к которой в каждой точке совпадает с вектором E в этой точке.

Иными словами, вектор E направлен по касательной к силовой линии в каждой ее точке. Силовой линии приписывают направление - вдоль вектораE . Картина силовых линий является наглядным образом силового поля, дает представление о пространственной структуре поля, его источниках, позволяет определять направление вектора напряженности в любой точке.

5. Однородным электрическим полем называют поле, вектор E которого одинаков (по величине и направлению) во всех точках. Такое поле создает, например, равномерно заряженная плоскость в точках, расположенных достаточно близко от этой плоскости.

6. Поле однородно заряженного по поверхности шара равно нулю внутри шара,

а вне шара совпадает с полем точечного заряда Q , расположенного в центре шара:

k | Q|

при r > R

E = r2

при r < R

где Q – заряд шара,R – его радиус,r – расстояние от центра шара до точки, в

которой определяется вектор E .

7. В диэлектриках поле ослабляется. Например, точечный заряд или однородно заряженный по поверхности шар, погруженные в масло, создают электрическое поле

E = k ε |r Q 2 |,

где r – расстояние от точечного заряда или центра шара до точки, в которой определяется вектор напряженности,ε - диэлектрическая проницаемость масла. Диэлектрическая проницаемость зависит от свойств вещества. Диэлектрическая проницаемость вакуумаε = 1, диэлектрическая проницаемость воздуха очень близка к единице (при решении задач обычно ее считают равной 1), для иных газообразных, жидких и твердых диэлектриковε > 1.

8. При равновесии зарядов (если нет их упорядоченного движения) напряженность электрического поля внутри проводников равна нулю.

Работа в электрическом поле. Разность потенциалов.

1. Поле неподвижных зарядов (электростатическое поле) обладает важным свойством: работа сил электростатического поля по перемещению пробного заряда из некоторой точки 1 в точку 2 не зависит от формы траектории, а определяется только положениями начальной и конечной точек. Поля, обладающие таким свойством, называются консервативными. Свойство консервативности позволяет определить так называемую разность потенциалов для двух любых точек поля.

Разность потенциалов ϕ 1 −ϕ 2 в точках 1 и 2 равна отношению работыA 12 сил поля по перемещению пробного зарядаq из точки 1 в точку 2 квеличинеэтого заряда:

ϕ1 - ϕ2 =A q 12 .

Такое определение разности потенциалов имеет смысл только потому, что работа не зависит от формы траектории, а определяется положениями начальной и конечной точек траекторий. В системе СИ разность потенциалов измеряется в вольтах: 1В = Дж/Кл.

Конденсаторы

1. Конденсатор состоит из двух проводников (их называют обкладками), отделенных один от другого слоем диэлектрика (рис.2), причем заряд одной

обкладки Q , а другой –Q . Заряд положительной обкладкиQ называют зарядом конденсатора.

2. Можно показать, что разность потенциалов ϕ 1 −ϕ 2 между обкладками пропорциональна величине зарядаQ , то есть, если, например, зарядQ увеличить в 2 раза, то и разность потенциалов увеличится в 2 раза.

ε S

ϕ 1ϕ 2

Рис.2 Рис.3

Такую пропорциональность можно выразить формулой

Q = C (ϕ 1 -ϕ 2 ) ,

где C - коэффициент пропорциональности между зарядом конденсатора и разностью потенциалов между его обкладками. Этот коэффициент называют электроемкостью или просто емкостью конденсатора. Емкость зависит от геометрических размеров обкладок, их взаимного расположения и диэлектрической проницаемости среды. Разность потенциалов называют также напряжением, которое обозначаютU . Тогда

Q = CU.

3. Плоский конденсатор представляет собой две плоские проводящие пластины, расположенные параллельно друг другу на расстоянии d (рис.3). Это расстояние предполагается малым по сравнению с линейными размерами пластин. Площадь каждой пластины (обкладки конденсатора) равнаS , заряд одной пластиныQ , а другой –Q .

На некотором расстоянии от краев поле между пластинами можно считать однородным. Поэтому ϕ 1 -ϕ 2 = Ed , или

U = Ed.

Емкость плоского конденсатора определяется формулой

C = εε d 0 S ,

где ε 0 =8,85 10–12 Ф/м – электрическая постоянная,ε - диэлектрическая проницаемость диэлектрика между обкладками. Из этой формулы видно, что для получения конденсатора большой емкости нужно увеличивать площадь обкладок и уменьшать расстояние между ними. Наличие между обкладками диэлектрика с большой диэлектрической проницаемостьюε также приводит к увеличению емкости. Роль диэлектрика между обкладками состоит не только в повышении диэлектрической проницаемости. Важно также, что хорошие диэлектрики могут выдерживать высокое электрическое поле, не допуская пробоя между обкладками.

В системе СИ емкость измеряют в фарадах. Плоский конденсатор в одну фараду имел бы гигантские размеры. Площадь каждой пластины была бы примерно равна 100 км2 при расстоянии между ними 1 мм. Конденсаторы широко используются в технике, в частности, для накопления зарядов.

4. Если обкладки заряженного конденсатора замкнуть металлическим проводником, то в проводнике возникнет электрический ток и конденсатор разрядится. При протекании тока в проводнике выделится определенное количество теплоты, а это означает, что заряженный конденсатор обладает энергией. Можно показать, что энергия любого заряженного конденсатора (не обязательно плоского) определяется формулой

W = 1 2 CU2 .

Учитывая, что Q = CU , формулу для энергии можно переписать также в виде

W = Q 2 =QU .