Интеграл и его применение в жизни человека. Исследование интегралы в жизни. Вычисление работы, производимой при поднятии груза

Девиз урока: “Математика – язык, на котором говорят все точные науки” Н.И. Лобачевский

Цель урока: обобщить знания учащихся по теме “Интеграл”, “Применение интеграла”;расширить кругозор, знания о возможном применении интеграла к вычислению различных величин; закрепить навыки использовать интеграл для решения прикладных задач; прививать познавательный интерес к математике, развивать культуру общения и культуру математической речи; уметь учиться выступать перед учащимися и учителями.

Тип урока: повторительно-обобщающий.

Вид урока: урок – защита проекта “Применение интеграла”.

Оборудование: магнитная доска, плакаты “Применение интеграла”, карточки с формулами и заданиями для самостоятельной работы.

План урока:

1. Защита проекта:

  1. из истории интегрального исчисления;
  2. свойства интеграла;
  3. применение интеграла в математике;
  4. применение интеграла в физике;

2. Решение упражнений.

Ход урока

Учитель: Мощным средством исследования в математике, физике, механике и других дисциплинах является определенный интеграл – одно из основных понятий математического анализа. Геометрический смысл интеграла – площадь криволинейной трапеции. Физический смысл интеграла – 1) масса неоднородного стержня с плотностью, 2) перемещение точки, движущейся по прямой со скоростью за промежуток времени.

Учитель: Ребята нашего класса провели большую работу, они подобрали задачи, где применяется определенный интеграл. Им слово.

2 ученик: Свойства интеграла

3 ученик: Применение интеграла (на магнитной доске таблица).

4 ученик: Рассматриваем применение интеграла в математике для вычисления площади фигур.

Площадь всякой плоской фигуры, рассматриваемая в прямоугольной системе координат, может быть составлена из площадей криволинейных трапеций, прилежащих к оси Ох и оси Оу. Площадь криволинейной трапеции, ограниченной кривой у = f(х), осью Ох и двумя прямыми х=а и х=b, где а х b , f(х) 0 вычисляется по формуле см. рис. Если криволинейная трапеция прилегает к оси Оу , то её площадь вычисляется по формуле , см. рис. При вычислении площадей фигур могут представиться следующие случаи: а)Фигура расположена над осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b.(См. рис. ) Площадь этой фигуры находится по формуле 1 или 2. б) Фигура расположена под осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b (см. рис. ). Площадь находится по формуле . в) Фигура расположена над и под осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b(рис. ). г) Площадь ограничена двумя пересекающимися кривыми у=f(х) и у = (х) (рис. )

5 ученик: Решим задачу

х-2у+4=0 и х+у-5+0 и у=0

7 ученик: Интеграл, широко применяющийся в физике. Слово физикам.

1. ВЫЧИСЛЕНИЕ ПУТИ, ПРОЙДЕННОГО ТОЧКОЙ

Путь, пройденный точкой при неравномерном движении по прямой с переменной скоростью за промежуток времени от до вычисляется по формуле .

Примеры:

1. Скорость движения точки м/с. Найти путь, пройденный точкой за 4-ю секунду.

Решение: согласно условию, . Следовательно,

2. Два тела начали двигаться одновременно из одной точки в одном направлении по прямой. Первое тело движется со скоростью м/с, второе - со скоростью v = (4t+5) м/с. На каком расстоянии друг от друга они окажутся через 5 с?

Решение: очевидно, что искомая величина есть разность расстояний, пройденных первым и вторым телом за 5 с:

3. Тело брошено с поверхности земли вертикально вверх со скоростью и = (39,2-9,8^) м/с. Найти наибольшую высоту подъема тела.

Решение: тело достигнет наибольшей высоты подъема в такой момент времени t, когда v = 0, т.е. 39,2-9,8t = 0, откуда I = 4 с. По формуле (1) на ходим

2. ВЫЧИСЛЕНИЕ РАБОТЫ СИЛЫ

Работа, произведенная переменной силой f(х) при перемещении по оси Ох материальной точки от х = а до х=b, находится по формуле При решении задач на вычисление работы силы часто используется закон Г у к а: F=kx, (3) где F - сила Н; х -абсолютное удлинение пружины, м, вызванное силой F , а k -коэффициент пропорциональности, Н/м.

Пример:

1. Пружина в спокойном состоянии имеет длину 0,2 м. Сила в 50 Н растягивает пружину на 0,01 м. Какую работу надо совершить, чтобы растянуть ее от 0,22 до 0,32 м?

Решение: используя равенство (3), имеем 50=0,01k, т. е. kК = 5000 Н/м. Находим пределы интегрирования: а = 0,22 - 0,2 = 0,02 (м), b=0,32 - 0,2 = 0,12(м). Теперь по формуле (2) получим

3. ВЫЧИСЛЕНИЕ РАБОТЫ, ПРОИЗВОДИМОЙ ПРИ ПОДНЯТИИ ГРУЗА

Задача. Цилиндрическая цистерна с радиусом основания 0,5 м и высотой 2 м заполнена водой. Вычислить работу, которую необходимо произвести, чтобы выкачать воду из цистерны.

Решение: выделим на глубине х горизонтальный слой высотой dх (рис. ). Работа А, которую надо произвести, чтобы поднять слой воды весом Р на высоту х, равна Рх.

Изменение глубины х на малую величину dх вызовет изменение объема V на величину dV = пr 2 dх и изменение веса Р на величину * dР = 9807 r 2 dх; при этом совершаемая работа А изменится на величину dА=9807пr 2 хdх. Проинтегрировав это равенство при изменении x от 0 до Н, получим

4. ВЫЧИСЛЕНИЕ СИЛЫ ДАВЛЕНИЯ ЖИДКОСТИ

Значение силы Р давления жидкости на горизонтальную площадку зависит от глубины погружения х этой площадки, т. е. от расстояния площадки до поверхности жидкости.

Сила давления (Н) на горизонтальную площадку вычисляется по формуле Р =9807 S x,

где - плотность жидкости, кг/м 3 ; S - площадь площадки, м 2 ; х - глубина погружения площадки, м.

Если площадка, испытывающая давление жидкости, не горизонтальна, то давление на нее различно на разных глубинах, следовательно, сила давления на площадку есть функция глубины ее погружения Р (х).

5. ДЛИНА ДУГИ

Пусть плоская кривая АВ (рис.) задана уравнением у =f(x) (a x b), причем f(x) и f ?(x) - непрерывные функции в промежутке [а,b]. Тогда дифференциал dl длины дуги АВ выражается формулой или , а длина дуги АВ вычисляется по формуле (4)

где а и b-значения независимой переменной х в точках А и В. Если кривая задана уравнением х = (у)(с у d), то длина дуги АВ вычисляется по формуле (5) где с и д значения независимой переменной у в точках А и В.

6. ЦЕНТР МАСС

При нахождении центра масс пользуются следующими правилами:

1) Координата х? центра масс системы материальных точек А 1 , А 2 ,..., А n с массами m 1 , m 2 , ..., m n , расположенных на прямой в точках с координатами х 1 , х 2 , ..., х n , находятся по формуле

(*); 2) При вычислении координаты центра масс можно любую часть фигуры заменить на материальную точку, поместив ее в центр масс этой части, и приписать ей массу, равную массе рассматриваемой части фигуры. Пример. Пусть вдоль стержня-отрезка [а;b] оси Ох - распределена масса плотностью (х), где (х) - непрерывная функция. Покажем, что а) суммарная масса М стержня равна ; б) координата центра масс х" равна .

Разобьем отрезок [а; b] на n равных частей точками а= х 0 < х 1 < х 2 < ... <х n = b (рис. ). На каждом из n этих отрезков плотность можно считать при больших n постоянно и примерно равной (х k - 1) на k-м отрезке (в силу непрерывности (х). Тогда масса k-ого отрезка примерно равна а масса всего стержня равна

Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
Интеграл и его применение в жизни человека.
Цель: изучение и использование интеграла в деятельности человека. Задачи: узнать что такое интеграл; выявить все сферы деятельности человека где применяется интеграл;выяснить какое значение интеграл занимает в жизни человека. Ученый, создавший интеграл.Евдокс Книдский. Дал полное доказательство теоремы об объёме пирамиды; теоремы о том, что площади двух кругов относятся как квадраты их радиусов. При доказательстве он использовал так называемый метод «исчерпывания» их радиусов. Через две тысячи лет метод «исчерпывания» был преобразован в метод интегрирования. Что такое интеграл? Интеграл (от лат.Integer – целый) –интегралом называется величина, обратная дифференциалу функции. Многие физические и другие задачи сводятся к решению сложных дифференциальных или интегральных уравнений. Для этого необходимо знать, что представляют собой дифференциальное и интегральное исчисление.𝑓𝑥𝑑𝑥 Символ  введен Готфрид Лейбницем (1675г.). Этот знак является изменением латинской буквы S (первой буквы слова summa). Само слово интеграл придумал Якоб Бернулли (1690 г.). Оно происходит от латинского integro, которое переводится как восстанавливать. Я. БернуллиГ. Лейбниц Применение интеграла. В геометрии.Площадь плоской фигуры.Определение: Фигура, ограниченная графиком непрерывной, знакопостоянной функции 𝑓(𝑥), осью абсцисс и прямыми 𝑥=𝑎, 𝑥=𝑏, называется криволинейной трапецией.Теорема. Если 𝑓(𝑥) непрерывная и неотрицательная функция на отрезке [𝑎;𝑏], то площадь соответствующей криволинейной трапеции равна определенному интегралу на этом отрезке.𝑆 =𝑎𝑏𝑓𝑥𝑑𝑥= 𝐹(𝑏)–𝐹(𝑎) Объем фигур вращения.Тело, полученное в результате вращения плоской фигуры, относительно какой-то оси, называют фигурой вращения.Функция 𝑆(𝑥)𝑓(𝑥) фигуры вращения есть круг.𝑆сеч = 𝑟2 Sсеч(𝑥)=𝜋𝑓 2(𝑥)𝑉= 𝑎𝑏𝑓 2(𝑥)𝑑𝑥 В физике.Координаты центра масс.Центр масс – точка, через которую проходит равнодействующая сил тяжести при любом пространственном расположении тела. Пусть материальная однородная пластина имеет форму криволинейной трапеции 𝑥;𝑦 𝑎≤𝑥≤𝑏; 0≤𝑦≤𝑓(𝑥)} и функция 𝑦=𝑓(𝑥) непрерывна на [𝑎;𝑏], а площадь этой криволинейной трапеции равна 𝑆, тогда координаты центра масс пластины о находят по формулам:𝑥0 = 1𝑆 𝑎𝑏𝑥 𝑓(𝑥) 𝑑𝑥; 𝑦0 = 12𝑆 𝑎𝑏𝑓 2(𝑥) 𝑑𝑥; Работа силы 𝐴=𝐹𝑆𝑐𝑜𝑠, 𝑐𝑜𝑠 1. Если на частицу действует сила 𝐹, кинетическая энергия не остается постоянной. В этом случае согласно𝑑(𝑚2/2) = 𝐹𝑑𝑠приращение кинетической энергии частицы за время dt равно скалярному произведению 𝐹𝑑𝑠, где 𝑑𝑠 – перемещение частицы за время 𝑑𝑡. Величина𝑑𝐴=𝐹𝑑𝑠называется работой, совершаемой силой F.А = 𝑎𝑏𝑓𝑥𝑑𝑥 Путь, пройденный материальной точкой.Если материальная точка движется прямолинейно со скоростью 𝑣=𝑣(𝑡) и за время 𝑇= 𝑡2–𝑡1 (𝑡2>𝑡1) прошла путь 𝑆, то 𝑆=𝑡1𝑡2𝑣(𝑡)𝑑𝑡. В экономикеВ курсе микроэкономики часто рассматривают так называемые предельные величины, т.е. для данной величины, представляемой некоторой функцией 𝑦 =𝑓(𝑥), рассматривают ее производную 𝑓′(𝑥). Например, если дана функция издержек С в зависимости от объема q выпускаемого товара 𝐶= 𝐶(𝑞), то предельные издержки будут за­даваться производной этой функции МС=С′(q). Ее экономический смысл – это издержки на производство дополнительной единицы выпускаемого товара. Поэтому часто приходится находить функ­цию издержек по данной функции предельных издержек. В биологииСредняя длина пролета.Нас интересует средняя длина пролета. Так как круг симметричен относительно любого своего диамет­ра, нам достаточно ограничиться лишь теми птицами, которые ле­тят в каком-нибудь одном направлении, параллельном оси Оу. Тогда средняя длина пролета - это среднее расстоя­ние между дугами АСВ и 𝐴𝐶1𝐵. Иными словами, это среднее зна­чение функции 𝑓1𝑥−𝑓2𝑥, где 𝑦=𝑓1𝑥 – уравнение верхней дуги, а 𝑦=𝑓2𝑥 уравнение нижней дуги, т. е.𝐿=𝑎𝑏𝑓1𝑥−𝑓2𝑥𝑑𝑥𝑏−𝑎 Так как 𝑎𝑏𝑓1𝑥𝑑𝑥 равен площади криволинейной трапеции аАСВb, 𝑎𝑏𝑓2𝑥𝑑𝑥 равен площади криволинейной трапеции аА𝐶1Вb, то их разность равна площади круга, т. е. 𝜋𝑅2. Разность 𝑏−а равна 2R. Подставив это в 𝐿=𝑎𝑏𝑓1𝑥−𝑓2𝑥𝑑𝑥𝑏−𝑎 , получим: 𝐿=𝜋𝑅22𝑅=𝜋2𝑅

Сведения из истории появления производной:Лозунгом многих математиков XVII в. был: «Двигайтесь вперёд, и вера в правильность результатов к вам
придёт».
Термин «производная» - (франц. deriveе - позади, за) ввёл в 1797 г. Ж. Лагранж. Он же ввёл
современные обозначения y " , f ‘.
обозначение lim –сокращение латинского слова limes (межа, граница). Термин «предел» ввёл И. Ньютон.
И. Ньютон называл производную флюксией, а саму функцию - флюентой.
Г. Лейбниц говорил о дифференциальном отношении и обозначал производную так:
Лагранж Жозеф Луи (1736-1813)
французский математик и механик

Ньютон:

« Был этот мир глубокой тьмой окутан. Да будет свет! И вот
явился Ньютон.» А.Поуг.
Исаак Ньютон (1643-1727) один из создателей
дифференциального исчисления.
Главный его труд- «Математические начала
натуральной философии»-оказал колоссальное
влияние на развитие естествознания, стал
поворотным пунктом в истории естествознания.
Ньютон ввёл понятие производной, изучая законы
механики, тем самым раскрыл её механический
смысл.

Что называется производной функции?

Производной функции в данной точке называется предел
отношения приращения функции в этой точке к
приращению аргумента, когда приращение аргумента
стремится к нулю.

Физический смысл производной.

Скорость есть производная от пути по времени:
v(t) = S′(t)
Ускорение есть производная
скорости по времени:
a(t) = v′(t) = S′′(t)

Геометрический смысл производной:

Угловой коэффициент касательной к графику
функции равен производной этой функции,
вычисленной в точке касания.
f′(x) = k = tga

Производная в электротехнике:

В наших домах, на транспорте, на заводах: всюду работает
электрический ток. Под электрическим током понимают
направленное движение свободных электрически заряженных
частиц.
Количественной характеристикой электрического тока является сила
тока.
В
цепи электрического тока электрический заряд меняется с
течением времени по закону q=q (t). Сила тока I есть производная
заряда q по времени.
В электротехнике в основном используется работа переменного тока.
Электрический ток, изменяющийся со временем, называют
переменным. Цепь переменного тока может содержать различные
элементы: нагревательные приборы, катушки, конденсаторы.
Получение переменного электрического тока основано на законе
электромагнитной индукции, формулировка которого содержит
производную магнитного потока.

Производная в химии:

◦ И в химии нашло широкое применение дифференциальное
исчисление для построения математических моделей химических
реакций и последующего описания их свойств.
◦ Химия – это наука о веществах, о химических превращениях
веществ.
◦ Химия изучает закономерности протекания различных реакций.
◦ Скоростью химической реакции называется изменение
концентрации реагирующих веществ в единицу времени.
◦ Так как скорость реакции v непрерывно изменяется в ходе
процесса, ее обычно выражают производной концентрации
реагирующих веществ по времени.

Производная в географии:

Идея социологической модели Томаса Мальтуса состоит в том, что прирост населения
пропорционально числу населения в данный момент времени t через N(t), . Модель
Мальтуса неплохо действовала для описания численности населения США с 1790 по 1860
годы. Ныне эта модель в большинстве стран не действует.

Интеграл и его применение:

Немного из истории:

История понятия интеграла уходит корнями
к математикам Древней Греции и Древнего
Рима.
Известны работы учёного Древней Греции Евдокса Книдского (ок.408-ок.355 до н.э.) на
нахождение объёмов тел и вычисления
площадей плоских фигур.

Большое распространение интегральное исчисление получило в XVII веке. Учёные:
Г. Лейбниц (1646-1716) и И. Ньютон (1643-1727) открыли независимо друг от
друга и практически одновременно формулу, названную в последствии формулой
Ньютона - Лейбница, которой мы пользуемся. То, что математическую формулу
вывели философ и физик никого не удивляет, ведь математика-язык, на котором
говорит сама природа.

Символ введен
Лейбницем (1675 г.). Этот знак является
изменением латинской буквы S
(первой буквы слова сумма). Само слово интеграл
придумал
Я. Бернулли (1690 г.). Вероятно, оно происходит от
латинского integero, которое переводится как
приводить в прежнее состояние, восстанавливать.
Пределы интегрирования указал уже Л.Эйлер
(1707-1783). В 1697 году появилось название
новой ветви математики - интегральное
исчисление. Его ввёл Бернулли.

В математическом анализе интегралом функции называют
расширение понятия суммы. Процесс нахождения интеграла
называется интегрированием. Этот процесс обычно используется при
нахождений таких величин как площадь, объём, масса, смещение и т.
д., когда задана скорость или распределение изменений этой величины
по отношению к некоторой другой величине (положение, время и т. д.).

Что такое интеграл?

Интеграл - одно из важнейших понятий математического анализа, которое
возникает при решении задач о нахождении площади под кривой, пройденного пути при
неравномерном движении, массы неоднородного тела, и т. п., а также в задаче о
восстановлении функции по её производной

Ученые стараются все физические
явления выразить в виде
математической формулы. Как
только у нас есть формула, дальше
уже можно при помощи нее
посчитать что угодно. А интеграл
- это один из основных
инструментов работы с
функциями.

Методы интегрирования:

1.Табличный.
2.Сведение к табличному преобразованием подынтегрального
выражения в сумму или разность.
3.Интегрирование с помощью замены переменной (подстановкой).
4.Интегрирование по частям.

Применение интеграла:

◦ Математика
◦ Вычисления S фигур.
◦ Длина дуги кривой.
◦ V тела на S параллельных
сечений.
◦ V тела вращения и т.д
Физика
Работа А переменной силы.
S – (путь) перемещения.
Вычисление массы.
Вычисление момента инерции линии,
круга, цилиндра.
◦ Вычисление координаты центра
тяжести.
◦ Количество теплоты и т.д.



Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

_ _ ___ ___ ___ _____
| || | / _ \ / _ \ |__ \ | ____|
| || |_ | | | | | | | |) | | |__
|__ _| | | | | | | | | / / |___ \
| | | |_| | | |_| | / /_ ___) |
|_| \___/ \___/ |____| |____/

Введите число, изображенное выше:

Подобные документы

    Ознакомление с историей понятия интеграла. Распространение интегрального исчисления, открытие формулы Ньютона–Лейбница. Символ суммы; расширение понятия суммы. Описание необходимости выражения всех физических явлений в виде математической формулы.

    презентация , добавлен 26.01.2015

    Идеи интегрального исчисления в работах древних математиков. Особенности метода исчерпывания. История нахождения формулы объема тора Кеплера. Теоретическое обоснование принципа интегрального исчисления (принцип Кавальери). Понятие определенного интеграла.

    презентация , добавлен 05.07.2016

    История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.

    курсовая работа , добавлен 16.10.2013

    Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.

    контрольная работа , добавлен 23.02.2011

    Условия существования определенного интеграла. Приложение интегрального исчисления. Интегральное исчисление в геометрии. Механические приложение определенного интеграла. Интегральное исчисление в биологии. Интегральное исчисление в экономике.

    курсовая работа , добавлен 21.01.2008

    История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению некоторых задач механики и физики. Моменты и центры масс плоских кривых, теорема Гульдена. Дифференциальные уравнения. Примеры решения задач в MatLab.

    реферат , добавлен 07.09.2009

    Понятие интеграла Стилтьеса. Общие условия существования интеграла Стилтьеса, классы случаев его существования и предельный переход под его знаком. Приведение интеграла Стилтьеса к интегралу Римана. Применение в теории вероятностей и квантовой механике.

    дипломная работа , добавлен 20.07.2009




Определение Интеграл функции аналог суммы бесконечно большого количества бесконечно малых слагаемых. В простейшем случае имеется в виду разбиение области интегрирования, являющейся отрезком, на бесконечно малые отрезки, и сумма произведений значения функции аргумента, принадлежащего каждому отрезку, и длины соответствующего бесконечно малого отрезка области интегрирования, в пределе, при бесконечно мелком разбиении:


Интеграл в древности Интегрирование прослеживается ещё в древнем Египте, примерно в 1800 г. до н. э. Московский математический папирус демонстрирует знание формулы объёма усечённой пирамиды. Первым известным методом для расчёта интегралов является метод исчерпывания Евдокса (примерно 370 до н. э.), который пытался найти площади и объёмы, разрывая их на бесконечное множество частей, для которых площадь или объём уже известны. Этот метод был подхвачен и развит Архимедом, и использовался для расчёта площадей парабол и приближённого расчёта площади круга. Аналогичные методы были разработаны независимо в Китае в 3-м веке н. э. Лю Хуэйем, который использовал их для нахождения площади круга. Этот метод впоследствии использовали Цзу Чунчжи и Цзу Гэн для нахождения объёма шара. Следующий крупный шаг в исчисление интегралов был сделан в Ираке, в XI веке, математиком Ибн ал-Хайсамом (известным как Alhazen в Европе), в своей работе «Об измерении параболического тела» он приходит к уравнению четвёртой степени. Решая эту проблему, он проводит вычисления, равносильные вычислению определённого интеграла, чтобы найти объём параболоида. Используя математическую индукцию, он смог обобщить свои результаты для интегралов от многочленов до четвёртой степени. Таким образом, он был близок к поиску общей формулы для интегралов от полиномов, но он не касается любых многочленов выше четвёртой степени. Следующий значительный прогресс в исчислении интегралов появится лишь в XVI веке. В работах Кавальери с его методом неделимых, а также в работах Ферма, были заложены основы современного интегрального исчисления. Дальнейшие шаги были сделаны в начале XVII века Барроу и Торричелли, которые указали на связь между интегрированием и дифференцированием.


Зачем нужны интегралы? Ученые стараются все физические явления выразить в виде математической формулы. Как только у нас есть формула, дальше уже можно при помощи нее посчитать что угодно. А интеграл это один из основных инструментов работы с функциями. Например, если у нас есть формула круга, мы можем при помощи интеграла посчитать его площадь. Если у нас есть формула шара, то мы можем посчитать его объем. При помощи интегрирования находят энергию, работу, давление, массу, электрический заряд и многие другие величины.


Применение в науке Все процессы в природе, в которых постоянно меняются какие-то параметры, например время, температура, давление, координаты, изучаются и вычисляются только с помощью дифференциального и интегрального исчисления. Интегралы при этом только азы. Без них не вычислишь даже площадь какой-либо криволинейной поверхности. Математика вообще развивает логическое мышление, что всем полезно. Конечно, они забываются, если эти знания по жизни не востребованы. Но это не значит, что их вообще не нужно изучать.


При обучении важно понять смысл мат. аппарата в целом и научиться применять его к решению бытовых задач, выработать определенный стиль мышления при котором ты не будешь полагаться на интуицию при принятии каких-то решений, а сможешь точно оценить результат и следствия поступков. Большинство интегралов получены как мат. модели каких-либо естественных процессов в рамках медицины, биологии, химии, экономики, и т.д. Конкретно математический анализ, внутри которого выводятся методы решения интегралов, помогает понять откуда что взялось.


Применение в технике Так же интегралы нашли себе широкое применение в технике. Например в ПИД-регуляторе с использованием его интегральной составляющей. Её используют для устранения статической ошибки. Она позволяет регулятору со временем учесть статическую ошибку.


Вот примерный принцип работы интегральной составляющей. Интегрирующая составляющая пропорциональна интегралу по времени от отклонения регулируемой величины. Её используют для устранения статической ошибки. Она позволяет регулятору со временем учесть статическую ошибку. Если система не испытывает внешних возмущений, то через некоторое время регулируемая величина стабилизируется на заданном значении, сигнал пропорциональной составляющей будет равен нулю, а выходной сигнал будет полностью обеспечиваться интегрирующей составляющей. Тем не менее, интегрирующая составляющая также может приводить к автоколебаниям при неправильном выборе её коэффициента.




Список используемых источников