Диапазон длин волн инфракрасного излучения. Что лечат инфракрасными лучами? Инфракрасное излучение: естественные и искусственные источники. Большой вред они могут принести

Существуют разные источники инфракрасного излучения. В настоящее время они находятся в бытовой технике, системах автоматики, охраны, а также используются при сушке промышленных изделий. Источники инфракрасного света при правильной эксплуатации не влияют на человеческий организм, поэтому изделия пользуются огромной популярностью.

История открытия

На протяжении многих веков изучением природы и действия света занимались выдающиеся умы.

Инфракрасный свет был обнаружен в начале 19 века с помощью исследований астронома В. Гершеля. Суть его заключалась в изучении нагревательных способностей различных солнечных участков. К ним ученый подносил термометр и следил за возрастанием температуры. Данный процесс наблюдался, когда прибор коснулся красной границы. В. Гершель сделал вывод, что существует некое излучение, которое нельзя увидеть зрительно, но возможно определить с помощью термометра.

Инфракрасные лучи: применение

Они широко распространены в жизни человека и нашли свое применение в разных сферах:

  • Военное дело. Современные ракеты и боеголовки, способные самостоятельно наводиться на цель, снабжены которые являются результатом применения инфракрасного излучения.
  • Термография. Инфракрасное излучение применяют для изучения перегретых или переохлажденных местностей. Инфракрасные снимки также применяются в астрономии для обнаружения небесных тел.
  • Быт. Большую популярность получили , функционирование которых направлено на нагрев предметов интерьера и стен. Затем они отдают тепло пространству.
  • Дистанционное управление. Все существующие пульты для телевизора, печей, кондиционеров и т.д. снабжены инфракрасными лучами.
  • В медицине инфракрасными лучами проводят лечение и профилактику различных заболеваний.

Рассмотрим, где применяются данные элементы.

Инфракрасные газовые горелки

Инфракрасная горелка служит для обогрева различных помещений.

Сначала она использовалась для теплиц, гаражей (то есть нежилых помещений). Однако современные технологии позволили применять ее даже в квартирах. В народе такую горелку называют прибором солнца, так как во включенном состоянии рабочая поверхность оборудования напоминает солнечный свет. Со временем такие устройства заменили масляные обогреватели и конвекторы.

Главные особенности

Инфракрасная горелка отличается от других приборов способом нагрева. Передача теплоты осуществляется за счет которые не заметны для человека. Такая особенность позволяет теплу проникать не только в воздух, но и на предметы интерьера, которые в дальнейшем также повышают температуру в помещении. Инфракрасный излучатель не сушит воздух, потому что лучи в первую очередь направлены на предметы интерьера и стены. В дальнейшем передача теплоты будет осуществляться от стен или предметов непосредственно пространству комнаты, причем процесс происходит за несколько минут.

Положительные стороны

Главным преимуществом таких приборов является быстрый и легких обогрев помещения. Например, чтобы нагреть холодную комнату до температуры +24ºС, потребуется 20 минут. В процессе не возникает движение воздуха, который способствует образованию пыли и больших загрязнений. Поэтому инфракрасный излучатель устанавливают в помещениях те люди, которые имеют аллергию.

Кроме того, инфракрасные лучи, попадая на поверхность с пылью, не вызывают ее горение, и, как следствие, нет запах горелой пыли. Качество обогрева и долговечность прибора зависит от нагревательного элемента. В таких устройствах используется керамический тип.

Стоимость

Цена таких устройств довольна низка и доступна всем слоям населения. Например, газовая горелка стоит от 800 рублей. Целую печку можно приобрести за 4000 рублей.

Сауна

Что собой представляет инфракрасная кабина? Это специальное помещение, которое строится из натуральных сортов дерева (например, кедра). В него устанавливаются инфракрасные излучатели, действующие на дерево.

Во время нагрева выделяются фитонциды — полезные компоненты, которые предотвращают развитие или появление грибков и бактерий.

Такая инфракрасная кабина в народе называется сауной. Внутри помещения температура воздуха достигает 45ºС, поэтому находиться в нем довольно комфортно. Такая температура позволяет прогреть человеческое тело равномерно и глубоко. Поэтому тепло не воздействует на сердечно-сосудистую систему. Во время процедуры удаляются накопленные токсины и шлаки, ускоряется обмен веществ в организме (за счет быстрого движения крови), также ткани обогащаются кислородом. Однако выделение пота — это не главное свойство инфракрасной сауны. Она направлена на улучшение самочувствия.

Влияние на человека

Такие помещения благотворно сказываются на организме человека. Во время процедуры прогреваются все мышцы, ткани и кости. Ускорение кровообращения влияет на обмен веществ, который помогает насытить мышцы и ткани кислородом. Кроме того, инфракрасную кабину посещают с целью профилактики различных заболеваний. Большинство людей оставляет только положительные отзывы.

Негативное воздействие инфракрасного излучения

Источники инфракрасного излучения могут вызывать не только положительное воздействие на организм, но и наносить ему вред.

При длительном воздействии лучей происходит расширение капилляров, что приводит к появлению покраснения или ожогов. Особый вред источники инфракрасного излучения наносят органам зрения — это образование катаракты. В некоторых случаях у человека появляются судороги.

На организм человека влияют короткие лучи, вызывая При повышении температуры головного мозга на несколько градусов наблюдается ухудшение состояния: потемнение в глазах, головокружение, тошнота. Дальнейший рост температуры может привести к образованию менингита.

Ухудшение или улучшение состояния происходит за счет интенсивности электромагнитного поля. Она характеризуется температурой и расстоянием до источника излучения тепловой энергии.

Длинные волны инфракрасного излучения играют особую роль в разных процессах жизнедеятельности. Короткие же больше влияют на человеческий организм.

Как предотвратить вредное влияние ИК-лучей?

Как говорилось ранее, отрицательное воздействие на человеческий организм оказывает короткое тепловое излучение. Рассмотрим примеры, в которых ИК-излучение опасно.

На сегодняшний день вредить здоровью могут инфракрасные нагреватели, излучающие температуру выше 100ºС. Среди них выделяют следующие:

  • Промышленное оборудование, излучающее лучистую энергию. Чтобы предотвратить негативное воздействие, следует использовать спецодежду и теплозащитные элементы, а также проводить профилактические мероприятия среди работающего персонала.
  • Инфракрасный прибор. Самым известным обогревателем является печь. Однако она уже давно вышла из обихода. Все чаще в квартирах, загородных домах и дачах стали использовать электрические инфракрасные нагреватели. В его конструкции предусмотрен нагревательный элемент (в виде спирали), который защищен специальным теплоизолирующим материалом. Такое воздействие лучей не вредит человеческому организму. Воздух в обогреваемой зоне не сушится. Нагреть помещение можно за 30 минут. Сначала инфракрасное излучение нагревает предметы, а уже они и всю квартиру.

Инфракрасное излучение широко применяется в различных сферах, начиная с промышленной и заканчивая медициной.

Однако обращаться с ними следует аккуратно, так как лучи могут оказать негативное воздействие на человека. Все зависит от длины волны и расстояния до нагревательного прибора.

Итак, мы выяснили, какие существуют источники инфракрасного излучения.

Инфракрасное излучение невидимо для человеческого глаза, однако, его испускают все жидкие и твердые вещества. Оно обеспечивает протекание многих процессов на Земле. Применяется в различных областях нашей деятельности.

Все свойства инфракрасного излучения на организм исследованы фототерапевтами. Влияние зависит от длины волны и продолжительности воздействия. Они незаменимы для нормальной жизни.

ИК диапазон находится в промежутке от конца красного видимого спектра до фиолетового (ультрафиолет). Этот интервал разбит на области: длинную, среднюю и короткую. В ближнем свете лучи более опасны. А вот длинноволновые благотворно влияют на организм.

Польза от инфракрасного излучения:

  • использование в медицине для лечения различных заболеваний;
  • научные исследования – помощь в открытиях;
  • благотворно влияет на рост растений;
  • применение в пищевой промышленности для ускорения биохимических превращений;
  • стерилизация продуктов питания;
  • обеспечивает работу техники – радио, телефонов, и других;
  • изготовление различных аппаратов и приборов, в основе действия которых лежит ИК;
  • использование в военных целях для безопасности населения.

Отрицательные аспекты коротковолнового ИК обусловлены температурой нагрева. Чем она выше, тем сильней интенсивность излучения.

Вредные свойства короткого ИК:

  • при воздействии на глаза – катаракта;
  • при попадании на кожу – ожоги, волдыри;
  • при влиянии на мозг – тошнота, головокружение, учащение пульса;
  • при использовании нагревателей с ИК нельзя находиться в непосредственной близости.

Источники излучения

Солнце – главный естественный генератор ИК. Примерно 50 % его излучения в инфракрасном спектре. Благодаря им зародилась жизнь. Солнечная энергия направляется к предметам с более низкой температурой и нагревает их.

Земля поглощает её, и бо́льшую часть возвращает в атмосферу. У всех объектов разные излучающие свойства, которые могут иметь зависимость от нескольких тел.

К искусственным производным относится множество предметов, оснащенных светодиодами. Это лампа накаливания, вольфрамовая нить, обогреватели, некоторые лазеры. Практически все что нас окружает является одновременно источником и поглотителем ИК. Любое нагретое тело излучает невидимый свет.

Применение

Инфракрасные лучи используют в медицине, быту, промышленности, астрономии. Они охватывают много сфер в человеческой жизни. Куда бы он ни пошел, где бы не находился, всюду испытывает ИК воздействие.

Использование в медицине

С давних времен люди заметили целебную силу тепла для лечения болезней. Многие расстройства берутся из-за неблагоприятных окружающих условий. На протяжении жизни организм накапливает вредные вещества.

Инфракрасное излучение давно применяется в медицине. Наиболее полезными качествами обладают длинноволновое ИК. Исследования доказали, что такая терапия стимулирует организм выводить токсины, алкоголь, никотин, свинец, ртуть.

Нормализует процесс обмена веществ, укрепляется иммунитет, многие инфекции проходят, причем исчезают не только симптомы, но и сама болезнь. Здоровье явно становится крепче: снижается давление, появляется хороший сон, мышцы расслабляются, сосуды расширяются, ускоряется кровоток, настроение улучшается, психическое напряжение уходит.

Методы лечения могут быть сосредоточены непосредственно на больном участке или оказать влияние на весь организм.

Особенностью местной физиотерапии является направленное действие ИК на больные части тела. Общие процедуры рассчитаны на весь организм. Улучшение наступает уже после нескольких сеансов.

Пример основных заболеваний, при которых показана ИК терапия:

  • опорно-двигательный аппарат – переломы, артрит, воспаление суставов;
  • дыхательная система – астма, бронхит, пневмония;
  • нервная система – невралгия, беспокойный сон, депрессия;
  • мочевыделительный аппарат – почечная недостаточность, цистит, простатит;
  • кожный покров – ожоги, язвы, рубцы, воспалительные процессы, псориаз;
  • косметология – антицеллюлитный эффект;
  • стоматология – удаление нервов, установка пломбы;
  • сахарный диабет;
  • устранение радиоактивного облучения.

Это список не отражает все аспекты в медицине, где применяются инфракрасные лучи.

Физиопроцедуры имеют противопоказания: беременность, заболевания крови, индивидуальная непереносимость, патологии во время обострения, туберкулез, новообразования, гнойные процессы, склонность к кровотечениям.

Инфракрасный обогреватель

Все популярнее становятся ИК обогреватели. Это объясняется существенными преимуществами с экономического и социально-бытового подхода.

В промышленности и сельском хозяйстве давно установили, что электромагнитные устройства не рассеивают тепло, а нагревают нужный объект фокусируя инфракрасные излучения в виде волны непосредственно на предмет. Так, в большом цехе отапливается рабочее место, а на складе пути следования человека, а не все помещение.

Центральное теплоснабжение осуществляется при помощи горячей воды в батареях. Распределение температуры происходит неравномерно, нагретый воздух поднимается к потолку, а в районе паркета он явно холоднее. В случае с инфракрасным обогревателем проблемы нерационально используемого тепла возможно избежать.

Установки в комплексе с естественной вентиляцией снижают влажность воздуха до нормального, например, на свинофермах и коровниках датчики фиксируют 70-75% и меньше. При использовании такого излучателя увеличивается поголовье животных.

Инфракрасная спектроскопия

Раздел в физике отвечающий за влияние ИК на тела называется инфракрасной спектроскопией. При помощи него решаются задачи количественного и качественного анализа смесей веществ, исследование межмолекулярных взаимодействий, изучение кинетики и характеристик интермедиатов химических реакций.

Этом метод измеряет колебания молекул при помощи спектрометра. Имеет большую табличную базу данных, которая позволяет идентифицировать тысячи веществ основываясь на их атомном отпечатке.

Дистанционное управление

Используется для контролирования за устройствами на расстоянии. Инфракрасные диоды применяют в основном в домашней технике. Например, пульт от телевизора, некоторые смартфоны имеют ИК порт.

Эти лучи не мешают, т.к. невидимы для человеческих глаз.

Термография

Тепловое изображение в инфракрасных лучах, используется в диагностических целях, также в полиграфии, в ветеринарии и других сферах.

При различных заболеваниях температура тела меняется. Кровеносная система усиливает интенсивность в области нарушений, что и отражается на мониторе приборов.

Холодные оттенки – темно-синие, повышение тепла заметно по изменению цвета сначала на зеленый, затем желтый, красный и белый.

Свойства ИК лучей

ИК лучи имеют такую же природу, как и видимый свет, но находятся в другом диапазоне. В связи с этим они подчиняются законам оптики и наделены коэффициентами излучения, отражения, пропускной способности.

Отличительные характеристики:

  • специфической чертой является отсутствие необходимости промежуточного звена при передаче тепла;
  • возможность проходить через некоторые непрозрачные тела;
  • нагревает вещество, поглощаясь им;
  • невидим;
  • оказывает химическое действие на фотопластинки;
  • вызывает внутренний фотоэффект у германия;
  • способен к волновойоптике (интерференции и дифракции);
  • фиксируется фотографическим методам.

Инфракрасное излучение в жизни

Человек излучает и поглощает ИК лучи. Они оказывают местное и общее воздействие. А какие будут последствия – польза или вред, зависит от их частоты.

От людей отходят длинные инфракрасные волны, и желательно получить их же обратно. Физиотерапевтическое лечение базируется на них. Ведь они запускают механизм регенерации и оздоровления органов.

Короткие волны имеют другой принцип действия. Они могут вызывать нагрев внутренних органов.

Также длительное влияние ультрафиолетовых лучей приводит к таким последствиям, как ожог или даже онкология. Медицинские специалисты не рекомендуют пребывать на солнце в дневное время, особенно если с вами ребенок.

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ (ИК-излучение, ИК-лучи), электромагнитное излучение с длинами волн λ от около 0,74 мкм до около 1-2 мм, то есть излучение, занимающее спектральную область между красным концом видимого излучения и коротковолновым (субмиллиметровым) радиоизлучением. Инфракрасное излучение относится к оптическому излучению, однако в отличие от видимого излучения оно не воспринимается человеческим глазом. Взаимодействуя с поверхностью тел, оно нагревает их, поэтому часто его называют тепловым излучением. Условно область инфракрасного излучения разделяют на ближнюю (λ = 0,74-2,5 мкм), среднюю (2,5-50 мкм) и далёкую (50-2000 мкм). Инфракрасное излучение открыто У. Гершелем (1800) и независимо У. Волластоном (1802).

Спектры инфракрасного излучения могут быть линейчатыми (атомные спектры), непрерывными (спектры конденсированных сред) или полосатыми (молекулярные спектры). Оптические свойства (коэффициенты пропускания, отражения, преломления и т.п.) веществ в инфракрасном излучении, как правило, значительно отличаются от соответствующих свойств в видимом или ультрафиолетовом излучении. Многие вещества, прозрачные для видимого света, непрозрачны для инфракрасного излучения определённых длин волн, и наоборот. Так, слой воды толщиной в несколько сантиметров непрозрачен для инфракрасного излучения с λ > 1 мкм, поэтому вода часто используется в качестве теплозащитного фильтра. Пластинки из Ge и Si, непрозрачные для видимого излучения, прозрачны для инфракрасного излучения определённых длин волн, чёрная бумага прозрачна в далёкой ИК-области (такие вещества используют в качестве светофильтров при выделении инфракрасного излучения).

Отражательная способность большинства металлов в инфракрасном излучении значительно выше, чем в видимом излучении, и возрастает с увеличением длины волны (смотри Металлооптика). Так, отражение поверхностей Al, Au, Ag, Cu инфракрасного излучения с λ = 10 мкм достигает 98%. Жидкие и твёрдые неметаллические вещества обладают селективным (зависящим от длины волны) отражением инфракрасного излучения, положение максимумов которого зависит от их химического состава.

Проходя через земную атмосферу, инфракрасное излучение ослабляется вследствие рассеяния и поглощения атомами и молекулами воздуха. Азот и кислород не поглощают инфракрасное излучение и ослабляют его лишь в результате рассеяния, которое для инфракрасного излучения значительно меньше, чем для видимого света. Молекулы Н 2 О, О 2 , О 3 и др., присутствующие в атмосфере, селективно (избирательно) поглощают инфракрасное излучение, причём особенно сильно поглощают инфракрасное излучение пары воды. Полосы поглощения Н 2 О наблюдаются во всей ИК-области спектра, а полосы СО 2 - в её средней части. В приземных слоях атмосферы имеется лишь небольшое число «окон прозрачности» для инфракрасного излучения. Наличие в атмосфере частиц дыма, пыли, мелких капель воды приводит к дополнительному ослаблению инфракрасного излучения в результате его рассеяния на этих частицах. При малых размерах частиц инфракрасное излучение рассеивается меньше, чем видимое излучение, что используют в ИК-фотографии.

Источники инфракрасного излучения. Мощный естественный источник инфракрасного излучения - Солнце, около 50% его излучения лежит в ИК-области. На инфракрасное излучение приходится от 70 до 80% энергии излучения ламп накаливания; его испускают электрическая дуга и различные газоразрядные лампы, все типы электрических обогревателей помещений. В научных исследованиях источниками инфракрасного излучения служат ленточные вольфрамовые лампы, штифт Нернста, глобар, ртутные лампы высокого давления и др. Излучение некоторых типов лазеров также лежит в ИК-области спектра (например, длина волны излучения лазеров на неодимовом стекле составляет 1,06 мкм, гелий-неоновых лазеров - 1,15 и 3,39 мкм, СО 2 -лазеров - 10,6 мкм).

Приёмники инфракрасного излучения основаны на преобразовании энергии излучения в другие виды энергии, доступные для измерения. В тепловых приёмниках поглощённое инфракрасное излучение вызывает повышение температуры термочувствительного элемента, которое и регистрируется. В фотоэлектрических приёмниках поглощение инфракрасного излучения приводит к появлению или изменению силы электрического тока или напряжения. Фотоэлектрические приёмники (в отличие от тепловых) селективны, то есть чувствительны лишь к излучению определённой области спектра. Фоторегистрация инфракрасного излучения осуществляется с помощью специальных фотоэмульсий, однако они чувствительны к нему только для длин волн до 1,2 мкм.

Применение инфракрасного излучения. ИК-излучение широко применяют в научных исследованиях и для решения различных практических задач. Спектры испускания и поглощения молекул и твёрдых тел лежат в ИК-области, их изучают в инфракрасной спектроскопии, в структурных задачах, а также используют в качественном и количественном спектральном анализе. В далёкой ИК-области лежит излучение, возникающее при переходах между зеемановскими подуровнями атомов, ИК-спектры атомов позволяют изучать структуру их электронных оболочек. Фотографии одного и того же объекта, полученные в видимом и инфракрасном диапазонах, вследствие различия коэффициентов отражения, пропускания и рассеяния могут значительно различаться; на ИК-фотографии можно увидеть детали, невидимые на обычной фотографии.

В промышленности инфракрасное излучение используют для сушки и нагрева материалов и изделий, в быту - для обогрева помещений. На основе фотокатодов, чувствительных к инфракрасному излучению, созданы электронно-оптические преобразователи, в которых не видимое глазом ИК-изображение объекта преобразуется в видимое. На основе таких преобразователей построены различные ночного видения приборы (бинокли, прицелы и т.п.), позволяющие в полной темноте обнаруживать объекты, вести наблюдение и прицеливание, облучая их инфракрасным излучением от специальных источников. При помощи высокочувствительных приёмников инфракрасного излучения осуществляют теплопеленгацию объектов по их собственному инфракрасному излучению и создают системы самонаведения на цель снарядов и ракет. ИК-локаторы и ИК-дальномеры позволяют обнаруживать в темноте предметы, температура которых выше температуры окружающей среды, и измерять расстояния до них. Мощное излучение ИК-лазеров используют в научных исследованиях, а также для осуществления наземной и космической связи, для лазерного зондирования атмосферы и т. д. Инфракрасное излучения используется для воспроизведения эталона метра.

Лит.: Шрайбер Г. Инфракрасные лучи в электронике. М., 2003; Тарасов В. В., Якушенков Ю. Г. Инфракрасные системы «смотрящего» типа. М., 2004.

Во все времена инфракрасное излучение окружало человека. До наступления технологического прогресса лучи солнца обеспечивали влияние на человеческий организм, а с появлением бытовой техники, инфракрасное излучение оказывает воздействие и в домашних условиях. Терапевтическое прогревание тканей организма с успехом используется в медицине для физиотерапевтического лечения различных патологий.

Свойства инфракрасного излучения были давно изучены учеными физиками и направлены на получение максимальной выгоды и пользы для человека. Все параметры вредного воздействия были учтены и рекомендованы способы защиты для сохранения здоровья человека.

Инфракрасные лучи: что это?

Невидимое электромагнитное излучение, обеспечивающее сильный тепловой эффект, называется инфракрасным. Длина лучей составляет от 0,74 до 2000 мкм, что находится между микроволновым радиоизлучением и видимыми красными лучами, которые являются самыми длинными в спектре солнца.

Еще в 1800 году астроном из Великобритании Уильям Гершель открыл электромагнитное излучение. Случилось это во время изучения лучей солнца: ученый заметил значительное нагревание приборов и смог дифференцировать невидимое излучение.

У инфракрасного излучения есть второе название – «тепловое». От предметов, способных поддерживать температуру, исходит тепло. Короткие инфракрасные волны греют сильнее, а если тепло ощущается слабое, значит, от поверхности исходят волны с дальним диапазоном. Длина волны инфракрасного излучения бывает трех видов:

  • короткая или ближняя до 2,5 мкм;
  • средняя не более 50 мкм;
  • длинная или дальняя 50–2000 мкм.

Любое тело, которое предварительно нагрелось, испускает инфракрасные лучи, выделяя при этом тепловую энергию. Самым известным природным источником тепла является солнце, а к искусственным можно отнести электрические лампы, бытовую технику, радиаторы, при работе которых выделяется тепло.

Где применяется инфракрасное излучение?

Каждое новое открытие находит свое применение, с извлечением наибольшей пользы для человечества. Открытие инфракрасных лучей помогло справиться со многими проблемами в разных областях от медицины до производственных масштабов.

Самые известные области, где используются свойства невидимых лучей:

  1. С помощью специальных приборов, тепловизоров, можно обнаружить объект на удаленном расстоянии, используя свойства инфракрасного излучения. Любой предмет, способный удерживать температуру на своей поверхности, тем самым обладая выделением инфракрасных лучей. Термографическая камера распознает тепловые лучи и создает точное изображение обнаруживаемого предмета. Данное свойство может использоваться в промышленности и в военной практике.
  2. Для проведения процедуры слежения в военной практике применяются приборы с датчиками, способными определять цель, которая излучает тепло. Кроме того, передается что именно находится в ближайшем окружении, чтобы правильно рассчитать не только траекторию, но и силу удара, чаще всего ракеты.
  3. Активная отдача тепла вместе с лучами применяется в бытовых условиях, используя полезные свойства для обогрева помещения в холодное время года. Радиаторы изготавливаются из металла, который способен передать наибольшее количество тепловой энергии. Такое же действие и у обогревателей. Некоторые бытовые приборы: телевизоры, пылесосы, печи, утюги обладают теми же свойствами.
  4. В промышленности процесс сварки пластмассовых изделий, отжиг осуществляется при помощи инфракрасного излучения.
  5. Инфракрасное облучение применяется в медицинской практике для лечения теплом некоторых патологий, а также для обеззараживания воздуха в помещении с помощью кварцевых ламп.
  6. Составление метеорологических карт невозможно без специальных приборов с датчиками теплового обнаружения, которые с легкостью определяют движение теплого и холодного воздуха.
  7. Для астрономических исследований изготавливаются специальные телескопы, чувствительные к инфракрасным лучам, которым под силу обнаружить космические предметы с разной температурой на поверхности.
  8. В пищевой промышленности для термической обработки круп.
  9. Для проверки денежных купюр используется приборы с инфракрасным излучением, при свете которых можно распознать фальшивые банкноты.

Влияние инфракрасного излучения на организм человека неоднозначно. Разная длина волны способна запустить непредсказуемые реакции. Особенно внимательно нужно относиться к солнечному теплу, которое может нанести вред и стать провоцирующим фактором для запуска негативных патологических процессов в клетках.

Лучи с длинными волнами попадают на кожу и активируют тепловые рецепторы, передавая им приятное тепло. Именно данный диапазон частот активно используется для лечебного воздействия в медицине. Большая часть тепла адсорбируется кожей, попадая на ее поверхность. Слабое воздействие гарантирует приятный нагрев поверхности кожи, не затрагивая внутренних органов.

Волны с длиной волны 9,6 мкм способствуют обновлению эпидермиса, укрепляют иммунитет, оздоравливает организм. Физиотерапия основана на использовании длинных инфракрасных волн, запуская следующие процессы:

  • улучшается кровообращение при расслаблении гладкой мускулатуры после передачи информации в гипоталамус при воздействии на поверхностный слой кожи;
  • нормализуется кровяное давление после расширения сосудов;
  • клетки организма в большей степени снабжаются питательными веществами и кислородом, что улучшает общее состояние;
  • биохимические реакции протекают быстрее, что влияет на процесс обмена веществ;
  • улучшается иммунитет и повышается сопротивляемость организма к патогенным микроорганизмам;
  • ускорение метаболизма помогает вывести токсические вещества и уменьшить зашлакованность.

Патологическое влияние

Противоположное действие оказывают волны с короткой длиной волны. Вред инфракрасного излучения обусловлен интенсивным тепловым эффектом, который вызывают короткие лучи. Сильный тепловой эффект распространяется вглубь тела, вызывая нагревание внутренних органов. Перегревание тканей приводит к обезвоживанию и значительному повышению температуры тела.

Кожные покровы в месте попадания инфракрасных лучей малой длины краснеют и получают термический ожог, иногда второй степени тяжести с появлением волдырей с мутным содержимым. Капилляры на месте поражения расширяются и лопаются, приводя к мелким кровоизлияниям.

Клетки теряют влагу, организм становится ослабленным и подвержен заболеванию инфекциями разного характера. Если инфракрасное излучение попадает в глаза, данный факт оказывает разрушительное действие на зрение. Слизистая глаза становится сухой, сетчатка подвергается негативному влиянию. Хрусталик теряет свою эластичность и прозрачность, что является одним из симптомов катаракты.

Превышение теплового воздействия вызывает усиление воспалительных процессов, если таковые имеются, а также служат благоприятной почвой для возникновения воспаления. Медики утверждают, что превышение температуры на пару градусов может спровоцировать заражение менингитом.

Общее повышение температуры тела приводит к тепловому удару, которое при неоказании помощи может приводить к необратимым последствиям. Основные признаки теплового удара:

  • общая слабость;
  • сильная головная боль;
  • помутнение в глазах;
  • тошнота;
  • учащение сердечных сокращений;
  • появление холодного пота на спине;
  • кратковременная потеря сознания.

Грозное осложнение, связанное с нарушением терморегуляции, возникает, если частота воздействия инфракрасного излучения продолжается длительно. Если человеку не оказать своевременную помощь, клетки головного мозга видоизменяются, а деятельность кровеносной системы угнетается.

Список мероприятий в первые минуты после проявления тревожных симптомов:

  1. Устранить от пострадавшего источник инфракрасного излучения: перенести человека в тень или в место, отдаленное от источника вредного тепла.
  2. Расстегнуть или снять одежду, мешающую глубокому свободному дыханию.
  3. Открыть окно для беспрепятственного прохождения свежего воздуха.
  4. Обтереть прохладной водой или обернуть в мокрую простыню.
  5. На места, где находятся крупные артерии (височная, паховая область, лоб, подмышечные впадины) положить холод.
  6. Если человек находится в сознании, нужно дать выпить прохладной чистой воды, эта мера снизит температуру тела.
  7. При потере сознания следует провести реанимационный комплекс, состоящий из искусственного дыхания и непрямого массажа сердца.
  8. Вызвать бригаду скорой помощи для получения квалифицированной медицинской помощи.

Показания

Для лечебных целей в медицинской практике широко применяется использование длинной тепловой волны. Список заболеваний достаточно велик:

  • повышенное артериальное давление;
  • болевой синдром;
  • поможет убрать лишние килограммы;
  • заболевания желудка и двенадцатиперстной кишки;
  • депрессивные состояния;
  • респираторные заболевания;
  • кожные патологии;
  • ринит, неосложненный отит.

Противопоказания к применению инфракрасного излучения

Польза инфракрасного излучения ценна для человека при отсутствии патологий или отдельных симптомов, при которых недопустимо воздействие инфракрасных лучей:

  • системные заболевания крови, склонность к частым кровотечениям;
  • острые и хронические воспалительные заболевания;
  • наличие гнойной инфекции в организме;
  • злокачественные новообразования;
  • сердечная недостаточность в стадии декомпенсации;
  • беременность;
  • эпилепсия и другие тяжелые неврологические расстройства;
  • детский возраст до трех лет.

Меры защиты от вредных лучей

В зону риска получить коротковолновое инфракрасное излучение входят любители долго проводить время под палящим солнцем, рабочие цехов, где применяются свойства тепловых лучей. Чтобы обезопасить себя, необходимо соблюдать простые рекомендации:

  1. Любителям красивого загара сократить время пребывания на солнце, перед выходом на улицу открытые участки кожи смазывать защитным кремом.
  2. Если рядом находится источник сильного тепла, уменьшить интенсивность нагревания.
  3. При работе в цехах с высокой температурой, работники должны быть снабжены средствами личной защиты: специальная одежда, головные уборы.
  4. Время пребывания в помещениях с высокой температурой должно быть строго регламентировано.
  5. При проведении процедур надевать защитные очки для сохранения здоровья глаз.
  6. В комнатах устанавливать только качественную бытовую технику.

Различные виды излучений окружают человека на улице и в помещениях. Осведомленность о возможных негативных последствиях поможет сохранить здоровье в будущем. Ценность инфракрасного излучения неоспорима для улучшения жизнедеятельности человека, но существует и патологическое влияние, которое нужно ликвидировать, соблюдая нехитрые рекомендации.

Инфракрасные лучи – это электромагнитные волны в невидимой области электромагнитного спектра, которая начинается за видимым красным светом и заканчивается перед микроволновым излучением между частотами 1012 и 5∙1014 Гц (или находится в диапазоне длин волн 1–750 нм). Название происходит от латинского слова infra и означает «ниже красного».

Применение инфракрасных лучей разнообразно. Они используются для визуализации объектов в темноте или в дыму, отопления саун и подогрева крыльев воздушных судов для защиты от обледенения, в ближней связи и при проведении спектроскопического анализа органических соединений.

Открытие

Инфракрасные лучи были обнаружены в 1800 г. британским музыкантом и астрономом-любителем немецкого происхождения Уильямом Гершелем. Он с помощью призмы разделил солнечный свет на составляющие его компоненты и за красной частью спектра с помощью термометра зарегистрировал увеличение температуры.

ИК-излучение и тепло

Инфракрасное излучение часто называют тепловым. Следует, однако, отметить, что оно является лишь его следствием. Тепло – это мера поступательной энергии (энергии движения) атомов и молекул вещества. «Температурные» датчики фактически измеряют не тепло, а только различия в ИК-излучении различных объектов.

Многие учителя физики инфракрасным лучам традиционно приписывают всю тепловую радиацию Солнца. Но это не совсем так. С видимым солнечным светом поступает 50% всего тепла, и электромагнитные волны любой частоты при достаточной интенсивности могут вызвать нагрев. Однако справедливо будет сказать, что при комнатной температуре объекты выделяют тепло в основном в полосе среднего инфракрасного диапазона.

ИК-излучение поглощается и испускается вращениями и вибрациями химически связанных атомов или их групп и, следовательно, многими видами материалов. Например, прозрачное для видимого света оконное стекло ИК-радиацию поглощает. Инфракрасные лучи в значительной степени абсорбируются водой и атмосферой. Хотя они и невидимы для глаз, их можно ощутить кожей.

Земля как источник инфракрасного излучения

Поверхность нашей планеты и облака поглощают солнечную энергию, большую часть которой в виде ИК-радиации отдают в атмосферу. Определенные вещества в ней, в основном пар и капли воды, а также метан, углекислый газ, оксид азота, хлорфторуглероды и гексафторид серы, поглощают в инфракрасной области спектра и переизлучают во всех направлениях, в том числе на Землю. Поэтому из-за парникового эффекта земная атмосфера и поверхность намного теплее, чем если бы вещества, поглощающие ИК-лучи, в воздухе отсутствовали.

Это излучение играет важную роль в теплопередаче и является неотъемлемой частью так называемого парникового эффекта. В глобальном масштабе влияние инфракрасных лучей распространяется на радиационный баланс Земли и затрагивает почти всю биосферную активность. Практически каждый объект на поверхности нашей планеты испускает электромагнитное излучение в основном в этой части спектра.

Области ИК-диапазона

ИК-диапазон часто разделяется на более узкие участки спектра. Немецкий институт стандартов DIN определил такие области длин волн инфракрасных лучей:

  • ближний (0,75-1,4 мкм), обычно используемый в волоконно-оптической связи;
  • коротковолновой (1,4-3 мкм), начиная с которого значительно возрастает поглощение ИК-излучения водой;
  • средневолновой, также называемый промежуточным (3-8 мкм);
  • длинноволновый (8-15 мкм);
  • дальний (15-1000 мкм).

Однако эта схема классификации не используется повсеместно. Например, в некоторых исследованиях указываются следующие диапазоны: ближний (0,75-5 мкм), средний (5-30 мкм) и длинный (30-1000 мкм). Длины волн, используемые в телекоммуникации, подразделяются на отдельные полосы из-за ограничений детекторов, усилителей и источников.

Общая система обозначений оправдана реакциями человека на инфракрасные лучи. Ближняя ИК-область наиболее близка к длине волны, видимой человеческим глазом. Среднее и дальнее ИК-излучение постепенно удаляются от видимой части спектра. Другие определения следуют различным физическим механизмам (таким как пики эмиссии и поглощение воды), а самые новые основаны на чувствительности используемых детекторов. Например, обычные кремниевые сенсоры чувствительны в области около 1050 нм, а арсенид индий-галлия – в диапазоне от 950 нм до 1700 и 2200 нм.

Четкая граница между инфракрасным и видимым светом не определена. Глаз человека значительно менее чувствителен к красному свету, превышающему длину волны 700 нм, однако интенсивное свечение (лазера) можно видеть примерно до 780 нм. Начало ИК-диапазона определяется в разных стандартах по-разному – где-то между этими значениями. Обычно это 750 нм. Поэтому видимые инфракрасные лучи возможны в диапазоне 750–780 нм.

Обозначения в системах связи

Оптическая связь в ближней ИК-области технически подразделяется на ряд полос частот. Это связано с различными источниками света, поглощающими и передающими материалами (волокнами) и детекторами. К ним относятся:

  • О-диапазон 1,260-1,360 нм.
  • Е-диапазон 1,360-1,460 нм.
  • S-диапазон 1,460-1,530 нм.
  • C-диапазон 1,530-1,565 нм.
  • L-диапазон 1,565-1,625 нм.
  • U-диапазон 1,625-1,675 нм.

Термография

Термография, или тепловидение – это тип инфракрасного изображения объектов. Поскольку все тела излучают в ИК-диапазоне, а интенсивность радиации увеличивается с температурой, для ее обнаружения и получения снимков можно использовать специализированные камеры с ИК-датчиками. В случае очень горячих объектов в ближней инфракрасной или видимой области, этот метод называется пирометрией.

Термография не зависит от освещения видимым светом. Следовательно, можно «видеть» окружающую среду даже в темноте. В частности, теплые предметы, в том числе люди и теплокровные животные, хорошо выделяются на более холодном фоне. Инфракрасная фотография ландшафта улучшает отображение объектов в зависимости от их теплоотдачи: голубое небо и вода кажутся почти черными, а зеленая листва и кожа ярко проявляются.

Исторически термография широко использовалась военными и службами безопасности. Кроме того, она находит множество других применений. Например, пожарные используют ее, чтобы видеть сквозь дым, находить людей и локализовать горячие точки во время пожара. Термография может выявить патологический рост тканей и дефекты в электронных системах и схемах из-за их повышенного выделения тепла. Электрики, обслуживающие линии электропередач, могут обнаружить перегревающиеся соединения и детали, что сигнализирует о нарушении их работы, и устранить потенциальную опасность. При нарушении теплоизоляции специалисты-строители могут увидеть утечки тепла и повысить эффективность систем охлаждения или обогрева. В некоторых автомобилях высокого класса тепловизоры устанавливаются для помощи водителю. С помощью термографических изображений можно контролировать некоторые физиологические реакции у людей и теплокровных животных.

Внешний вид и способ работы современной термографической камеры не отличаются от таковых у обычной видеокамеры. Возможность видеть в инфракрасном спектре является настолько полезной функцией, что возможность записи изображений часто является опциональной, и модуль записи не всегда доступен.

Другие изображения

В ИК-фотографии ближний инфракрасный диапазон захватывается с помощью специальных фильтров. Цифровые фотоаппараты, как правило, блокируют ИК-излучение. Однако дешевые камеры, у которых нет соответствующих фильтров, способны «видеть» в ближнем ИК-диапазоне. При этом обычно невидимый свет выглядит ярко-белым. Особенно это заметно во время съемки вблизи освещенных инфракрасных объектов (например, лампы), где возникающие помехи делают снимок блеклым.

Также стоит упомянуть Т-лучевую визуализацию, которая представляет собой получение изображения в дальнем терагерцовом диапазоне. Отсутствие ярких источников делает такие снимки технически более сложными, чем большинство других методов ИК-визуализации.

Светодиоды и лазеры

Искусственные источники инфракрасного излучения включают, помимо горячих объектов, светодиоды и лазеры. Первые представляют собой небольшие недорогие оптоэлектронные устройства, изготовленные из таких полупроводниковых материалов, как арсенид галлия. Они используются в качестве оптоизоляторов и в качестве источников света в некоторых системах связи на основе волоконной оптики. Мощные ИК-лазеры с оптической накачкой работают на основе двуокиси и окиси углерода. Они используются для инициации и изменения химических реакций и разделения изотопов. Кроме того, они применяются в лидарных системах определения дистанции до объекта. Также источники инфракрасного излучения используются в дальномерах автоматических самофокусирующих камер, охранной сигнализации и оптических приборах ночного видения.

ИК-приемники

К приборам обнаружения ИК-излучения относятся термочувствительные устройства, такие как термопарные детекторы, болометры (некоторые из них охлаждаются до температур, близких к абсолютному нулю, чтобы снизить помехи от самого детектора), фотогальванические элементы и фотопроводники. Последние изготавливаются из полупроводниковых материалов (например, кремния и сульфида свинца), электрическая проводимость которых увеличивается при воздействии инфракрасных лучей.

Обогрев

Инфракрасное излучение используется для нагрева – например, для отопления саун и удаления льда с крыльев самолетов. Кроме того, оно все чаще применяется для плавления асфальта во время укладки новых дорог или ремонта поврежденных участков. ИК-излучение может использоваться при приготовлении и подогреве пищи.

Связь

ИК-длины волн применяются для передачи данных на небольшие расстояния, например, между компьютерной периферией и персональными цифровыми помощниками. Эти устройства обычно соответствуют стандартам IrDA.

ИК-связь обычно используется внутри помещений в районах с высокой плотностью населения. Это наиболее распространенный способ дистанционного управления устройствами. Свойства инфракрасных лучей не позволяют им проникать сквозь стены, и поэтому они не взаимодействуют с техникой в соседних помещениях. Кроме того, ИК-лазеры используются в качестве источников света в оптоволоконных системах связи.

Спектроскопия

Инфракрасная радиационная спектроскопия – это технология, используемая для определения структур и составов (главным образом) органических соединений путем изучения пропускания ИК-излучения через образцы. Она основана на свойствах веществ поглощать определенные его частоты, которые зависят от растяжения и изгиба внутри молекул образца.

Характеристики инфракрасного поглощения и излучения молекул и материалов дают важную информацию о размере, форме и химической связи молекул, атомов и ионов в твердых телах. Энергии вращения и вибрации квантуются во всех системах. ИК-излучение энергии hν, испускаемое или поглощаемое данной молекулой или веществом, является мерой разности некоторых внутренних энергетических состояний. Они, в свою очередь, определяются атомным весом и молекулярными связями. По этой причине инфракрасная спектроскопия является мощным инструментом определения внутренней структуры молекул и веществ или, когда такая информация уже известна и табулирована, их количества. ИК-методы спектроскопии часто используются для определения состава и, следовательно, происхождения и возраста археологических образцов, а также для обнаружения подделок произведений искусства и других предметов, которые при осмотре под видимым светом напоминают оригиналы.

Польза и вред инфракрасных лучей

Длинноволновое ИК-излучение применяется в медицине с целью:

  • нормализации артериального давления путем стимуляции кровообращения;
  • очищения организма от солей тяжелых металлов и токсинов;
  • улучшения кровообращения мозга и памяти;
  • нормализации гормонального фона;
  • поддержания водно-солевого баланса;
  • ограничения распространения грибков и микробов;
  • обезболивания;
  • снятия воспаления;
  • укрепления иммунитета.

Вместе с тем ИК-излучение может нанести вред при острых гнойных заболеваниях, кровотечениях, острых воспалениях, болезнях крови, злокачественных опухолях. Неконтролируемое продолжительное воздействие ведет к покраснению кожи, ожогам, дерматиту, тепловому удару. Коротковолновые ИК-лучи опасны для глаз – возможно развитие светобоязни, катаракты, нарушений зрения. Поэтому для отопления должны применяться исключительно источники длинноволнового излучения.