Вещество 98 от массы имеет биологическую. Какие основные элементы и вещества слагают живую клетку? Роль различных элементов, входящих в состав клетки

Тест «Клетка» 2 вариант 5 класс

1. Объект для исследований при работе с микроскопом и штативной лупой размещается

    на предметном столике

    на столе

    на объективе

    на штативе

2. 98% массы любой клетки составляют элементы:

    углерод, водород, кислород, сера

    углерод, водород, кислород, азот

    углерод, водород, железо, азот

    углерод, кальций, кислород, азот

3. Изобретателем микроскопа считают

    Роберт Гук

    Чарлз Дарвин

    Архимед

    Антони ван Левенгук

4. Световой микроскоп способен увеличивать объекты в:

    2-20 раз

    10-25 раз

    200-1000 раз

    80-3600 раз

5. Форма, объем клетки зависит от:

    углеводов

    белков

    жиров

    воды

6. Хлоропласты придают растениям окраску

    зелёную

    малиновую

    фиолетовую

    белую

7. Увеличение микроскопа равно:

    сумме увеличений объектива и окуляра

    произведению увеличений объектива и окуляра

    увеличению объектива

    увеличению окуляра

8. Если на клубень картофеля капнуть раствором йода, то он посинеет. Это доказывает присутствие в нем:

    белков

    жиров

    крахмала

    воды

9. Бесцветное вязкое вещество, находящееся внутри клетки, называется

    целлюлоза

    цитоплазма

    вакуоль

    клеточный сок

10. Зола, оставшаяся после сжигания семян это:

    минеральные соли

    углеводы

    белки

    жиры

11. Особенностью растительной клетки является наличие:

    клеточной стенки из целлюлозы

    ядра

    вакуолей

    хромосом

12. Хранение и передача наследственной информации в клетке осуществляется при помощи:

    белков

    жиров

    углеводов

    нуклеиновых кислот

13. При разрушении межклеточного вещества происходит:

    разъединение клеток и образование межклетников

    разъединение и гибель клеток

    нарушение обмена веществ в клетке

    нарушение перемещения цитоплазмы в клетке

14. Рассчитайте увеличение микроскопа, если его окуляр даёт 10-кратное увеличение, а объектив - 40-кратное увеличение

    400

    4000

15. Основной строительный материал в клетках организма

    жиры

    углеводы

    белки

    вода

16. Соматические клетки человека содержат:

    6 пар хромосом

    23 пары хромосом

    32 пары хромосом

    46 пар хромосом

17. Особые отверстия в клеточной мембране называются

    митохондрии

    вакуоли

    поры

    ворсинки

18. Часть микроскопа и штативной лупы, предназначенная для фокусировки на объекте исследования

    штатив

    тубус

    объектив

    винт

19. Клетки живых организмов открыл учёный

    Антони ван Левенгук

    Роберт Гук

    Роберт Броун

    Карл Линней

20. В растительной клетке целлюлоза входит в состав органоида

    Ядро

    Пластиды

    Клеточная мембрана

    Клеточная оболочка

21. Пластиды могут быть. (Выберите три правильных ответа)

    синими

    белыми

    чёрными

    зелёными

    бесцветными

    красными, жёлтыми или оранжевыми

22. Что за предмет изображен. Сделайте подписи к рисунку.

1

2

3

4

1 –

2 –

3 –

4 –

23. Установите правильную последовательность деления клетки.

A. Удвоение числа хромосом

Б. Увеличение размеров ядра

B. Расхождение парных хромосом к полюсам клетки

Г. Рассасывание оболочки ядра

Д. Выстраивание хромосом в области экватора клетки

Е. Рассасывание ядрышка

Ж. Образование дочерних клеток

З. Деление цитоплазмы

И. Формирование ядра

24. Установите соответствие между возрастом клетки и особенностями её строения и функций:

25. Установите соответствие между процессами жизнедеятельности и особенностями протекания этих процессов.

А

Питание

Рост

Раздражимость

Размножение клеток

Реакция организма на внешние и внутренние раздражители

Поглощение кислорода и выделение углекислого газа

Увеличение размеров клетки

Поглощение питательных веществ и выделение продуктов распада

Клетка – элементарная единица жизни на Земле. Она обладает всеми признаками живого организма: растет, размножается, обменивается с окружающей средой веществами и энергией, реагирует на внешние раздражители. Начало биологической эволюции связано с появлением на Земле клеточных форм жизни. Одноклеточные организмы представляют собой существующие отдельно друг от друга клетки. Тело всех многоклеточных – животных и растений – построено из большего или меньшего числа клеток, которые являются своего рода блоками, составляющими сложный организм. Независимо от того, представляет ли собой клетка целостную живую систему – отдельный организм или составляет лишь его часть, она наделена набором признаков и свойств, общим для всех клеток.

Химический состав клетки

В клетках обнаружено около 60 элементов периодической системы Менделеева, встречающихся и в неживой природе. Это одно из доказательств общности живой и неживой природы. В живых организмах наиболее распространены водород, кислород, углерод и азот, которые составляют около 98% массы клеток. Такое обусловлено особенностями химических свойств водорода, кислорода, углерода и азота, вследствие чего они оказались наиболее подходящими для образования молекул, выполняющих биологические функции. Эти четыре элемента способны образовывать очень прочные ковалентные связи посредством спаривания электронов, принадлежащих двум атомам. Ковалентно связанные атомы углерода могут формировать каркасы бесчисленного множества различных органических молекул. Поскольку атомы углерода легко образуют ковалентные связи с кислородом, водородом, азотом, а также с серой, органические молекулы достигают исключительной сложности и разнообразия строения.

Кроме четырех основных элементов в клетке в заметных количествах (10 ые и 100 ые доли процента) содержатся железо, калий, натрий, кальций, магний, хлор, фосфор и сера. Все остальные элементы (цинк, медь, йод, фтор, кобальт, марганец и др.) находятся в клетке в очень малых количествах и поэтому называются микроэлементами.

Химические элементы входят в состав неорганических и органических соединений. К неорганическим соединениям относятся вода, минеральные соли, диоксид углерода, кислоты и основания. Органические соединения – это белки, нуклеиновые кислоты, углеводы, жиры (липиды) и липоиды. Кроме кислорода, водорода, углерода и азота в их состав могут входить другие элементы. Некоторые белки содержат серу. Составной частью нуклеиновых кислот является фосфор. Молекула гемоглобина включает железо, магний участвует в построении молекулы хлорофилла. Микроэлементы, несмотря на крайне низкое содержание в живых организмах, играют важную роль в процессах жизнедеятельности. Йод входит в состав гормона щитовидной железы – тироксина, кобальт – в состав витамина В 12 гормон островковой части поджелудочной железы – инсулин – содержит цинк. У некоторых рыб место железа в молекулах пигментов, переносящих кислород, занимает медь.

Неорганические вещества

Вода

Н 2 О – самое распространенное соединение в живых организмах. Содержание ее в разных клетках колеблется в довольно широких пределах: от 10% в эмали зубов до 98% в теле медузы, но среднем она составляет около 80% массы тела. Исключительно важная роль воды в обеспечении процессов жизнедеятельности обусловлена ее физико-химическими свойствами. Полярность молекул и способность образовывать водородные связи делают воду хорошим растворителем для огромного количества веществ. Большинство химических реакций, протекающих в клетке, может происходить только в водном растворе. Вода участвует и во многих химических превращениях.

Общее число водородных связей между молекулами воды изменяется в зависимости от t°. При t° таяния льда разрушается примерно 15% водородных связей, при t° 40°С – половина. При переходе в газообразное состояние разрушаются все водородные связи. Этим объясняется высокая удельная теплоемкость воды. При изменении t° внешней среды вода поглощает или выделяет теплоту вследствие разрыва или новообразования водородных связей. Таким путем колебания t° внутри клетки оказываются меньшими, чем в окружающей среде. Высокая теплота испарения лежит в основе эффективного механизма теплоотдачи у растений и животных.

Вода как растворитель принимает участие в явлениях осмоса, играющего важную роль в жизнедеятельности клетки организма. Осмосом называют проникновение молекул растворителя через полупроницаемую мембрану в раствор какого-либо вещества. Полупроницаемыми называются мембраны, которые пропускают молекулы растворителя, но не пропускают молекулы (или ионы) растворенного вещества. Следовательно, осмос – односторонняя диффузия молекул воды в направлении раствора.

Минеральные соли

Большая часть неорганических в-в клетки находится в виде солей в диссоциированном, либо в твердом состоянии. Концентрация катионов и анионов в клетке и в окружающей ее среде неодинакова. В клетке содержится довольно много К и очень много Nа. Во внеклеточной среде, например в плазме крови, в морской воде, наоборот, много натрия и мало калия. Раздражимость клетки зависит от соотношения концентраций ионов Na + , K + , Ca 2+ , Mg 2+ . В тканях многоклеточных животных К входит в состав многоклеточного вещества, обеспечивающего сцепленность клеток и упорядоченное их расположение. От концентрации солей в большой мере зависят осмотическое давление в клетке и ее буферные свойства. Буферностью называется способность клетки поддерживать слабощелочную реакцию ее содержимого на постоянном уровне. Буферность внутри клетки обеспечивается главным образом ионами Н 2 РО 4 и НРО 4 2- . Во внеклеточных жидкостях и в крови роль буфера играют Н 2 СО 3 и НСО 3 — . Анионы связывают ионы Н и гидроксид-ионы (ОН —), благодаря чему реакция внутри клетки внеклеточных жидкостей практически не меняется. Нерастворимые минеральные соли (например, фосфорнокислый Са) обеспечивает прочность костной ткани позвоночных и раковин моллюсков.

Органические вещества клетки


Белки

Среди органических веществ клетки белки стоят на первом месте как по количеству (10 – 12% от общей массы клетки), так и по значению. Белки представляют собой высокомолекулярные полимеры (с молекулярной массой от 6000 до 1 млн. и выше), мономерами которых являются аминокислоты. Живыми организмами используется 20 аминокислот, хотя их существует значительно больше. В состав любой аминокислоты входит аминогруппа (-NH 2), обладающая основными свойствами, и карбоксильная группа (-СООН), имеющая кислотные свойства. Две аминокислоты соединяются в одну молекулу путем установления связи HN-CO с выделением молекулы воды. Связь между аминогруппой одной аминокислоты и карбоксилом другой называется пептидной. Белки представляют собой полипептиды, содержащие десятки и сотни аминокислот. Молекулы различных белков отличаются друг от друга молекулярной массой, числом, составом аминокислот и последовательностью расположения их в полипептидной цепи. Понятно поэтому, что белки отличаются огромным разнообразием, их количество у всех видов живых организмов оценивается числом 10 10 – 10 12 .

Цепь аминокислотных звеньев, соединенных ковалентное пептидными связями в определенной последовательности, называется первичной структурой белка. В клетках белки имеют вид спирально закрученных волокон или шариков (глобул). Это объясняется тем, что в природном белке полипептидная цепочка уложена строго определенным образом в зависимости от химического строения входящих в ее состав аминокислот.

Вначале полипептидная цепь сворачивается в спираль. Между атомами соседних витков возникает притяжение и образуются водородные связи, в частности, между NH- и СО- группами, расположенными на соседних витках. Цепочка аминокислот, закрученная в виде спирали, образует вторичную структуру белка. В результате дальнейшей укладки спирали возникает специфичная для каждого белка конфигурация, называемая третичной структурой. Третичная структура обусловлена действием сил сцепления между гидрофобными радикалами, имеющимися у некоторых аминокислот, и ковалентными связями между SH- группами аминокислоты цистеина (S-S- связи). Количество аминокислот гидрофобными радикалами и цистеина, а также порядок их расположения в полипептидной цепочке специфичны для каждого белка. Следовательно, особенности третичной структуры белка определяются его первичной структурой. Биологическую активность белок проявляет только в виде третичной структуры. Поэтому замена даже одной аминокислоты в полипептидной цепочке может привести к изменению конфигурации белка и к снижению или утрате его биологической активности.

В некоторых случаях белковые молекулы объединяются друг с другом и могут выполнять свою функцию только в виде комплексов. Так, гемоглобин – это комплекс из четырех молекул и только в такой форме способен присоединять и транспортировать О. подобные агрегаты представляют собой четвертичную структуру белка. По своему составу белки делятся на два основных класса – простые и сложные. Простые белки состоят только из аминокислот нуклеиновые кислоты (нуклеотиды), липиды (липопротеиды), Ме (металлопротеиды), Р (фосфопротеиды).

Функции белков в клетке чрезвычайно многообразны. Одна из важнейших – строительная функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внутриклеточных структур. Исключительно важное значение имеет ферментативная (каталитическая) роль белков. Ферменты ускоряют химические реакции, протекающие в клетке, в 10 ки и 100 ни миллионов раз. Двигательная функция обеспечивается специальными сократительными белками. Эти белки участвуют во всех видах движений, к которым способны клетки и организмы: мерцание ресничек и биение жгутиков у простейших, сокращение мышц у животных, движение листьев у растений и др. Транспортная функция белков заключается в присоединении химических элементов (например, гемоглобин присоединяет О) или биологически активных веществ (гормонов) и переносе их к тканям и органам тела. Защитная функция выражается в форме выработки особых белков, называемых антителами, в ответ на проникновение в организм чужеродных белков или клеток. Антитела связывают и обезвреживают чужеродные вещества. Белки играют немаловажную роль как источники энергии. При полном расщеплении 1г. белков выделяется 17,6 кДж (~4,2 ккал).

Углеводы

Углеводы, или сахариды – органические вещества с общей формулой (СН 2 О) n . У большинства углеводов число атомов Н вдвое больше числа атомов О, как в молекулах воды. Поэтому эти вещества и были названы углеводами. В живой клетке углеводы находятся в количествах, не превышающих 1-2, иногда 5% (в печени, в мышцах). Наиболее богаты углеводами растительные клетки, где их содержание достигает в некоторых случаях 90% от массы сухого вещества (семена, клубни картофеля и т.д.).

Углеводы бывают простые и сложные. Простые углеводы называются моносахаридами. В зависимости от числа атомов углевода в молекуле моносахариды называются триозами, тетрозами, пентозами или гексозами. Из шести углеродных моносахаридов – гексоз – наиболее важное значение имеют глюкоза, фруктоза и галактоза. Глюкоза содержится в крови (0,1-0,12%). Пентозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ. Если в одной молекуле объединяются два моносахарида, такое соединение называется дисахаридом. Пищевой сахар, получаемый из тростника или сахарной свеклы, состоит из одной молекулы глюкозы и одной молекулы фруктозы, молочный сахар – из глюкозы и галактозы.

Сложные углеводы, образованные многими моносахаридами, называются полисахаридами. Мономером таких полисахаридов, как крахмал, гликоген, целлюлоза, является глюкоза. Углеводы выполняют две основные функции: строительную и энергетическую. Целлюлоза образует стенки растительных клеток. Сложный полисахарид хитин служит главным структурным компонентом наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1 г. углеводов освобождается 17,6 кДж (~4,2 ккал). Крахмал у растений и гликоген у животных откладываются в клетках и служат энергетическим резервом.

Нуклеиновые кислоты

Значение нуклеиновых кислот в клетке очень велико. Особенности их химического строения обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этапе индивидуального развития. Поскольку большинство свойств и признаков клеток обусловлено белками, то понятно, что стабильность нуклеиновых кислот – важнейшее условие нормальной жизнедеятельности клеток и целых организмов. Любые изменения структуры клеток или активности физиологических процессов в них, влияя, таким образом, на жизнедеятельность. Изучение структуры нуклеиновых кислот имеет исключительно важное значение для понимания наследования признаков у организмов и закономерностей функционирования, как отдельных клеток, так и клеточных систем – тканей и органов.

Существуют 2 типа нуклеиновых кислот – ДНК и РНК. ДНК – полимер, состоящий из двух нуклеотидных спиралей, заключенных так, что образуется двойная спираль. Мономеры молекул ДНК представляют собой нуклеотиды, состоящие из азотистого основания (аденина, тимина, гуанина или цитозина), углевода (дезоксирибозы) и остатка фосфорной кислоты. Азотистые основания в молекуле ДНК соединены между собой неодинаковым количеством Н-связей и располагаются попарно: аденин (А) всегда против тимина (Т), гуанин (Г) против цитозина (Ц).

Нуклеотиды соединены друг с другом не случайно, а избирательно. Способность к избирательному взаимодействию аденина с тимином и гуанина с цитозином называется комплементарностью. Комплементарное взаимодействие определенных нуклеотидов объясняется особенностями пространственного расположения атомов в их молекулах, которые позволяют им сближаться и образовывать Н-связи. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар (дезоксирибозу) и остаток фосфорной кислоты. РНК так же, как и ДНК, представляет собой полимер, мономерами которого являются нуклеотиды. Азотистые основания трех нуклеотидов те же самые, что входят в состав ДНК (А, Г, Ц); четвертое – урацил (У) – присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК отличаются от нуклеотидов ДНК и по строению входящего в их состав углевода (рибоза вместо дизоксирибозы).

В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого. По структуре различаются двух цепочечные РНК. Двух цепочечные РНК являются хранителями генетической информации у ряда вирусов, т.е. выполняют у них функции хромосом. Одно цепочечные РНК осуществляют перенос информации о структуре белков от хромосомы к месту их синтеза и участвуют в синтезе белков.

Существует несколько видов одно цепочечной РНК. Их названия обусловлены выполняемой функцией или местом нахождения в клетке. Большую часть РНК цитоплазмы (до 80-90%) составляет рибосомальная РНК (рРНК), содержащаяся в рибосомах. Молекулы рРНК относительно невелики и состоят в среднем из 10 нуклеотидов. Другой вид РНК (иРНК), переносящие к рибосомам информацию о последовательности аминокислот в белках, которые должны синтезироваться. Размер этих РНК зависит от длины участка ДНК, на котором они были синтезированы. Транспортные РНК выполняют несколько функций. Они доставляют аминокислоты к месту синтеза белка, «узнают» (по принципу комплементарности) триплет и РНК, соответствующий переносимой аминокислоте, осуществляют точную ориентацию аминокислоты на рибосоме.

Жиры и липиды

Жиры представляют собой соединения жирных высокомолекулярных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде – они гидрофобны. В клетке всегда есть и другие сложные гидрофобные жироподобные вещества, называемые липоидами. Одна из основных функций жиров – энергетическая. В ходе расщепления 1 г. жиров до СО 2 и Н 2 О освобождается большое количество энергии – 38,9 кДж (~9,3 ккал). Содержание жира в клетке колеблется в пределах 5-15% от массы сухого вещества. В клетках живой ткани количество жира возрастает до 90%. Главная функция жиров в животном (и отчасти - растительном) мире - запасающая.

При полном окислении 1 г жира (до углекислого газа и воды) выделяется около 9 ккал энергии. (1 ккал = 1000 кал; калория (кал, cal) - внесистемная единица количества работы и энергии, равная количеству теплоты, необходимому для нагревания 1 мл воды на 1 °C при стандартном атмосферном давлении 101,325 кПа; 1 ккал = 4,19 кДж). При окислении (в организме) 1 г белков или углеводов выделяется только около 4 ккал/г. У самых разных водных организмов - от одноклеточных диатомовых водорослей до гигантских акул - жир случит «поплавком», уменьшая среднюю плотность тела. Плотность животных жиров составляет около 0,91-0,95 г/см³. Плотность костной ткани позвоночных близка к 1,7-1.8 г/см³, а средняя плотность большинства других тканей близка к 1 г/см³. Понятно, что жира нужно довольно много, чтобы «уравновесить» тяжелый скелет.

Жиры и липиды выполняют и строительную функцию: они входят в состав клеточных мембран. Благодаря плохой теплопроводности жир способен к защитной функции. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, образуя слой толщиной до 1 м. Образование некоторых липоидов предшествует синтезу ряда гормонов. Следовательно, этим веществам присуща и функция регуляции обменных процессов.

"Биология. Живой организм. 6 класс". Н.И. Сонин

Химический состав растительной и животной клеток

Вопрос 1.
В состав клетки входит около 80 химических элементов периодической системы Д. И. Менделеева. Все эти элементы встречаются и в неживой природе, что служит одним из доказательств общности живой и неживой природы. Однако соотношение химических элементов в живых организмах иное, чем в объектах неодушевленной природы. В живом организме большинство элементов находится в виде химических соединений - веществ, растворенных в воде.Только в живых организмах содержатся органические вещества: белки, жиры, углеводы и нуклеиновые кислоты

Вопрос 2.
Химический состав растительной и животной клеток сходен. Все живые организмы состоят из одних и тех же элементов, неорганических и органических соединений. Но содержание разных элементов в различных клетках отличается. В каждый тип клеток входит неодинаковое количество определенных органических молекул. В растительных клетках преобладают сложные углеводы (клетчатка, крахмал), в животных больше белков и жиров. Каждая из групп органических веществ (белки, углеводы, жиры, нуклеиновые кислоты) в любом типе клеток выполняет свойственные ей функции (нуклеиновая кислота хранение и передачу наследственной информации, угле- воды - энергетическую и т.

Вопрос 3.
В клетке обнаружены многие элементы периодической системы Менделеева. Функции 27 из них определены. Наиболее распространены углерод, водород, азот, кислород, фосфор и сера. Они составляют 99% общей массы клетки.
Химические элементы, входящие в состав клеток, делят на три группы: макроэлементы , микроэлементы , ультрамикроэлементы .
1. Макроэлементы : С, Н, N, Са, К, Мg, Nа, Fе, S, Р, С1. На долю этих элементов приходится более 99% всей массы клетки. Концентрация некоторых из них велика. На кислород приходится 65-75%; углерод - 15-18%; азот - 1,5-3%.
2. Микроэлементы : Си, В, Со, Мо, Мn, Ni, Вr, I и другие. На их долю в клетке суммарно приходится более 0,1%; концентрация каждого не превышает 0,001%. Это ионы металлов, входящие в состав биологически активных веществ (гормонов, ферментов и др.). Например, кобальт входит в состав витамина ВО, С, Н, N, Са, К, Мg, Nа, Fе 12 , участвующего в кроветворении, а фтор - в клетки эмали зубов.
3. Ультрамикроэлементы : уран, золото, бериллий, ртуть, цезий, селен и другие. Их концентрация не превышает 0,000001%. Физиологическая роль многих из них не установлена.

Вопрос 4.
Органические соединения составляют в среднем 10% массы клетки живого организма. К ним относятся биологические полимеры - белки, нуклеиновые кислоты и углеводы, а также жиры и ряд небольших молекул -

Вопрос 5.
Белки - высокомолекулярные полимерные органические вещества, определяющие структуру и жизнедеятельность клетки и организма в целом. Белки составляют 10-18% от общей массы клетки.
Белки выполняют следующие функции:
ферментативную (например, амилаза, расщепляет углеводы);
структурную (например, входят в состав мембран клетки);
рецепторную (например, родопсин, способствует лучшему зрению);
транспортную (например, гемоглобин, переносит кислород или диоксид углерода);
защитную (например, иммуноглобулины, участвуют в образовании иммунитета);
двигательную (например, актин, миозин, участвуют в сокращении мышечных волокон);
гормональную (например, инсулин, превращает глюкозу в гликоген);
энергетическую (при расщеплении 1 г белка выделяется 4,2 ккал энергии).

Вопрос 6.
Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1г углеводов освобождается 17,6 кДж энергии. Крахмал у растений и гликоген у животных, откладываясь в клетках, служит энергетическим резервом. Живые организмы могут запасать углеводы в виде крахмала (у растений) и гликогена (у животных и грибов). В клубнях картофеля крахмал может составлять до 80% массы, а у животных особенно много углеводов в клетках печени и мышцах - до 5%.
Углеводы выполняют и другие функции, например опорную и защитную. Например, целлюлоза образует стенки растительных клеток: сложный полисахарид хитин - главный структурный компонент наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Входят в состав ДНК, РНК и АТФ в виде дезоксирибозы и рибозы.

Вопрос 7.
Жиры выполняют в организме ряд функций:
структурная (принимают участие в построении мембраны);
энергетическая (при распаде в организме 1 г жира выделяется 9,2 ккал энергии - в 2,5 раза больше, чем при распаде того же количества углеводов);
защитная (от потери тепла, механических повреждений);
жир - источник эндогенной воды (при окислении 10 г жира выделяется 11 г воды). Это очень важно для животных, впадающих в зимнюю спячку, - сусликов, сурков: благодаря своим подкожным жировым запасам, они могут не пить в это время до двух месяцев. Верблюды во время переходов по пустыне обходятся без питья до двух недель - необходимую организму воду они извлекают из своих горбов - вместилищ жира.
регуляция обмена веществ (например, стероидные гормоны - кортикостерон и др.).

Вопрос 8.
Самое распространенное неорганическое соединение в живых организмах - вода. Ее содержание и клетках разного типа колеблется в широких пределах: в клетках эмали зубов воды около 10%, а в клетках размножающегося зародыша - более 90%. В теле медузы воды до 98%. Но в среднем в многоклеточном организме вода составляет около 80% массы тела. Её основные функции следующие:
1. Универсальный растворитель.
2. Среда, в которой протекают биохимические реакции.
3. Определяет физиологические свойства клетки (ее упругость, объем).
4. Участвует в химических реакциях.
5. Поддерживает тепловое равновесие клетки и организма в целом благодаря высокой теплоемкости и теплопроводности.
6. Основное средство для транспорта веществ.

Вопрос 9.
К углеводам относят следующие природные органические соединения: глюкозу, фруктозу, сахарозу, мальтозу, лактозу, рибозу, дезоксирибозу, хитин, крахмал, гликоген и целлюлозу.

Вопрос 10.
Значение нуклеиновых кислот очень велико. Особенности их химического строения обеспечивают возможность хранения, переноса в цитоплазму и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой клетке. Они входят в состав хромосом - особых структур, расположенных в клеточном ядре. Нуклеиновые кислоты находятся также в цитоплазме и ее органоидах.

Вопрос 11.
В земной коре наиболее распространены кремний, алюминий, кислород и натрий (около 90%). В живых организмах около 98% массы составляют четыре элемента: водород, кислород, углерод и азот. Такое различие обусловлено особенностями химических свойств перечисленных элементов, вследствие чего они оказались наиболее подходящими для формирования молекул, выполняющих биологические функции. Водород, кислород, углерод и азот способны образовывать прочные химические связи, благодаря чему получаются самые разнообразные химические соединения. В состав живых организмов входят органические вещества (белки, жиры, углеводы, нуклеиновые кислоты) и неорганические вещества (вода, минеральные соли).

В клетке встречается около 70 химических элементов Периодической системы Д. И. Менделеева, однако содержание этих элементов существенно отличается от их концентраций в окружающей среде, что доказывает единство органического мира.

Химические элементы, имеющиеся в клетке, делят на три большие группы: макроэлементы, мезоэлементы (олигоэлементы) и микроэлементы .
Содержание макроэлементов составляет около 98 % массы клетки. К ним относятся углерод, кислород, водород и азот, входящие в состав основных органических веществ. Мезоэлементы - это сера, фосфор, калий, кальций, натрий, железо, магний, хлор, составляющие в сумме около 1,9 % массы клетки. Сера и фосфор являются компонентами важнейших органических соединений. Химические элементы, концентрация которых в клетке около 0,1 %, относятся к микроэлементам . Это цинк, йод, медь, марганец, фтор, кобальт и др.
Вещества клетки делят на неорганические и органические. К неорганическим веществам относятся вода и минеральные соли.
Благодаря своим физико-химическим свойствам вода в клетке является растворителем, средой для протекания реакций, исходным веществом и продуктом химических реакций, выполняет транспортную и терморегуляторные функции, придает клетке упругость, обеспечивает ту prop растительной клетки.

Минеральные соли в клетке могут находиться в растворенном или не растворенном состояниях. Растворимые соли диссоциируют на ионы. Наиболее важными катионами являются калий и натрий, облегчающие перенос веществ через мембрану и участвующие в возникновении и проведении нервного импульса; кальций, который принимает участие в процессах сокращения мышечных волокон и свертывании крови, магний, входящий в состав хлорофилла, и железо, входящее в состав ряда белков, в том числе гемоглобина. Цинк входит в состав молекулы гормона поджелудочной железы - инсулина, медь требуется для процессов фотосинтеза и дыхания. Важнейшими анионами являются фосфат-анион, входящий в состав АТФ и нуклеиновых кислот, и остаток угольной кислоты, смягчающий колебания рН среды. Недостаток кальция и фосфора приводит к рахиту, нехватка железа - к анемии.

Органические вещества клетки представлены углеводами, липидами, белками, нуклеиновыми кислотами, АТФ, витаминами и гормонами.
В состав углеводов входят в основном три химических элемента: углерод, кислород и водород. Их общая формула C m (H 2 0) n . Различают простые и сложные углеводы. Простые углеводы {моносахариды) содержат единственную молекулу сахара. Их классифицируют по количеству углеродных атомов, например, пентозы (С 5) и гексозы (С 6). К пентозам относятся рибоза и дезоксирибоза. Рибоза входит в состав РНК и АТФ. Дезоксирибоза является компонентом ДНК. Гексозы - это глюкоза, фруктоза, галактоза и др. Они принимают активное участие в обмене веществ в клетке и входят в состав сложных углеводов - олигосахаридов и полисахаридов. К олигосахаридам (дисахаридам) относятся сахароза (глюкоза + фруктоза), лактоза или молочный сахар (глюкоза+галактоза) и др.

Примерами полисахаридов являются крахмал, гликоген, целлюлоза и хитин. Углеводы выполняют в клетке пластическую (строительную), энергетическую (энергетическая ценность расщепления 1 г углеводов - 17,6 кДж), запасающую и опорную функции. Углеводы могут также входить в состав сложных липидов и белков.
Липиды - это группа гидрофобных веществ. К ним относят жиры, стероиды воска, фосфолипиды и т. д.

Жир - это сложный эфир трехатомного спирта глицерина и высших органических (жирных) кислот. В молекуле жира можно выделить гидрофильную часть - «головку» (остаток глицерина) и гидрофобную часть - «хвосты» (остатки жирных кислот), поэтому в воде молекула жира ориентируется строго определенным образом: гидрофильная часть направлена к воде, а гидрофобная - от нее.
Липиды выполняют в клетке пластическую (строительную), энергетическую (энергетическая ценность расщепления 1 г жира - 38,9 кДж), запасающую, защитную (амортизационную) и регуляторную (стероидные гормоны) функции.
Белки - это биополимеры, мономерами которых являются аминокислоты. Аминокислоты содержат аминогруппу, карбоксильную группу и радикал. Отличаются аминокислоты только радикалами. В состав белков входит 20 основных аминокислот. Соединяются аминокислоты между собой с образованием пептидной связи. Цепочка из более чем 20 аминокислот называется полипептидом или белком. Белки образуют четыре основные структуры: первичную, вторичную, третичную и четвертичную.
- это последовательность аминокислот, соединенных пептидной связью.

Вторичная структура - это спираль, или складчатая структура, удерживаемая водородными связями между атомами кислорода и водорода пептидных группировок разных витков спирали или складок. Третичная структура (глобула) удерживается гидрофобными, водородными, дисульфидными и другими связями.

Третичная структура характерна для большинства белков организма, например, миоглобина мышц.

Четвертичная структура наиболее сложная, образованная несколькими полипептидными цепями, соединенными в основном теми же связями, что и в третичной. Четвертичная структура характерна для гемоглобина, хлорофилла и др.
Белки могут быть простыми и сложными . Простые белки состоят только из аминокислот, тогда как сложные белки (липопротеины, хромопротеины, гликопротеины, нуклеопротеины и др.) содержат белковую и небелковую части. Например, в состав гемоглобина помимо четырех полипептидных цепей белка глобина входит небелковая часть - гем, в центре которой находится ион железа, придающий гемоглобину красную окраску.
Функциональная активность белков зависит от условий окружающей среды. Утрата белковой молекулой своей структуры вплоть до первичной называется денатурацией. Обратный процесс восстановления вторичной и более высоких структур - это ренатурация. Полное разрушение белковой молекулы называется деструкцией.
Белки выполняют в клетке ряд функций: пластическую (строительную), каталитическую (ферментативную), энергетическую (энергетическая ценность расщепления 1 г белка - 17,6 кДж), сигнальную (рецепторную), сократительную (двигательную), транспортную , защитную , регуляторную , запасающую .
Нуклеиновые кислоты - это биополимеры, мономерами которых являются нуклеотиды. В состав нуклеотида входят азотистое основание, остаток сахара-пентозы и остаток ортофосфорной кислоты. Выделяют два типа нуклеиновых кислот: рибонуклеиновую (РНК) и дезоксири-бонуклеиновую (ДНК).
ДНК включает четыре типа нуклеотидов: аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). В состав этих нуклеотидов входит сахар де-зоксирибоза. Для ДНК установлены правила Чаргаффа:
1) количество адениловых нуклеотидов в ДНК равно количеству тимидиловых (А = Т);
2) количество гуаниловых нуклеотидов в ДНК равно количеству цитидиловых (Г = Ц);
3) сумма адениловых и гуаниловых нуклеотидов равна сумме тимидиловых и цитидиловых (А + Г = Т + Ц).
Структура ДНК была открыта Ф. Криком и Д. Уотсоном (Нобелевская премия по физиологии и медицине 1962 г.). Молекула ДНК представляет собой двуцепочечную спираль. Нуклеотиды соединяются между собой через остатки фосфорной кислоты, образуя фосфодиэфирную связь, при этом азотистые основания направлены вовнутрь. Расстояние между нуклеотидами в цепи равно 0,34 нм.
Нуклеотиды разных цепей соединяются между собой водородными связями по принципу комплементарности: аденин соединяется с тими-ном двумя водородными связями (А = Т), а гуанин с цитозином - тремя (Г = Ц).

Важнейшим свойством ДНК является способность к репликации (самоудвоению). Основной функцией ДНК является хранение и передача наследственной информации.

Она сосредоточена в ядре, митохондриях и пластидах.
В состав РНК входят также четыре нуклеотида: аденин (А), ура-цил (У), гуанин (Г) и цитозин (Ц). Остаток сахара-пентозы в ней представлен рибозой. РНК - в основном одноцепочечные молекулы. Выделяют три вида РНК: информационную (и-РНК), транспортную (т-РНК) и рибосомальную (р-РНК).

Все они принимают активное участие в процессе реализации наследственной информации, которая с ДНК переписывается на и-РНК, а на последней осуществляется уже синтез белка, т-РНК в процессе синтеза белка приносит аминокислоты к рибосомам, р-РНК входит в состав самих рибосом.

111

КСЕ. Тема 4.

1. Какие основные элементы и вещества слагают живую клетку?

В зависимости от того, в каком количестве входят химические элементы в состав веществ, образующих живой организм, принято выделять несколько групп атомов. Первую группу (около 98% массы клетки) об­разуют четыре элемента: водород, кислород, углерод и азот. Их называют макроэлементами. Это главные компоненты всех органических соединений. Вместе с двумя элементами второй группы - серой и фосфором, являющимися необ­ходимыми составными частями молекул биологических по­лимеров (от греч. polys - много; meros - часть) - белков и нуклеиновых кислот, их часто называют биоэлементами.

В меньших количествах в состав клетки, кроме упомя­нутых фосфора и серы, входят 6 элементов: калий и натрий, кальций и магний, железо и хлор. Каждый из них выполняет важную функцию в клетке. Например, Na, К и Cl обеспечи­вают проницаемость клеточных мембран для различных ве­ществ и проведение импульса по нервному волокну. Са и Р участвуют в формировании межклеточного вещества костной ткани, определяя прочность кости. Кроме того, Са - один из факторов, от которых зависит нормальная свертывае­мость крови. Железо входит в состав гемоглобина - белка эритроцитов, участвующего в переносе кислорода от легких к тканям. Наконец, Mg в клетках растений включен в хло­рофилл - пигмент, обусловливающий фотосинтез, а у жи­вотных входит в состав биологических катализаторов - ферментов, участвующих в биохимических превращениях.

Все остальные элементы - третья группа (цинк, медь, йод, фтор и др.) содержатся в клетке в очень малых количе­ствах. Общий их вклад в массу клетки всего 0,02%. Поэто­му их называют микроэлементами. Однако это не означает, что они меньше нужны организму, чем другие элементы. Микроэлементы также важны для живого организма, но включаются в его состав в меньших количествах. Цинк, например, входит в молекулу гормона поджелудочной железы - инсулина, который участвует в регуляции обме­на углеводов, а йод - необходимый компонент тирокси­на - гормона щитовидной железы, регулирующего интен­сивность обмена веществ всего организма в целом и его рост в процессе развития.

Все перечисленные химические элементы участвуют в по­строении организма в виде ионов либо в составе тех или иных соединений - молекул неорганических и органиче­ских веществ.

Неорганические вещества, входящие в состав клетки

Вода. Самое распространенное неорганическое соедине­ние в живых организмах - вода. Ее содержание колеблется в широких пределах: в клетках эмали зубов воды около 10%, а в клетках развивающегося зародыша - более 90%. В сред­нем в многоклеточном организме вода составляет около 80% массы тела.

Роль воды в клетке очень велика. Ее функции во многом определяются химической природой. Дипольный характер строения молекул обусловливает способность воды активно вступать во взаимодействие с различными веществами. Ее молекулы вызывают расщепление ряда водорастворимых веществ на катионы и анионы. В результате этого ионы бы­стро вступают в химические реакции. Большинство хими­ческих реакций представляет собой взаимодействие между растворимыми в воде веществами.

Таким образом, полярность молекул и способность обра­зовывать водородные связи делают воду хорошим раствори­телем для огромного количества неорганических и органи­ческих веществ. Кроме того, в качестве растворителя вода обеспечивает как приток веществ в клетку, так и удаление из нее продуктов жизнедеятельности, поскольку большин­ство химических соединений может проникнуть через на­ружную клеточную мембрану только в растворенном виде.

Не менее важна и чисто химическая роль воды. Под дей­ствием некоторых катализаторов - ферментов - она всту­пает в реакции гидролиза, т. е. реакции, при которых к сво­бодным валентностям различных молекул присоединяются группы ОН - или Н - воды. В результате образуются новые вещества с новыми свойствами.

Вода в известной степени является теплорегулятором; за счет хорошей теплопроводности и большой теплоемкости воды, при изменении температуры окружающей среды, внутри клетки температура остается неизменной или ее ко­лебания оказываются значительно меньшими, чем в окру­жающей клетку среде.

Минеральные соли. Большая часть неорганических ве­ществ клетки находится в виде солей - либо диссоцииро­ванных на ионы, либо в твердом состоянии. Среди первых большое значение имеют катионы К - , Na + Са 2+ , которые обеспечивают такое важнейшее свойство живых организ­мов, как раздражимость. В тканях многоклеточных живот­ных кальций входит в состав межклеточного «цемента», обусловливающего сцепление клеток между собой и упоря­доченное их расположение в тканях. От концентрации солей внутри клетки зависят буферные свойства клетки.

Буферностью называют способность клетки поддержи­вать слабощелочную реакцию своего содержимого на посто­янном уровне.

Нерастворимые минеральные соли, например фосфорно­кислый кальций, входят в состав межклеточного вещества костной ткани, в раковины моллюсков, обеспечивая проч­ность этих образований.

Органические вещества входящие в состав клетки

Органические соединения составляют в среднем 20- 30% массы клетки живого организма. К ним относятся био­логические полимеры - белки, нуклеиновые кислоты и уг­леводы, а также жиры и ряд небольших молекул - гормо­нов, пигментов, АТФ и многих других. В различные типы клеток входит неодинаковое количество органических со­единений. В растительных клетках преобладают сложные углеводы - полисахариды; в животных - больше белков и жиров. Тем не менее каждая из групп органических веществ в любом типе клеток выполняет сходные функции.

Биологические полимеры - белки. Среди органических веществ клетки белки занимают первое место как по количеству, так и по значению. У жи­вотных на них приходится около 50% сухой массы клетки. В организме человека встречаются 5 млн. типов белковых молекул, отличающихся не только друг от друга, но и от белков других организмов. Несмотря на такое разнообразие и слож­ность строения они построены всего из 20 различных амино­кислот. Соединение двух аминокислот в одну молекулу называ­ется дипептидом, трех аминокислот - трипептидом и т. д., а соединение, состоящее из 20 и более аминокислотных ос­татков, - полипептидом.

Углеводы, или сахариды, - органические вещества с общей формулой С n (Н 2 0) m . У большинства углеводов число молекул воды соответствует количеству атомов углерода. Поэтому эти вещества и были названы углеводами.

В животной клетке углеводы находятся в количествах, не превышающих 1-2, иногда 5%. Наиболее богаты угле­водами растительные клетки, где их содержание в некото­рых случаях достигает 90% сухой массы (клубни картофе­ля, семена и т. д.). Углеводы бывают простыми и слож­ными.

Простые углеводы называют моносахаридами. В зави­симости от числа атомов углерода в молекуле моносахариды называют триозами - 3 атома, тетрозами - 4, пентозами - 5 или гексозами - 6 атомов углерода. Из шестиуглеродных моносахаридов - гексоз - наиболее важны глюкоза, фрук­тоза и галактоза. Глюкоза содержится в крови (0,08- 0,12%). Пентозы - рибоза и дезоксирибоза - входят в со­став нуклеиновых кислот и АТФ.

Если в одной молекуле объединяются два моносахари­да, такое соединение называют дисахаридом. К дисахаридам относятся пищевой сахар - сахароза, получаемый из тростника или сахарной свеклы, который состоит из одной молекулы глюкозы и одной молекулы фруктозы, и молоч­ный сахар, образуемый молекулами глюкозы и галактозы.

Сложные углеводы, образованные многими моносахари­дами, называют полисахаридами. Мономерами таких по­лисахаридов, как крахмал, гликоген, целлюлоза, является глюкоза. Полисахариды, как правило, - разветвленные полимеры.

Жиры (липиды) представляют собой соединения вы­сокомолекулярных жирных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде, они гидрофобны (от греч. hydor - вода и phobos - страх). В клетках всегда есть и другие сложные гидрофобные жироподобные вещест­ва, называемые липоидами.

Важна роль жиров и как растворителей гидрофобных органических соединений, необходимых для нормального протекания биохимических превращений в организме.

Биологически полимеры - нуклеиновые кислоты. Значение нуклеиновых кислот в клетке очень велико. Особенности их химического строения обеспечивают воз­можность хранения, переноса и передачи по наследству до­черним клеткам информации о структуре белковых моле­кул, которые синтезируются в каждой ткани на определен­ном этапе индивидуального развития.

Поскольку большинство свойств и признаков обусловле­но белками, то понятно, что стабильность нуклеиновых кис­лот - важнейшее условие нормальной жизнедеятельности клеток и целых организмов. Любые изменения строения нуклеиновых кислот влекут за собой изменения структуры клеток или активности физиологических процессов в них, влияя таким образом на жизнеспособность.

Изучение структуры нуклеиновых кислот, которую впер­вые установили американский биолог Дж. Уотсон и англий­ский физик Ф. Крик, имеет исключительно важное значе­ние для понимания наследования признаков у организмов и закономерностей функционирования как отдельных клеток, так и клеточных систем – тканей и органов.

Существуют два типа нуклеиновых кислот: ДНК и РНК.