В чем заключается суть закона минимума либиха. Правило ускорения эволюции. Принципы охраны природы

5.06. Закон минимума Либиха

В 1840 году немецкий агрохимик Юстус Либих, который изучал минеральное питание растений, сформулировал так называемый закон минимума . Исходная формулировка этого закона скорее афористична, чем понятна: «урожай управляется фактором, находящимся в минимуме». В то же время выражаемая этим законом мысль вполне соответствует здравому смыслу. Поясним ее на конкретном примере.

Некоему растению для развития необходимо 400 единиц N (азота), 60 единиц P (фосфора), 50 - K (калия) и 0,1 - B (бора). В «распоряжении» растения, в почве, в которой оно развивается, есть 100 ед. N, 30 ед. P, 30 ед. K и 0,08 ед. B (рис. 5.6.1). Итак, растение сталкивается с недостатком всех рассмотренных элементов питания. Недостаток какого ресурса скажется на растении в наибольшей степени?

Рис. 5.6.1. Обеспеченность каким ресурсом сильнее всего влияет на это растение?

Предположение, что сильнее всего будет влиять бор, поскольку его абсолютное количество минимально, ошибочно. Для организма важно не абсолютное значение количества ресурса, а относительное - его доля от потребности. Вы можете убедиться, что потребности растения в азоте удовлетворены на 25%, в фосфоре на 50%, в калии на 60% и в боре - на 80%. Итак, острее всего растение ощутит недостаток азота. А какой элемент питания станет самым важным для растения, если в почву добавить 200 единиц азота? Естественно, фосфор!

Обратите внимание, что растение будет по-разному реагировать на изменение доступности важных для него ресурсов. В приведенном примере (в начальных условиях) даже небольшое изменение доступности азота вызовет сильную реакцию растения. Напротив, изменение концентрации калия или бора окажет весьма слабое влияние на страдающий от недостатка азота организм. Мы можем убедиться, что предел развития организма определяет наиболее недостающий ресурс.

Фактор, небольшие изменения которого оказывают наибольшие воздействия на рассматриваемые организмы и который в силу этого определяет предел их развитию или распространению, называется лимитирующим (ограничивающим).

Рассмотрев этот пример, можно выразить закон минимума Либиха более понятным образом. Далее приведены две формулировки: относительно краткая и более развернутая.

Лимитирующим является тот ресурс, которого более всего недостает .

На рост и развитие организма наибольшее влияние оказывает тот ресурс, доля обеспеченности которым минимальна .

Как вы понимаете, определение того, какой именно из факторов является лимитирующим, чрезвычайно важно. Чтобы повлиять на организм, необходимо обеспечивать его именно лимитирующим ресурсом, а не каким-либо другим.

На рис. 5.6.2 показана типичная форма зависимости реакции организма (например, его роста, биомассы, урожая и т.п.) на обеспеченность ресурсом. В левой части графика ресурс может быть лимитирующим. Небольшие изменения его доступности оказывают сильное влияние на организм. В правой части данного графика ресурса уже достаточно, и наступает насыщение.

Рис. 5.6.2. Реакция организма на обеспеченность ресурсом. Кривая не может быть продолжена вправо, так как там рассматриваемый фактор перестает действовать как ресурс, и становится условием

Существуют ситуации, когда закон минимума «не работает». Это касается случаев возможной взаимозаменяемости некоторых ресурсов (для растений соли аммония и нитраты в большой степени взаимозаменяемы; насекомоядные растения и вовсе могут получать азот из «поедаемых» животных), а также в условиях изменяющейся среды. Так, в ручье, даже при условии недостатка одного из биогенов, водное растение может обеспечить свои потребности в нем (вода, из которой извлечен какой-то элемент питания, утекает, вместо нее притекает другая; обеспеченность данным элементом теряет важнейшее свойство ресурса - исчерпываемость).

В 1840 году немецкий химик Юстус Либих, выращивая растения на синтетических средах, обнаружил, что для нормального роста растения необходимо определенное число и количество химических элементов и соединений. Одни из них должны находится в среде в очень больших количествах, другие в малых, а третьи вообще в виде следов. И, что особенно важно: одни элементы не могут быть заменены другими. Среда, содержащая все элементы в изобилии, кроме одного, обеспечивает рост растения лишь до того момента, пока количество последнего не будет исчерпано. Рост ограничивается, таким образом, нехваткой единственного элемента, количество которого было ниже необходимого минимума. Этот закон, сформулированный Ю. Либихом применительно к роли химических эдафических факторов в жизни растений и названный им законом минимума, имеет, как выяснилось позже, универсальный экологический характер и играет важную роль в экологии.

Закон минимума: “Если все условия окружающей среды оказываются благоприятными для рассматриваемого организма за исключением одного, проявленного недостаточно (значение которого приближается к экологическому минимуму), то в этом случае это последнее условие, называемое лимитирующим фактором, приобретает решающее значение для жизни или смерти рассматриваемого организма, а следовательно, его присутствия или отсутствия в данной экосистеме”.

2. Закон толерантности шелфорда.

В 1913 году американский эколог В. Шелфорд обобщил закон минимума Либиха, открыв, что кроме нижнего предела интенсивности существует также и верхний предел интенсивности факторов внешней среды, определяющий верхнюю границу диапазона интенсивностей, соответствующего условиям нормальной жизнедеятельности организмов. В этой формулировке закон, названный экологическим законом толерантности, стал иметь более общий универсальный характер.

Закон толерантности (лат. tolerantia - терпение): ” Каждый организм характеризуется экологическим минимумом и экологическим максимумом интенсивности каждого фактора внешней среды, в пределах которых возможна жизнедеятельность“.

Диапазон экологического фактора между минимумом и максимумом называется диапазоном или областью толерантности.

Несмотря на большое разнообразие экологических факторов, в характере их воздействия и в ответных реакциях живых организмов можно выявить ряд общих закономерностей.

Количественный диапазон фактора, наиболее благоприятный для жизнедеятельности, называется экологическим оптимумом (лат. оptimus -

наилучший).

Значения фактора, лежащие в зоне угнетения, называются экологическим пессимумом (лат. pessimum - наихудший).

Минимальные и максимальные значения фактора, при которых наступает гибель, называются соответственно экологическим минимумом и экологическим максимумом .

Графически это иллюстрируется на рис.3-1 . Кривая на рис.3-1, как правило, не является симметричной.

Например, по такому фактору как температура, экологический максимум соответствует температурам, при которых разрушаются ферменты и белки (+50 ¸ +60 °С). Однако, отдельные организмы могут существовать и при более высоких температурах. Так, в горячих источниках Комчатки и Америки обнаружены водоросли при t > +80 °С. Нижний предел температуры, при котором возможна жизнь, около -70 °С, хотя кустарники в Якутии не вымерзают даже при такой температуре. В анабиозе (гр. anabiosis - выживание), т.е. в неактивном состоянии, некоторые организмы сохраняются при абсолютном нуле (-273 °С).

Рис. 3-1. Зависимость жизнедеятельности от интенсивности

экологического фактора.

Можно сформулировать ряд положений, дополняющих закон толерантности:

1. Организмы могут иметь широкий диапазон толерантности в отношении одного фактора внешней среды и узкий диапазон в отношении другого.

2. Организмы с широким диапазоном толерантности по большинству факторов обычно наиболее широко распространены.

3. Если условия по одному экологическому фактору не оптимальны для данного вида, то может сузиться и диапазон толерантности по другим экологическим факторам. Например, при близком к минимальному содержанию азота в почве снижается засухоустойчивость злаков.

4. В период размножения диапазон толерантности, как правило, сужается.

Организмы с узким диапазоном толерантности, или узкоприспособленные виды, способные существовать лишь при небольших отклонениях фактора от оптимального значения, носят название стенобионтных, или стеноэков (гр. stenos - узкий, тесный).

Организмы с широким диапазоном толерантности, или широкоприспособленные виды, способные выдерживать большую амплитуду колебаний экологического фактора, носят название эврибионтных, или эвриэков (гр. eurys - широкий).

Свойство организмов адаптироваться к существованию в том или ином диапазоне экологического фактора называется экологической пластичностью .

Близким к экологической пластичности является понятие экологической валентности , которое определяется как способность организма заселять разнообразные среды.

Таким образом, стенобионты экологически непластичны, т.е. маловыносливы, имеют низкую экологическую валентность; эврибионты напротив - экологически пластичны, т.е. более выносливы, и имеют высокую экологическую валентность.

Для обозначения отношения организмов к конкретному фактору к его названию прибавляют приставки: стено- и эври- . Так, по отношению к температуре бывают стенотермные (карликовая береза, банановое дерево) и эвритермные (растения умеренного пояса) виды; по отношению к солености - стеногалинные (карась, камбала) и эвригалинные (колюшка); по отношению к свету - стенофонтные (ель) и эврифонтные (шиповник) и т.д.

Стено- и эврибионтность проявляется, как правило, по отношению к одному или немногим факторам. Эврибионты обычно широко распространены. Многие простейшие эврибионты (бактерии, грибы, водоросли) являются космополитами. Стенобионты, напротив, имеют ограниченный ареал распространения. Экологическая пластичность и экологическая валентность организмов часто изменяется при переходе от одной стадии развития к другой; молодые особи, как правило, более уязвимы и более требовательны к условиям среды, чем взрослые.

Вместе с тем организмы не являются рабами физических условий среды; они приспосабливаются сами и изменяют условия среды так, чтобы ослабить влияние лимитирующего фактора. Такая компенсация лимитирующих факторов особенно эффективна на уровне сообщества, но возможна и на уровне популяции.

Виды с широким географическим распространением почти всегда образуют адаптированные к местным условиям популяции, называемые экотипами . Их оптимумы и пределы толерантности соответствуют местным условиям. Появление экотипов иногда сопровождается генетическим закреплением приобретенных свойств и признаков, т.е. к появлению рас.

Организмы, живущие длительное время в относительно стабильных условиях, утрачивают экологическую пластичность, а те, которые были подвержены значительным колебаниям фактора, становятся более выносливыми к нему, т.е. увеличивают экологическую пластичность. У животных компенсация лимитирующих факторов возможна благодаря адаптивному поведению - они избегают крайних значений лимитирующих факторов.

При приближении к экстремальным условиям возрастает энергетическая цена адаптации. Если в реку сбрасывается перегретая вода, то рыбы и другие организмы тратят почти всю энергию на преодоление этого стресса. Им не хватает энергии на добывание пищи, защиту от хищников, размножение, что приводит к вымиранию.

Итак, организмы в природе зависят от:

3.1. «Закон минимума» Ю. Либиха

лимитирующими «закон минимума» Либиха .

Пределы толерантности . Наряду с выводом о том, что «рост растений зависит от того элемента питания, который присутствует в минимальном количестве», ставшим основой либиховского «закона минимума», Ю. Либих указывал на диапазон лимитирующих показателей . Было выяснено, что лимитирующим фактором может быть не только недостаток, но и избыток таких факторов, как свет, тепло и вода. Понятие о лимитирующем влиянии экологического максимума наравне с минимумом ввел В. Шелфорд (1913 г.), сформулировавший «закон толерантности». Диапазон между двумя величинами, экологическим минимумом и экологическим максимумом, которым характеризуются так или иначе все живые организмы было принято называть пределом толерантности (от лат. toleratia — терпение, терпимость). Если определенный организм обладает небольшим диапазоном толерантности к одному из изменчивых факторов, то этот фактор заслуживает пристального внимания, ибо он может оказаться лимитирующим. Например, кислород, вполне доступный для организмов, обитающих в наземных частях экосистем, редко может оказаться лимитирующим. Тогда как для организмов, обитающих под водой, кислород может стать важным лимитирующим фактором. В случае экстремального сужения диапазона толерантности живой организм может всю метаболическую энергию затратить на преодоление стресса, связанного с уменьшением пределов лимитирующего фактора, а из-за недостачи энергии на нормальную жизнедеятельность — погибнуть. Если белый медведь в силу каких-либо обстоятельств будет перемещен в теплые края, то ему придеться тратить всю метаболическую энергию на преодоление теплового стресса, и животному не хватит энергии на добывание пищи и сохранение своего вида в природе.

Концепция лимитирующих факторов в общем случае широко распространяется как на биологические, так и на физические факторы, и на изложение всего, что известно по этому вопросу, потребовался бы печатный труд большого объема, что не входит в задачу данной книги. Однако, учитывая, что инженеру-экологу приходится чаще иметь дело с физическими факторами, кратко перечислим основные физические и климатические факторы.

«Закон минимума» Ю. Либиха

Каждая особь, популяция, сообщество испытывают одновременно воздействие различных факторов, но лишь часть из них являются жизненно важными. Такие жизненно важные факторы называются лимитирующими . Чаще всего хотя бы один фактор лежит вне оптимума. И от этого фактора зависит возможность существования вида в данном месте. Еще в 1840 году Ю. Либих установил, что выносливость организма определяется самым слабым звеном в цепи его экологических потребностей. Ему принадлежит приоритет изучения различных факторов на рост растений и выявление того, что урожай растений можно эффективнее всего повысить, улучшив минимальный фактор (обычно — увеличив количество N и P), а не те элементы питания, которые требуются в больших количествах, такие, как, например, двуокись углерода или вода. Вещества, которые требуются в ничтожнейших количествах, но которых очень мало и в почве, например цинк, эти вещества и становятся лимитирующими. Концепция Либиха о том, что «рост растения зависит от того элемента питания, который присутствует в минимальном количестве» стала известна как «закон минимума» Либиха .

Для успешного применения на практике концепции Либиха к ней необходимо добавить два вспомогательных принципа: первый — ограничительный («закон Либиха строго применим только в условиях стационарного состояния, т.е. когда приток и отток энергии и вещества сбалансирован»); второй — принцип взаимодействия факторов, который утверждает, что «высокая концентрация или доступность одного вещества или действие другого (не минимального) фактора могут изменять скорость потребления элемента питания, содержащегося в минимальном количестве».

Для инженера-эколога концепция лимитирующих факторов ценна тем, что она дает отправную позицию при исследовании сложных ситуаций в системе «человек – техника — природа». Взаимоотношения элементов такой системы могут быть весьма сложными. В процессе решения задач новой техники и технологии специалист может выделить вероятные слабые стороны и заострить внимание, хотя бы в начале, на тех характеристиках среды, которые могут оказаться критическими или лимитирующими.

Закон минимума Либиха в экологии (с примерами)

В этой статье мы кратко разберемся, в чем заключается закон минимума Либиха – один из основополагающих законов в экологии. Другое название этого закона — закон ограничивающего (лимитирующего) фактора. Также в конце статьи приведены несколько наглядных примеров, иллюстрирующих закон минимума.

Закон минимума Либиха. Немного истории

Закон минимума был сформулирован немецким химиком Юстусом фон Либихом в 1840 году .

Ученый занимался в основном изучением условий выживания растений в сельском хозяйстве. Он пытался понять, в какой момент необходимо применять те или иные химические добавления для улучшения выживаемости растений.

В результате своих исследований фон Либих сформулировал закон, который впоследствии оказался верным не только для сельского хозяйства, но и для всех экологических систем и живых организмов.

Закон ограничивающего (лимитирующего) фактора.

Суть закона минимума Либиха

Существуют разные формулировки этого закона. Но суть закона минимума (или закона ограничивающего фактора) можно сформулировать так:

  • Жизнь организма зависит от множества факторов. Но, наиболее значимым в каждый момент времени является тот фактор, который наиболее уязвим.
  • Иными словами, если в организме какой-то из факторов существенно отклоняется от нормы, то именно этот фактор в данный момент времени является наиболее значимым , наиболее критическим для выживания организма.

Важно понимать, что для одного и того же организма в разное время такими критически важными (или по-другому лимитирующими) факторами могут совершенно разные факторы.

Такие же суждения применимы и для целых экосистем. В данный момент времени ограничивающим фактором может стать, например, недостаток пищи. В другой момент времени – количество пищи будет в норме, но лимитирующим фактором станет температура окружающей среды (слишком высокая или слишком низкая).

Если обобщить вышесказанное, то можно сформулировать закон следующим образом.

Закон минимума Либиха звучит так:

Для выживания организма (или эко-системы) наиболее значимым является тот экологический фактор,

который наиболее удаляется (отклоняется) от своего оптимального значения.

Бочка Либиха

Прежде чем переходить к примерам – стоит рассмотреть рисунок, так называемой, бочки Либиха.

В этой полусломанной бочке – лимитирующим фактором является высота доски . Очевидно, что вода будет переливаться через самую маленькую доску в бочке. В этом случае нам уже будет не важной высота остальных досок – все равно бочку наполнить будет нельзя.

Наименьшая доска – это и есть тот самый фактор, который наиболее отклонился от нормального значения.

По закону минимума Либиха – починку бочки нужно начинать именно с этой доски.

Закон минимума Либиха. Примеры

Есть пословица: «Где тонко, там и рвется» — по большому счету она передает главную суть закона Либиха. Но, давайте приведем несколько примеров из совершенно разных областей.

Пример из сельского хозяйства

Есть почвы, где не хватает фосфора – значит подкармливать нужно удобрениями с фосфором. Но, в другое время – нужны удобрения с кальцием. И так далее

Пример из дикой природы

Зимой для зайца лимитирующий фактор – пища. Летом – нужно спасаться от волка, хотя пищи предостаточно.

Спортивный пример закона минимума

В футболе: если левый защитник команды самый слабый, то через его левый фланг наиболее вероятно команда пропустит гол.

Таким образом, закон минимума Либиха является универсальным экологическим и жизненным законом.

Дополнительная информация:

  • Законы экологии Коммонера – прочитайте о четырех основных законов экологии, сформулированных Коммонером.

Куда сдать на утилизацию отходы, технику и другие вещи в Вашем городе

www.kudagradusnik.ru

1. Закон минимума ю. Либиха.

В 1840 году немецкий химик Юстус Либих, выращивая растения на синтетических средах, обнаружил, что для нормального роста растения необходимо определенное число и количество химических элементов и соединений. Одни из них должны находится в среде в очень больших количествах, другие в малых, а третьи вообще в виде следов. И, что особенно важно: одни элементы не могут быть заменены другими. Среда, содержащая все элементы в изобилии, кроме одного, обеспечивает рост растения лишь до того момента, пока количество последнего не будет исчерпано. Рост ограничивается, таким образом, нехваткой единственного элемента, количество которого было ниже необходимого минимума. Этот закон, сформулированный Ю. Либихом применительно к роли химических эдафических факторов в жизни растений и названный им законом минимума, имеет, как выяснилось позже, универсальный экологический характер и играет важную роль в экологии.

Закон минимума: “Если все условия окружающей среды оказываются благоприятными для рассматриваемого организма за исключением одного, проявленного недостаточно (значение которого приближается к экологическому минимуму), то в этом случае это последнее условие, называемое лимитирующим фактором, приобретает решающее значение для жизни или смерти рассматриваемого организма, а следовательно, его присутствия или отсутствия в данной экосистеме”.

2. Закон толерантности шелфорда.

В 1913 году американский эколог В. Шелфорд обобщил закон минимума Либиха, открыв, что кроме нижнего предела интенсивности существует также и верхний предел интенсивности факторов внешней среды, определяющий верхнюю границу диапазона интенсивностей, соответствующего условиям нормальной жизнедеятельности организмов. В этой формулировке закон, названный экологическим законом толерантности, стал иметь более общий универсальный характер.

Закон толерантности (лат. tolerantia - терпение): ” Каждый организм характеризуется экологическим минимумом и экологическим максимумом интенсивности каждого фактора внешней среды, в пределах которых возможна жизнедеятельность“.

Диапазон экологического фактора между минимумом и максимумом называется диапазоном или областью толерантности.

Несмотря на большое разнообразие экологических факторов, в характере их воздействия и в ответных реакциях живых организмов можно выявить ряд общих закономерностей.

Количественный диапазон фактора, наиболее благоприятный для жизнедеятельности, называется экологическим оптимумом (лат. оptimus -

Значения фактора, лежащие в зоне угнетения, называются экологическим пессимумом (лат. pessimum - наихудший).

Минимальные и максимальные значения фактора, при которых наступает гибель, называются соответственно экологическим минимумом и экологическим максимумом .

Графически это иллюстрируется на рис.3-1 . Кривая на рис.3-1, как правило, не является симметричной.

Например, по такому фактору как температура, экологический максимум соответствует температурам, при которых разрушаются ферменты и белки (+50 ¸ +60 °С). Однако, отдельные организмы могут существовать и при более высоких температурах. Так, в горячих источниках Комчатки и Америки обнаружены водоросли при t > +80 °С. Нижний предел температуры, при котором возможна жизнь, около -70 °С, хотя кустарники в Якутии не вымерзают даже при такой температуре. В анабиозе (гр. anabiosis - выживание), т.е. в неактивном состоянии, некоторые организмы сохраняются при абсолютном нуле (-273 °С).

Рис. 3-1. Зависимость жизнедеятельности от интенсивности

Можно сформулировать ряд положений, дополняющих закон толерантности:

1. Организмы могут иметь широкий диапазон толерантности в отношении одного фактора внешней среды и узкий диапазон в отношении другого.

2. Организмы с широким диапазоном толерантности по большинству факторов обычно наиболее широко распространены.

3. Если условия по одному экологическому фактору не оптимальны для данного вида, то может сузиться и диапазон толерантности по другим экологическим факторам. Например, при близком к минимальному содержанию азота в почве снижается засухоустойчивость злаков.

4. В период размножения диапазон толерантности, как правило, сужается.

Организмы с узким диапазоном толерантности, или узкоприспособленные виды, способные существовать лишь при небольших отклонениях фактора от оптимального значения, носят название стенобионтных, или стеноэков (гр. stenos - узкий, тесный).

Организмы с широким диапазоном толерантности, или широкоприспособленные виды, способные выдерживать большую амплитуду колебаний экологического фактора, носят название эврибионтных, или эвриэков (гр. eurys - широкий).

Свойство организмов адаптироваться к существованию в том или ином диапазоне экологического фактора называется экологической пластичностью .

Близким к экологической пластичности является понятие экологической валентности , которое определяется как способность организма заселять разнообразные среды.

Таким образом, стенобионты экологически непластичны, т.е. маловыносливы, имеют низкую экологическую валентность; эврибионты напротив - экологически пластичны, т.е. более выносливы, и имеют высокую экологическую валентность.

Для обозначения отношения организмов к конкретному фактору к его названию прибавляют приставки: стено- и эври- . Так, по отношению к температуре бывают стенотермные (карликовая береза, банановое дерево) и эвритермные (растения умеренного пояса) виды; по отношению к солености - стеногалинные (карась, камбала) и эвригалинные (колюшка); по отношению к свету - стенофонтные (ель) и эврифонтные (шиповник) и т.д.

Стено- и эврибионтность проявляется, как правило, по отношению к одному или немногим факторам. Эврибионты обычно широко распространены. Многие простейшие эврибионты (бактерии, грибы, водоросли) являются космополитами. Стенобионты, напротив, имеют ограниченный ареал распространения. Экологическая пластичность и экологическая валентность организмов часто изменяется при переходе от одной стадии развития к другой; молодые особи, как правило, более уязвимы и более требовательны к условиям среды, чем взрослые.

Вместе с тем организмы не являются рабами физических условий среды; они приспосабливаются сами и изменяют условия среды так, чтобы ослабить влияние лимитирующего фактора. Такая компенсация лимитирующих факторов особенно эффективна на уровне сообщества, но возможна и на уровне популяции.

Виды с широким географическим распространением почти всегда образуют адаптированные к местным условиям популяции, называемые экотипами . Их оптимумы и пределы толерантности соответствуют местным условиям. Появление экотипов иногда сопровождается генетическим закреплением приобретенных свойств и признаков, т.е. к появлению рас.

Организмы, живущие длительное время в относительно стабильных условиях, утрачивают экологическую пластичность, а те, которые были подвержены значительным колебаниям фактора, становятся более выносливыми к нему, т.е. увеличивают экологическую пластичность. У животных компенсация лимитирующих факторов возможна благодаря адаптивному поведению - они избегают крайних значений лимитирующих факторов.

При приближении к экстремальным условиям возрастает энергетическая цена адаптации. Если в реку сбрасывается перегретая вода, то рыбы и другие организмы тратят почти всю энергию на преодоление этого стресса. Им не хватает энергии на добывание пищи, защиту от хищников, размножение, что приводит к вымиранию.

Итак, организмы в природе зависят от:

закон минимума либиха

Живой организм в природных условиях одновременно подвергается воздействия не одного, а многих экологических факторов. Причем любой фактор требуется организму в определенных колическах/дозах. Либих установил, что развитие растения или его состояние зависит не от тех химических эл-в, которые присутствуют в почве в достаточных кол-вах, а от тех, которых не хватает. Если

любого, хотя бы одного из элементов питания в почве меньше, чем требуется данным растениям, то оно будет развиваться ненормально, замедленно, или иметь патологические отклонения.

закон минимума Ю. ЛИБИХА — концепция, согласно которой существование и выносливость организма определяется самым слабым звеном в цепи его экологических потребностей.
Согласно закону минимума жизненные возможности организмов лимитируют те экологические факторы, количество и качество которых близки к необходимому организму или экосистеме минимуму .

Закон Либиха :

Веществом, присутствующим в минимуме, управляется урожай, определяется его величина и стабильность во времени. В начале 20 века американский ученый Шелфорд показал, что вещ-во или любой другой фактор , присутствующий не только в минимуме, но и в избытке по сравнению с требуемым организму уровнем, может приводить к нежелательным последствия для организма. Пример: если поместить к-либо растение/животное в экспериментальную камеру и измерять в ней температуру воздуха, то состояние организма будет изменяться.

При этом выявляется некоторый наилучший, оптимальный для организма уровень данного фактора, при котором активность (физиологическое состояние) будет максимально. Если разные факторы будут отклоняться от оптимального в большую/меньшую сторону, то активность будет снижаться. При достижении некоторого max/min значения фактор станет несовместимым с жизненными процессами, в организме произойдут изменения, ведущие к смерти. Аналогичные результы можно получить в экспериментах с изменением влажности, содержания различных солей в воде, кислотности, концентрации различных вещ-в и др.

Чем шире амплитуда колебания фактора, при которой организм может сокращать жизнеспособность, тем выше его устойчивость (толерантность ) к тому или иному фактору. Из всего вышесказанного вытекает:

ecology-portal.ru

Цао это правило одно Любая гетерогенная система состоит из отдельных гомогенных, физически или химически различных, механически отделимых друг от друга частей, называемых фазами. Например, насыщенный раствор хлорида натрия с […]

  • Если вас сократили Внимание граждан, увольняемых из организаций по причине ликвидации организации либо сокращению численности или штата работников! Бланки необходимых документов: Справка о средней заработной плате. Памятка "О […]
  • НОРМАТИВНЫЕ ПРАВОВЫЕ АКТЫ НОРМАТИВНЫЕ ПРАВОВЫЕ АКТЫ ИСПОЛЬЗУЕМЫЕ ФКУ «ЦЕНТР ГИМС МСЧ РОССИИ ПО ЗАБАЙКАЛЬСКОМУ КРАЮ» В РАБОТЕ ПО РЕИСТРАЦИИ, ОСВИДЕТЕЛЬСТВОВАНИЮ И НАДЗОРУ ЗА ИСПОЛЬЗОВАНИЕМ МАЛОМЕРНЫХ СУДОВ И ВОДНЫХ ОБЪЕКТОВ ПОДНАДЗОРНЫХ […]
  • Лекция 1. Международное частное право в системе российского права 1.3. Система международного частного права Международное частное право, как и многие отрасли права, делится на две части: Общую и Особенную. В Общей части рассматриваются […]
  • Лекция 2. Среда обитания, экологические факторы и общие закономерности их действия

    2.3. закон минимума, закон толерантности

    Существование каждого вида ограничивается тем из факторов, который наиболее отклоняется от оптимума. «Закон ограничивающего фактора » был вначале сформулирован немецким агрохимиком, одним из основоположников агрохимии Юстусом Либихом в 1840 году. Ю. Либих изучал влияние разнообразных факторов на рост растений и установил, что урожай зерна часто лимитируется не теми питательными веществами, которые требуются в больших количествах, например, как двуокись углерода и вода, а теми, которые требуются в малых количествах (например, бор), но которых и мало в почве. Ю. Либих выдвинул принцип: «Веществом, находящимся в минимуме, управляется урожай». Этот принцип получил широкую известность как закон минимума Ю. Либиха. Согласно этому закону относительное действие отдельного экологического фактора тем сильнее, чем больше он находится по сравнению с другими факторами в минимуме (рисунок 2.6). Закон Ю. Либиха показывает на один из аспектов зависимости организмов от среды, он строго применим в условиях стационарного состояния системы. Если условия среды будут изменяться, то тот или иной процесс также изменится, и будет зависеть от других факторов.

    Рисунок 2.6 – Модель, иллюстрирующая закон Либиха («Бочка Либиха»)

    Изучая различное лимитирующее действие экологических факторов (таких как свет, тепло, вода) американский зоолог Виктор Эрнест Шелфорд (1877–1968), пришел к выводу, что лимитирующим фактором может быть не только недостаток, но и избыток факторов. В экологию такое положение вошло как закон толерантности В. Шелфорда , сформулированного им в 1913 году. Он гласит: «лимитирующим фактором, ограничивающим развитие организма, может быть как минимум, так и максимум экологического воздействия». Под ограничивающим фактором понимают фактор, уровень которого в качественном и количественном отношении (недостаток или избыток) оказывается близким к пределам выносливости данного организма (рисунок 2.7).

    Рисунок 2.7 – Влияние температуры на скорость роста растения

    Пределами выносливости называют минимальное и максимальное значение фактора, при котором возможна жизнедеятельность. Границы, за пределами которых наступает гибель организмов, являются нижними и верхними границами выносливости. Многочисленные примеры действия ограничивающих факторов показывают, что это явление имеет общее экологическое значение. Одним из примеров действия ограничивающего фактора в природе является угнетение травянистых растений, лиственных древесных пород под пологом ели, где возможности развития ограничены недостатком света. Способность организмов выносить отклонения экологических факторов от оптимальных величин их интенсивности называется толерантностью (от латинского – терпение). Организмы могут иметь широкий диапазон толерантности (выносливости) в отношении одного фактора и узкий диапазон в отношении другого. Если условия по одному из экологических факторов не оптимальны для вида, то может сузиться и диапазон толерантности к другим экологическим факторам. Например, при лимитирующем содержании азота снижается засухоустойчивость злаков; при низком содержании азота для предотвращения увядания растений требуется больше воды, чем при высоком его содержании. Многие факторы среды часто становятся лимитирующими в период размножения, который является обычно критическим для выживания организмов. Пределы толерантности для размножающихся особей обычно уже, чем для не размножающихся взрослых растений или животных. Они также уже для яиц, эмбрионов, личинок, проростков.

    Чтобы выразить степень выносливости, в экологии существует ряд терминов, в которых используют приставки стено- (узкий) и эври — (широкий). Так, есть стенотермный – эвритермный (в отношении температуры), стенофагный – эврифагный (в отношении пищи), стенобатный – эврибатный (в отношении давления) организмы.

    Виды, которые выдерживают значительные отклонения от оптимальных значений разных факторов, обладают широким диапазоном выносливости и живут в различных, порой резко отличающихся друг от друга условиях среды, называются эврибионтными. Такие виды являются широко распространенными. Например, лисица относится к эврибионтным организмам, так как она обитает от лесотундры до степи, питаясь и животной, и растительной пищей. Но есть организмы стенобионтные, узко приспособленные, не переносящие резких колебаний температуры, влажности и т. д. Бегемот и буйвол – животные только районов высокой влажности и температуры. Таковы почти все растения влажных тропических лесов. Икра гольца развивается при температуре 0–12° С с оптимумом около 4° С, а икра лягушки развивается при температуре 0–30° С с оптимумом около 22° С. Значит, в первом случае можно говорить о стенотермности, а во втором случае – об эвритермности. Как видно, для каждого организма и в целом для вида есть свой оптимум условий. Он неодинаков не только для разных видов, находящихся в различных условиях, но и для отдельных стадий развития одного организма. Для каждого вида характерна и степень выносливости, например, растения и животные умеренного пояса могут существовать в довольно широком температурном диапазоне, виды же тропического климата не выдерживают значительных колебаний ее. Свойство видов адаптироваться к тому или иному диапазону факторов среды обозначается понятием экологическая пластичность (экологическая валентность) вида. Чем шире диапазон колебаний экологического фактора, в пределах которого данный вид может существовать, тем больше его экологическая пластичность, тем шире диапазон его толерантности (выносливости). Экологически непластичные, то есть маловыносливые виды, являются стенобионтными, более выносливые – эврибионтными. Стенобионтность и эврибионтность характеризуют различные типы приспособления организмов к выживанию. Виды, длительно развивавшиеся в относительно стабильных условиях, утрачивают экологическую пластичность и вырабатывают черты стенобионтности, в то время как виды, существовавшие при значительных колебаниях факторов среды, приобретают повышенную экологическую пластичность и становятся эврибионтными, то есть видами с широким диапазоном толерантности (рисунок 2.8).

    Рисунок 2.8 – Экологическая пластичность видов

    Поскольку все факторы среды взаимосвязаны и среди них нет абсолютно безразличных для любого организма, каждая популяция и вид в целом реагируют на эти факторы, но воспринимают их по-разному. Такая избирательность обусловливает и избирательное отношение организмов к заселению той или иной территории. Различные виды организмов предъявляют неодинаковые требования к почвенным условиям, температуре, влажности, свету и т. д. Поэтому на разных почвах в разных климатических поясах произрастают различные растения. В свою очередь в растительных ассоциациях формируются неодинаковые условия для животных.

    Исторически приспосабливаясь к абиотическим факторам среды и вступая в определенные биотические связи друг с другом, растения, животные, грибы, микроорганизмы распределяются по различным средам и формируют многообразные экосистемы (биогеоценозы), в конечном итоге объединяющиеся в биосферу Земли.

    В) Закон Либиха, или «закон минимума», или закон ограничивающего фактора

    В природе нет такого места, где бы на организм действовал один фактор. Все факторы действуют одновременно и совокупность этих действий называется констелляцией. Значения факторов не всегда равнозначны. Они могут быть все недостаточны, и тогда наблюдается общее угнетение биоты (слабое развитие растительного покрова, снижение продуктивности, изменение фракционной структуры биомассы, изменение других показателей экосистем), но чаще одни из них в достатке, даже в оптимуме, а другие – в дефиците. При этом констелляция не является простой суммой влияния факторов, т.к. степень воздействия одних факторов на организмы и популяции зависит от степени воздействия других факторов.

    ПРИМЕР. При оптимальной теплообеспеченности увеличивается толерантность растений и животных к недостатку влаги и питания, а недостаток тепла сопровождается снижением потребности во влаге и повышенной потребностью в питательных элементах. Причем это наблюдается и у растений, и у животных. У растений при недостатке тепла и переувлажнении почв становятся физиологически недоступными элементы питания, и для обеспечения толерантности требуется повышенное плодородие почв. Также и у животных – чтобы усилить защитные функции организма на холоде, надо хорошо поесть. Так, всегда перед тем, как залечь в берлогу медведь накапливает подкожный жир. Реакции газообмена у рыб неодинаковы в воде разной солености. У жуков рода Blastophagus реакция на свет зависит от температуры. При температуре 25°C они ползут на свет (положительный фототропизм), при снижении ее до 20°C или увеличении до 30°C – реакция нейтральная, а при значениях ниже и выше этих пределов – прячутся.

    Однако компенсаторные возможности у факторов ограничены. Нельзя ни один фактор полностью заменить другим, и если значение хотя бы одного из факторов выходит за верхний или нижний пределы выносливости компонента биоты, существование последнего становится невозможным, каковы бы благоприятны не были остальные факторы.

    ПРИМЕР. Нормальное выживание пятнистого оленя в Приморье имеет место только в дубняках на южных склонах, т.к. здесь мощность снега незначительна и обеспечивает оленю достаточную кормовую базу на зимний период. Ограничивающим фактором для оленя является глубокий снег. Недостаток тепла ограничивает распространение на север большинство видов и формаций маньчжурской флоры: сосняки из сосны густоцветковой, пихта цельнолистная и ее формации распространены только в Южном Приморье. А в зоне распространения многолетней мерзлоты повсеместно господствует лиственница. Для кедрового стланика и ольховника камчатского решающими факторами распространения являются высокая влажность воздуха и условия перезимовки. Они хорошо переносят морозные зимы только при наличии мощного снежного покрова, защищающего побеги от иссушения и обморожения зимними муссонами Дальнего Востока. Эти виды образуют заросли только в прибрежных районах Охотского и Берингового морей, а в континентальных р-нах – в подгольцовом поясе на высоте не менее 1000 м/н.у.м. На ранних стадиях развития ограничивающим фактором у хвойных пород может быть избыток света. Все они, даже сосна могильная, в первые годы жизни требуют притенения.

    В середине 19 века (1846 г.) немецкий агрохимик Либих вывел «закон минимума». В опыте с минеральными удобрениями он установил, что наибольшее влияние на выносливость растений оказывают те факторы, которые в данном местообитании находятся в минимуме. Он писал в 1955 г.: «Элементы, полностью отсутствующие или не находящиеся в нужном количестве, препятствуют прочим питательным соединениям произвести эффект или уменьшают их питательное действие». Это справедливо не только к элементам питания, но и к другим жизненно важным факторам. Закон Либиха применим только в условиях стационарного состояния экосистемы, т.е. когда приток вещества и энергии в систему уравновешивается их оттоком.

    Фактор, уровень которого близок к пределам выносливости конкретного организма, вида и пр. компонентов биоты, называется ограничивающим. И именно к этому фактору организм приспосабливается (вырабатывает адаптации) в первую очередь. Закон ограничивающих, или лимитирующих, факторов распространяется не только на ситуацию, когда эти факторы в «минимуме», но и в «максимуме», то есть выходит за верхний предел выносливости организма (экосистемы).

    В пессимальных условиях ограничивающих факторов несколько и их общее подавляющее влияние может быть выше суммарного подавляющего эффекта отдельно взятых факторов.

    ПРИМЕР с южными склонами – инсоляция усиливает сухость среды, препятствует повышению плодородия почв.

    Часто ограничивающим фактор бывает на одной из стадий развития вида. Как известно, наиболее уязвимы ювенильные особи и для них ограничивающих факторов м.б. несколько. В разных географических зонах и ограничивающие факторы разные: на Крайнем Севере – чаще тепло, в южных районах – влага. Разные виды по-разному реагируют на один и тот же фактор. По реакции их взрослых особей на тот или иной фактор можно построить экологический ряд (в порядке убывания или нарастания действия фактора).

    Народ помогите мне пожалуйста по экологии (подробно внутри)

    Закон ограничивающего (лимитирующего) фактора или закон минимума Либиха - один из фундаментальных законов в экологии, гласящий, что наиболее значим для организма тот фактор, который более всего отклоняется от оптимального его значения. Поэтому во время прогнозирования экологических условий или выполнение экспертиз очень важно определить слабое звено в жизни организмов.
    Бочка Либиха

    Именно от этого, минимально (или максимально) представленного в данный конкретный момент экологического фактора зависит выживание организма. В другие отрезки времени ограничивающим могут быть другие факторы. В течение жизни особи видов встречаются с самыми разными ограничениями своей жизнедеятельности. Так, фактором, ограничивающим распространение оленей, является глубина снежного покрова; бабочки озимой совки (вредителя овощных и зерновых культур) - зимняя температура и т. д.

    Это закон учитывается в практике сельского хозяйства. Немецкий химик Юстус Либих установил, что продуктивность культурных растений, в первую очередь, зависит от того питательного вещества (минерального элемента) , который представлен в почве наиболее слабо. Например, если фосфора в почве лишь 20 % от необходимой нормы, а кальция - 50 % от нормы, то ограничивающим фактором будет недостаток фосфора; необходимо в первую очередь внести в почву именно фосфорсодержащие удобрения.

    По имени учёного названо образное представление этого закона - так называемая «бочка Либиха» . Суть модели состоит в том, что вода при наполнении бочки начинает переливаться через наименьшую доску в бочке и длина остальных досок уже не имеет значения.

    Закон минимума Либиха в экологии (с примерами)

    В этой статье мы кратко разберемся, в чем заключается закон минимума Либиха – один из основополагающих законов в экологии. Другое название этого закона — закон ограничивающего (лимитирующего) фактора. Также в конце статьи приведены несколько наглядных примеров, иллюстрирующих закон минимума.

    Закон минимума Либиха. Немного истории

    Закон минимума был сформулирован немецким химиком Юстусом фон Либихом в 1840 году .

    Ученый занимался в основном изучением условий выживания растений в сельском хозяйстве. Он пытался понять, в какой момент необходимо применять те или иные химические добавления для улучшения выживаемости растений.

    В результате своих исследований фон Либих сформулировал закон, который впоследствии оказался верным не только для сельского хозяйства, но и для всех экологических систем и живых организмов.

    Закон ограничивающего (лимитирующего) фактора.

    Суть закона минимума Либиха

    Существуют разные формулировки этого закона. Но суть закона минимума (или закона ограничивающего фактора) можно сформулировать так:

    • Жизнь организма зависит от множества факторов. Но, наиболее значимым в каждый момент времени является тот фактор, который наиболее уязвим.
    • Иными словами, если в организме какой-то из факторов существенно отклоняется от нормы, то именно этот фактор в данный момент времени является наиболее значимым , наиболее критическим для выживания организма.
    • Важно понимать, что для одного и того же организма в разное время такими критически важными (или по-другому лимитирующими) факторами могут совершенно разные факторы.

      Такие же суждения применимы и для целых экосистем. В данный момент времени ограничивающим фактором может стать, например, недостаток пищи. В другой момент времени – количество пищи будет в норме, но лимитирующим фактором станет температура окружающей среды (слишком высокая или слишком низкая).

      Если обобщить вышесказанное, то можно сформулировать закон следующим образом.

      Закон минимума Либиха звучит так:

      Для выживания организма (или эко-системы) наиболее значимым является тот экологический фактор,

      который наиболее удаляется (отклоняется) от своего оптимального значения.

      Бочка Либиха

      Прежде чем переходить к примерам – стоит рассмотреть рисунок, так называемой, бочки Либиха.

      В этой полусломанной бочке – лимитирующим фактором является высота доски . Очевидно, что вода будет переливаться через самую маленькую доску в бочке. В этом случае нам уже будет не важной высота остальных досок – все равно бочку наполнить будет нельзя.

      Наименьшая доска – это и есть тот самый фактор, который наиболее отклонился от нормального значения.

      По закону минимума Либиха – починку бочки нужно начинать именно с этой доски.

      Закон минимума Либиха. Примеры

      Есть пословица: «Где тонко, там и рвется» — по большому счету она передает главную суть закона Либиха. Но, давайте приведем несколько примеров из совершенно разных областей.

      Пример из сельского хозяйства

      Есть почвы, где не хватает фосфора – значит подкармливать нужно удобрениями с фосфором. Но, в другое время – нужны удобрения с кальцием. И так далее

      Пример из дикой природы

      Зимой для зайца лимитирующий фактор – пища. Летом – нужно спасаться от волка, хотя пищи предостаточно.

      Спортивный пример закона минимума

      В футболе: если левый защитник команды самый слабый, то через его левый фланг наиболее вероятно команда пропустит гол.

      Таким образом, закон минимума Либиха является универсальным экологическим и жизненным законом.

      Дополнительная информация:

      • Законы экологии Коммонера – прочитайте о четырех основных законов экологии, сформулированных Коммонером.

      Куда сдать на утилизацию отходы, технику и другие вещи в Вашем городе

      www.kudagradusnik.ru

      Закон ограничивающего фактора

      Закон ограничивающего (лимитирующего) фактора или закон минимума Либиха - один из фундаментальных законов в экологии, гласящий, что наиболее значим для организма тот фактор, который более всего отклоняется от оптимального его значения. Поэтому во время прогнозирования экологических условий или выполнение экспертиз очень важно определить слабое звено в жизни организмов.

      Именно от этого, минимально (или максимально) представленного в данный конкретный момент экологического фактора зависит выживание организма. В другие отрезки времени ограничивающим могут быть другие факторы. В течение жизни особи видов встречаются с самыми разными ограничениями своей жизнедеятельности. Так, фактором, ограничивающим распространение оленей, является глубина снежного покрова; [источник не указан 2954 дня ] бабочки озимой совки (вредителя овощных и зерновых культур) - зимняя температура [источник не указан 2954 дня ] и т. д.

      Этот закон учитывается в практике сельского хозяйства. Немецкий химик Юстус Либих установил, что продуктивность культурных растений, в первую очередь, зависит от того питательного вещества (минерального элемента), который представлен в почве наиболее слабо. Например, если фосфора в почве лишь 20 % от необходимой нормы, а кальция - 50 % от нормы, то ограничивающим фактором будет недостаток фосфора; необходимо в первую очередь внести в почву именно фосфорсодержащие удобрения.

      По имени учёного названо образное представление этого закона - так называемая «бочка Либиха». Суть модели состоит в том, что вода при наполнении бочки начинает переливаться через наименьшую доску в бочке и длина остальных досок уже не имеет значения.

      Дети начинают получать в начальной школе, а в средствах массовой информации вопросы экологии занимают не последнее место, экология все еще остается молодой, сложной и загадочной наукой. Ее научная база не так велика, а сложные модели запутаны. Тем не менее знание и понимание основных законов в этой области - это основа мировоззрения современного человека. В данной статье будет рассмотрен один из главных законов экологии - закон минимума, сформулированный задолго до формирования самой науки.

      К истории открытия

      Закон минимума сформулировал в 1840 году выдающийся химик, профессор Гессенского Юстас фон Либих. Этот ученый и выдающийся педагог известен еще и изобретением холодильника Либиха, которым и сегодня пользуются в химических лабораториях для фракционного разделения химических соединений. Его книга «Химия в приложении к земледелию» фактически дала начало науке агрохимии, а ему - титул барона и два ордена Святой Анны. Либих изучал выживаемость растений и роль химических добавок в ее повышении. Так им был сформулирован закон минимума или лимитирующего фактора, который оказался верным для всех биологических систем. И не только для биологических, что продемонстрируем на примерах.

      Немного теории

      Зона комфорта

      Чаще всего экологические факторы переносятся организмами в некоторых пределах, которые ограничены пороговыми показателями, за которыми наступает угнетение жизнедеятельности организма. Это критические точки существования. Между ними находятся зоны толерантности (терпимости) и зона оптимума (комфорта) - диапазон благотворного влияния фактора. Точки минимума и максимума воздействия экологического фактора определяют возможности реакции организма на конкретный фактор. Выход за пределы зоны оптимума может привести к следующему:

      • устранению вида с конкретного ареала (например, сдвиг популяционного ареала или миграция вида);
      • изменение плодовитости и смертности (например, при резких изменениях условий окружающей среды);
      • к адаптации (приспособлению) и возникновению новых видов с новыми фенотипическими и генетическими особенностями.

      Суть закона минимума

      Жизнь биологической системы, будь то организм или популяция, зависит от действия множества факторов биотического и абиотического характера. Формулировка закона минимума может варьировать, но суть остается постоянной: когда какой-либо фактор существенно отклоняется от нормы, то именно он становится наиболее значимым для системы и самым критическим для жизни. При этом лимитирующими факторами для организма в разные периоды времени могут выступать различные показатели.

      Варианты возможны

      Все живые организмы живут и приспосабливаются к комплексу факторов окружающей среды. И воздействие факторов этого комплекса всегда неравнозначно. Фактор может быть ведущим (очень важным) или второстепенным. Ведущими для разных организмов будут разные факторы, а в разные периоды жизни одного организма для него основными могут быть определенные экологические факторы. Кроме того, одни и те же факторы могут быть лимитирующими для одних организмов и не лимитирующими для других. Например, солнечный свет для растений - это необходимый элемент для обеспечения процессов фотосинтеза. А вот для грибов, почвенных сапротрофов или глубоководных животных он совсем не обязателен. Или наличие кислорода в воде будет а его наличие в почве - нет.

      Условия применения

      Закон минимума ограничен в применении двумя вспомогательными принципами:

      1. Закон применим без уточнений только к равновесным системам, а именно только в условиях стационарного состояния системы, когда обмен энергией и веществами системы с окружающей средой регулируется их утечкой.
      2. Второй принцип применения закона минимума связан с компенсаторными возможностями организмов и систем. В определенных условиях лимитирующий фактор может быть заменен не лимитирующим, но присутствующем в достаточном или высоком содержании. Это приведет к изменению потребности в том веществе, которое имеется в минимальном количестве.

      Наглядная иллюстрация

      Наглядно показывает действие этого закона бочка, названная именем ученого. В этой поломанной бочке лимитирующий фактор - это высота досок. В соответствии с экологическим законом минимума починку ее необходимо начинать с наименьшей доски. Именно она и является тем фактором, который наиболее удалился от нормальных значений, оптимальных для выживания организма. Без устранения воздействия этого фактора нет смысла наполнять бочку - другие факторы не так существенно влияют в данный момент времени.

      Где тонко - там и рвется

      Именно эта пословица передает суть закона минимума в экологии и не только. Например, в сельском хозяйстве учитываются показатели содержания минеральных веществ в почвах. Если в почве только 20 % фосфора от нормы, кальция - 50 %, а калия -95 %, то вносить надо в первую очередь удобрения, которые содержат фосфор. В дикой природе для оленя летом лимитирующим фактором будет количество пищи, а зимой - высота снежного покрова. Или для сосны, которая растет в тенистом лесу, ограничивающим фактором будет свет, на сухом песчаном грунте - вода, а в болотистой местности - температура летом.

      Еще такой пример, не относящийся к экологии. Если правый защитник в команде является самым слабым, то именно с его фланга вероятнее всего прорвется противник. Это верно в спорте, в искусстве, в бизнесе. Существенной ошибкой бизнесменов часто становится недооценка того вреда, которую наносит слабый работник даже на второстепенных должностях. Ведь недаром говорят, что качество фирмы определяется качеством ее самых плохих сотрудников. А прочность цепочки всегда зависит от ее самого слабого звена.