Понятие о математическом моделировании примеры. Понятие математической модели. Этапы математического моделирования

Математические модели

Математическая модель - приближенное опи сание объекта моделирования, выраженное с помо щью математической символики.

Математические модели появились вместе с математикой много веков назад. Огромный толчок развитию математического моделирования придало появление ЭВМ. Применение вычислительных машин позволило проанализировать и применить на практике многие математические модели, которые раньше не поддавались аналитическому исследованию. Реализованная на компьютере математиче ская модель называется компьютерной математической моделью , а проведение целенаправленных расчетов с помощью компьютерной модели называется вычислительным экспериментом .

Этапы компьютерного математического мо делирования изображены на рисунке. Первый этап - определение целей моделирования. Эти цели могут быть различными:

  1. модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия
    с окружающим миром (понимание);
  2. модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);
  3. модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).
Поясним на примерах. Пусть объект исследования - взаимодействие потока жидкости или газа с телом, являющимся для этого потока препятствием. Опыт показывает, что сила сопротивления потоку со стороны тела растет с ростом скорости потока, но при некоторой достаточно высокой скорости эта сила скачком уменьшается с тем, чтобы с дальнейшим увеличением скорости снова возрасти. Что же вызвало уменьшение силы сопротивления? Математическое моделирование позволяет получить четкий ответ: в момент скачкообразного уменьшения сопротивления вихри, образующиеся в потоке жидкости или газа позади обтекаемого тела, начинают отрываться от него и уноситься потоком.

Пример совсем из другой области: мирно сосуществовавшие со стабильными численностями популяции двух видов особей, имеющих общую кормовую базу, "вдруг" начинают резко менять численность. И здесь математическое моделирование позволяет (с известной долей достоверности) установить причину (или по крайней мере опровергнуть определенную гипотезу).

Выработка концепции управления объектом - другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.

Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом в несложных физических системах, так и чрезвычайно сложным - на грани выполнимости - в системах биолого-экономических, социальных. Если ответить на вопрос об изменении режима распространения тепла в тонком стержне при изменениях в составляющем его сплаве относительно легко, то проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства несравненно труднее. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительную помощь.

Второй этап: определение входных и выходных параметров модели; разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием, или разделением по рангам (см. "Формализа ция и моделирование" ).

Третий этап: построение математической модели. На этом этапе происходит переход от абстрактной формулировки модели к формулировке, имеющей конкретное математическое представление. Математическая модель - это уравнения, системы уравнений, системы неравенств, дифференциальные уравнения или системы таких уравнений и пр.

Четвертый этап: выбор метода исследования математической модели. Чаще всего здесь используются численные методы, которые хорошо поддаются программированию. Как правило, для решения одной и той же задачи подходит несколько методов, различающихся точностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса моделирования.

Пятый этап: разработка алгоритма, составление и отладка программы для ЭВМ - трудно формализуемый процесс. Из языков программирования многие профессионалы для математического моделирования предпочитают FORTRAN: как в силу традиций, так и в силу непревзойденной эффективности компиляторов (для расчетных работ) и наличия написанных на нем огромных, тщательно отлаженных и оптимизированных библиотек стандартных программ математических методов. В ходу и такие языки, как PASCAL, BASIC, С, - в зависимости от характера задачи и склонностей программиста.

Шестой этап: тестирование программы. Работа программы проверяется на тестовой задаче с заранее известным ответом. Это - лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. Обычно тестирование заканчивается тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.

Седьмой этап: собственно вычислительный эксперимент, в процессе которого выясняется, соответствует ли модель реальному объекту (процессу). Модель достаточно адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментально полученными характеристиками с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.

Классификация математических моделей

В основу классификации математических моделей можно положить различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.). Можно классифицировать по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.). Наконец, если исходить из общих задач моделирования в разных науках безотносительно к математическому аппарату, наиболее естественна такая классификация:

  • дескриптивные (описательные) модели;
  • оптимизационные модели;
  • многокритериальные модели;
  • игровые модели.

Поясним это на примерах.

Дескриптивные (описательные) модели . Например, моделирование движения кометы, вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.

Оптимизационные модели используются для описания процессов, на которые можно воздействовать, пытаясь добиться достижения заданной цели. В этом случае в модель входит один или несколько параметров, доступных влиянию. Например, меняя тепловой режим в зернохранилище, можно задаться целью подобрать такой режим, чтобы достичь максимальной сохранности зерна, т.е. оптимизировать процесс хранения.

Многокритериальные модели . Нередко приходится оптимизировать процесс по нескольким параметрам одновременно, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, нужно организовать питание больших групп людей (в армии, детском летнем лагере и др.) физиологически правильно и, одновременно с этим, как можно дешевле. Ясно, что эти цели совсем не совпадают, т.е. при моделировании будет использоваться несколько критериев, между которыми нужно искать баланс.

Игровые модели могут иметь отношение не только к компьютерным играм, но и к весьма серьезным вещам. Например, полководец перед сражением при наличии неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный раздел современной математики - теория игр, - изучающий методы принятия решений в условиях неполной информации.

В школьном курсе информатики начальное представление о компьютерном математическом моделировании ученики получают в рамках базового курса. В старших классах математическое моделирование может глубоко изучаться в общеобразовательном курсе для классов физико-математического профиля, а также в рамках специализированного элективного курса.

Основными формами обучения компьютерному математическому моделированию в старших классах являются лекционные, лабораторные и зачетные занятия. Обычно работа по созданию и подготовке к изучению каждой новой модели занимает 3-4 урока. В ходе изложения материала ставятся задачи, которые в дальнейшем должны быть решены учащимися самостоятельно, в общих чертах намечаются пути их решения. Формулируются вопросы, ответы на которые должны быть получены при выполнении заданий. Указывается дополнительная литература, позволяющая получить вспомогательные сведения для более успешного выполнения заданий.

Формой организации занятий при изучении нового материала обычно служит лекция. После завершения обсуждения очередной модели учащиеся имеют в своем распоряжении необходимые теоретические сведения и набор заданий для дальнейшей работы. В ходе подготовки к выполнению задания учащиеся выбирают подходящий метод решения, с помощью какого-либо известного частного решения тестируют разработанную программу. В случае вполне возможных затруднений при выполнении заданий дается консультация, делается предложение более детально проработать указанные разделы в литературных источниках.

Наиболее соответствующим практической части обучения компьютерному моделированию является метод проектов. Задание формулируется для ученика в виде учебного проекта и выполняется в течение нескольких уроков, причем основной организационной формой при этом являются компьютерные лабораторные работы. Обучение моделированию с помощью метода учебных проектов может быть реализовано на разных уровнях. Первый - проблемное изложение процесса выполнения проекта, которое ведет учитель. Второй - выполнение проекта учащимися под руководством учителя. Третий - самостоятельное выполнение учащимися учебного исследовательского проекта.

Результаты работы должны быть представлены в численном виде, в виде графиков, диаграмм. Если имеется возможность, процесс представляется на экране ЭВМ в динамике. По окончанию расчетов и получению результатов проводится их анализ, сравнение с известными фактами из теории, подтверждается достоверность и проводится содержательная интерпретация, что в дальнейшем отражается в письменном отчете.

Если результаты удовлетворяют ученика и учителя, то работа считается завершенной, и ее конечным этапом является составление отчета. Отчет включает в себя краткие теоретические сведения по изучаемой теме, математическую постановку задачи, алгоритм решения и его обоснование, программу для ЭВМ, результаты работы программы, анализ результатов и выводы, список использованной литературы.

Когда все отчеты составлены, на зачетном занятии учащиеся выступают с краткими сообщениями о проделанной работе, защищают свой проект. Это является эффективной формой отчета группы, выполняющей проект, перед классом, включая постановку задачи, построение формальной модели, выбор методов работы с моделью, реализацию модели на компьютере, работу с готовой моделью, интерпретацию полученных результатов, прогнозирование. В итоге учащиеся могут получить две оценки: первую - за проработанность проекта и успешность его защиты, вторую - за программу, оптимальность ее алгоритма, интерфейс и т.д. Учащиеся получают отметки и в ходе опросов по теории.

Существенный вопрос - каким инструментарием пользоваться в школьном курсе информатики для математического моделирования? Компьютерная реализация моделей может быть осуществлена:

  • с помощью табличного процессора (как правило, MS Excel);
  • путем создания программ на традиционных языках программирования (Паскаль, Бейсик и др.), а также на их современных версиях (Delphi, Visual
    Basic for Application и т.п.);
  • с помощью специальных пакетов прикладных программ для решения математических задач (MathCAD и т.п.).

На уровне основной школы первое средство представляется более предпочтительным. Однако в старшей школе, когда программирование является, наряду с моделированием, ключевой темой информатики, желательно привлекать его в качестве инструмента моделирования. В процессе программирования учащимся становятся доступными детали математических процедур; более того, они просто вынуждены их осваивать, а это способствует и математическому образованию. Что же касается использования специальных пакетов программ, то это уместно в профильном курсе информатики в качестве дополнения к другим инструментам.

Задание :

  • Составить схему ключевых понятий.

С.П. БОБКОВ, Д.О. БЫТЕВ

МОДЕЛИРОВАНИЕ СИСТЕМ

Учебное пособие


Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Ивановский государственный химико-технологический университет

Международный университет бизнеса и новых технологий (институт)

С.П. БОБКОВ, Д.О. БЫТЕВ

МОДЕЛИРОВАНИЕ СИСТЕМ

для студентов высших учебных заведений.


Бобков С.П. Моделирование систем: учеб. пособие / С.П. Бобков,

Д.О. Бытев; Иван. гос. хим.-технол. ун-т. – Иваново, 2008. – 156 с. - ISBN

Цель учебного пособия – дать студентам общее представление о со- временных методах моделирования технических и технико-экономических систем и объектов.

В пособии рассматриваются общие вопросы и современная методо-

логия моделирования, непрерывные и дискретные детерминированные мо-

дели объектов и систем, стохастические модели с дискретным и непрерыв- ным временем. Большое внимание уделено методам имитационного моде- лирования систем с вероятностными характеристиками. Дается обзор дру- гих подходов к моделированию сложных систем, таких как информацион- но-энтропийный, использование нейронных сетей и сетей Петри.

Учебное пособие предназначено для студентов, обучающихся по специальностям подготовки 080801 «Прикладная информатика» и 230201

«Информационные системы и технологии». Кроме того, пособие может быть полезным для студентов других специальностей и направлений.

Табл.7. Ил.92. Библиогр.:10 назв.

Печатается по решению редакционно-издательского совета Иванов-

ского государственного химико-технологического университета.

Рецензенты:

кафедра прикладной математики Ивановского государственного энергетического университета; доктор физико-математических наук В.А.Соколов, (Ярославский государственный университет).

ISBN 5-9616-0268-6 © ГОУ ВПО Ивановский государст- венный химико-технологический университет», 2008


1.5. Понятие математической схемы моделирования. . . . . . . . . . . . . . 12

1.6. Общая методика создания математических моделей. . . . . . . . . . . 13

1.7. Основные понятия системного подхода к созданию

математических моделей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2. ДЕТЕРМИНИРОВАННЫЕ МОДЕЛИ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1. Математические модели технических объектов. . . . . . . . . . . . . . . 20

2.1.1. Компонентные функциональные уравнения объектов. . . . . 20

2.1.2. Фазовые переменные и их аналогии. . . . . . . . . . . . . . . . . . . . 23

2.1.3. Топологические уравнения. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.4. Примеры создания моделей технических объектов. . . . . . . 25

2.1.5. Модели технологических аппаратов. . . . . . . . . . . . . . . . . . . 29

2.2. Конечные автоматы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1. Понятие конечного автомата. . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2. Способы описания и классы конечных автоматов. . . . . . . . 32

2.2.3. Другие виды конечных автоматов. . . . . . . . . . . . . . . . . . . . . 37

3. СТОХАСТИЧЕСКИЕ МОДЕЛИ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1. Элементы теории марковских случайных процессов. . . . . . . . . . . 39

3.1.1. Понятие случайного процесса. . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2. Дискретные цепи Маркова. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3. Стационарное распределение вероятностей. . . . . . . . . . . . . 43

3.1.4. Непрерывные марковские цепи. . . . . . . . . . . . . . . . . . . . . . . 45

3.1.5. Уравнения А.Н. Колмогорова. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.6. Потоки событий. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2. Основы теории массового обслуживания. . . . . . . . . . . . . . . . . . . . . 51

3.2.1. Обобщенная структурная схема СМО. Параметры

и характеристики. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2. Разомкнутые СМО с ожиданием и терпеливыми заявками. 58

3.2.3. Предельные варианты разомкнутой СМО. . . . . . . . . . . . . . . 62

3.2.4.Общий случай разомкнутой СМО. . . . . . . . . . . . . . . . . . . . . . 64

3.2.5. Замкнутые СМО. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.6. Сети массового обслуживания

с простейшими потоками событий. . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3. Вероятностные автоматы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77


4. ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ. . . . . . . . . . . . . . . . . . . . . . . . . .
4.1. Определение метода имитационного моделирования. . . . . . . . . .
4.2. Основные понятия имитационного моделирования. . . . . . . . . . . .
4.3. Основные этапы имитационного моделирования. . . . . . . . . . . . . .
4.4. Время в имитационных моделях. Псевдопараллелизм. . . . . . . . . .
4.5. Обобщённые алгоритмы имитационного моделирования. . . . . . .
4.6. Моделирование случайных факторов. . . . . . . . . . . . . . . . . . . . . . . .
4.6.1. Моделирование базовых случайных величин. . . . . . . . . . . .
4.6.2. Моделирование непрерывных случайных величин
с произвольным распределением. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.3. Моделирование дискретных случайных величин. . . . . . . . .
4.6.4. Моделирование случайных событий и их потоков. . . . . . .
4.7 Моделирование случайных процессов. . . . . . . . . . . . . . . . . . . . . . . .
4.7.1 Дискретные цепи Маркова. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.2 Непрерывные цепи Маркова. . . . . . . . . . . . . . . . . . . . . . . . . .
4.8. Обработка и анализ результатов имитационного моделирования.
4.8.1. Оценка вероятностных параметров. . . . . . . . . . . . . . . . . . . .
4.8.2. Оценка корреляционных параметров. . . . . . . . . . . . . . . . . . .
4.8.3. Расчет средних по времени параметров СМО. . . . . . . . . . . .
4.9. Планирование экспериментов с имитационными моделями. . . . .
4.10. Общие проблемы имитационного моделирования. . . . . . . . . . . .
5. ОБЗОР АЛЬТЕРНАТИВНЫХ ПОДХОДОВ К МОДЕЛИРОВАНИЮ
СЛОЖНЫХ СИСТЕМ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1. Сети Петри. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.1. Определение сети Петри. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2. Функционирование сети Петри. . . . . . . . . . . . . . . . . . . . . . . .
5.1.3. Анализ сетей Петри. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2. Нейронные сети. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1. Понятие нейронной сети. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.2. Искусственный нейрон. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.3. Основные виды активационных функций искусственных
нейронов. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.4. Виды простейших нейронных сетей. . . . . . . . . . . . . . . . . . . .
5.2.5. Рекуррентные и самоорганизующиеся нейронные сети. . .
5.2.6. Общие замечания по использованию нейронных сетей. . . .
5.3. Информационно-энтропийный подход к моделированию систем
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .

ВВЕДЕНИЕ

Моделирование является универсальным методом получения и использо- вания знаний об окружающем мире. Моделирование всегда используется чело- веком в целенаправленной деятельности, особенно в исследовательской. В со- временных условиях усиливается роль и значение математического моделиро- вания, которое с развитием средств вычислительной техники часто стали назы- вать компьютерным.

Математические (компьютерные) модели, в силу своей логичности и строгого формального характера, позволяют выявить основные факторы, опре- деляющие свойства изучаемых систем и исследовать их реакции на внешние воздействия и изменения параметров. Часто математические модели проще и удобнее использовать, чем натуральные (физические). Они позволяют прово- дить вычислительные эксперименты, реальная постановка которых затруднена или невозможна.

Изучение основных принципов математического моделирования является неотъемлемой частью подготовки специалистов в технических областях дея- тельности. Дисциплины, связанные с изучением основных аспектов моделиро- вания объектов и систем в обязательном порядке входят в соответствующие учебные планы, являясь компонентами федеральных образовательных стандар- тов.

Целью данного учебного пособия является последовательное изложение современных методов моделирования. Пособие предназначено главным обра- зом для студентов, обучающихся по специальностям и направлениям «Инфор- мационные системы» и «Прикладная информатика (по отраслям». Однако, учи- тывая опыт преподавания подобных дисциплин в технических вузах, авторы сочли целесообразным не ограничиваться рассмотрением только информаци- онных систем, но и включить в текст рассмотрение технических и технико- экономических систем и объектов.

Материал пособия выстроен следующим образом. В первой главе рас- сматриваются общие вопросы и современная методология моделирования, ис- пользование системного подхода при создании математических моделей. Вто- рая глава посвящена рассмотрению непрерывных и дискретных детерминиро- ванных моделей объектов и систем. Предлагается использование метода анало- гий при синтезе и анализе моделей технических объектов различной физиче- ской природы. В третьей главе изучаются стохастические модели с дискретным и непрерывным временем. Большое внимание в пособии уделено методам ими- тационного моделирования систем с вероятностными характеристиками, что составляет содержание четвертой главы. В пятой главе дается обзор других подходов к моделированию сложных систем, таких как информационно- энтропийный, использование нейронных сетей и сетей Петри.


ОБЩИЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Математическое моделирование - процесс построения и изучения математических моделей

основные тенденции в развитии математического (компьютерного) моделирования в последние годы связываются не столько с решением "микро" проблем, таких как представленное выше соотношение "модель-алгоритм-программа". Акценты моделирования все более смещаются к "макро-проблемам". Действительно, аппаратно-программные средства решения микро-проблем за последнее время практически перестали ограничивать возможности моделирования даже в самых крупных проектах. Во всем мире наряду с базовыми языками программирования для моделирования широко используются десятки специализированных языков и коммерчески доступных систем моделирования, а возможности сетевого общения открывают доступ к самым современным методологиям и идеям.

В современной теории управления создаются и применяются математические модели двух основных типов (хотя в различных разделах теории эти типы и определяются по-разному).
Для технологических объектов это деление соответствует "феноменологическим" и "дедуктивным" моделям. Под феноменологическими моделями понимаются преимущественно эмпирически восстанавливаемые входо-выходные зависимости, как правило, с небольшим числом входов и выходов. Дедуктивное моделирование предполагает выяснение и описание основных физических закономерностей функционирования всех узлов исследуемого процесса и механизмов их взаимодействия. Дедуктивные модели намного богаче, они описывают процесс в целом, а не отдельные его режимы.
Первый тип моделей - аналитические модели (или, точнее говоря, модели данных). "Модели данных - это модели, которые не требуют, не используют и не отображают каких-либо гипотез о физических процессах (системах), в которых эти данные получены". Второй тип моделей - системные модели (или модели систем). Это математические модели , которые "строятся в основном на базе физических законов и гипотез о том, как система структурирована и, возможно, о том, как она функционирует".
В классическом понимании к моделям данных (аналитическим моделям) относятся все модели математической статистики . В последнее время характерные макро-изменения наблюдаются и для этих моделей. Связь с "внешним миром" проникает в эту сферу моделирования как экспертно-статистические методы и системы, что существенно расширяет методологическую базу для принятия решений в задачах анализа данных и управления.
Вплоть до недавнего времени математические модели использовались в практике управления только как источник входных данных для систем управления. Моделирование технических систем на этапе проектирования для оптимизации их структуры и параметров продолжает эту традицию.
Во многих других задачах принципиально применимы только системные модели Во многих случаях модель может входить в систему управления в форме блока, вычисляющего выходы некоторого объекта по ее входам. Часто в этом случае речь идет о развитии так называемого имитационного моделирования - динамическом моделировании объекта . Динамическое моделирование характерно для различных задач реального времени, прежде всего, для компьютерных тренажеров. Так, в процессе тренажерного обучения действия оператора интерпретируются как входы модели системы (технологической, транспортной и т.п.), а выходы модели преобразуются в аудио-визуальный образ реакций системы на действия оператора. Такое моделирование осуществляется в реальном времени, что позволяет использовать его результаты в различных технологиях реального времени (от обнаружения неисправностей до интерактивного тренинга операторов).
Существует два основных класса задач, связанных с математическими моделями: прямые и обратные. В первом случае все параметры модели считаются известными, и нам остается только исследовать её поведение. Например, определение частоты колебаний гармонического осциллятора при известном значении параметра k -- прямая задача математического моделирования.


Порой требуется решить обратную задачу: какие-то параметры модели неизвестны (например, не могут быть измерены явно), и требуется их найти, сопоставляя поведение реальной системы с её моделью. Ещё одна обратная задача: подобрать параметры модели таким образом, чтобы она удовлетворяла каким-то заданным условиям - такие задачи требуется решать при проектировании систем.

математическая модель выражает существенные черты-объекта или процесса языком уравнений и других математических средств. Собственно говоря, сама математика обязана своим существованием тому, что она пытается отразить, т.е. промоделировать, на своем специфическом языке закономерности окружающего мира.

Путь математического моделирования в наше время гораздо более всеобъемлющ, нежели моделирования натурного. Огромный толчок развитию математического моделирования дало появление ЭВМ, хотя сам метод зародился одновременно с математикой тысячи лет назад.

Математическое моделирование как таковое отнюдь не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т.е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Возможности аналитических методов решения сложных математических задач, однако, очень ограниченны и, как правило, эти методы гораздо сложнее численных.

ВВЕДЕНИЕ

Невозможно представить себе современную науку без широкого применения математического моделирования. Сущность этой методологии состоит в замене исходного объекта его «образом» - математической моделью - и дальнейшем изучении модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Этот «третий метод» познания, конструирования, проектирования сочетает в себе многие достоинства как теории, так и эксперимента. Работа не с самим объектом (явлением, процессом), а с его моделью дает возможность безболезненно, относительно быстро и без существенных затрат исследовать его свойства и поведение в любых мыслимых ситуациях (преимущества теории). В то же время вычислительные (компьютерные, симуляционные, имитационные) эксперименты с моделями объектов позволяют, опираясь на мощь современных вычислительных методов и технических инструментов информатики, подробно и глубоко изучать объекты в достаточной полноте, недоступной чисто теоретическим подходам (преимущества эксперимента). Неудивительно, что методология математического моделирования бурно развивается, охватывая все новые сферы - от разработки технических систем и управления ими до анализа сложнейших экономических и социальных процессов.

Элементы математического моделирования использовались с самого начала появления точных наук, и не случайно, что некоторые методы вычислений носят имена таких корифеев науки, как Ньютон и Эйлер, а слово «алгоритм» происходит от имени средневекового арабского ученого Аль-Хорезми. Второе «рождение» этой методологии пришлось на конец 40-х-начало 50-х годов XX века и было обусловлено по крайней мере двумя причинами. Первая из них - появление ЭВМ (компьютеров), хотя и скромных по нынешним меркам, но тем не менее избавивших ученых от огромной по объему рутинной вычислительной работы. Вторая - беспрецедентный социальный заказ - выполнение национальных программ СССР и США по созданию ракетно-ядерного щита, которые не могли быть реализованы традиционными методами. Математическое моделирование справилось с этой задачей: ядерные взрывы и полеты ракет и спутников были предварительно «осуществлены» в недрах ЭВМ с помощью математических моделей и лишь затем претворены на практике. Этот успех во многом определил дальнейшие достижения методологии, без применения которой в развитых странах ни один крупномасштабный технологический, экологический или экономический проект теперь всерьез не рассматривается (сказанное справедливо и по отношению к некоторым социально-политическим проектам).

Сейчас математическое моделирование вступает в третий принципиально важный этап своего развития, «встраиваясь» в структуры так называемого информационного общества. Впечатляющий прогресс средств переработки, передачи и хранения информации отвечает мировым тенденциям к усложнению и взаимному проникновению различных сфер человеческой деятельности. Без владения информационными «ресурсами» нельзя и думать о решении все более укрупняющихся и все более разнообразных проблем, стоящих перед мировым сообществом. Однако информация как таковая зачастую мало что дает для анализа и прогноза, для принятия решений и контроля за их исполнением. Нужны надежные способы переработки информационного «сырья» в готовый «продукт», т. е. в точное знание. История методологии математического моделирования убеждает: она может и должна быть интеллектуальным ядром информационных технологий, всего процесса информатизации общества.

Технические, экологические, экономические и иные системы, изучаемые современной наукой, больше не поддаются исследованию (в нужной полноте и точности) обычными теоретическими методами. Прямой натурный эксперимент над ними долог, дорог, часто либо опасен, либо попросту невозможен, так как многие из этих систем существуют в «единственном экземпляре». Цена ошибок и просчетов в обращении с ними недопустимо высока. Поэтому математическое (шире - информационное) моделирование является неизбежной составляющей научно-технического прогресса.

Рассматривая вопрос шире, напомним, что моделирование присутствует почти во всех видах творческой активности людей различных «специальностей» - исследователей и предпринимателей, политиков и военачальников. Привнесение в эти сферы точного знания помогает ограничить интуитивное умозрительное «моделирование», расширяет поле приложений рациональных методов. Конечно же, математическое моделирование плодотворно лишь при выполнении хорошо известных профессиональных требований: четкая формулировка основных понятий и предположений, апостериорный анализ адекватности используемых моделей, гарантированная точность вычислительных алгоритмов и т. д. Если же говорить о моделировании систем с участием «человеческого фактора», т. е. трудно формализуемых объектов, то к этим требованиям необходимо добавить аккуратное разграничение математических и житейских терминов (звучащих одинаково, но имеющих разный смысл), осторожное применение уже готового математического аппарата к изучению явлений и процессов (предпочтителен путь «от задачи к методу», а не наоборот) и ряд других.

Решая проблемы информационного общества, было бы наивно уповать только на мощь компьютеров и иных средств информатики. Постоянное совершенствование триады математического моделирования и ее внедрение в современные информационно-моделирующие системы - методологический императив. Лишь его выполнение дает возможность получать так нужную нам высокотехнологичную, конкурентоспособную и разнообразную материальную и интеллектуальную продукцию.

Выбранная мною тема является актуальной в современной математике и ее приложениях. В современном научном подходе в исследовании естественных, технических и социально-экономических объектов возрастает значение математического моделирования происходящих в них процессов. Натурное изучение поведения объектов и систем в таких режимах и условиях невозможно либо затруднительно, что вынуждает применять методы математического моделирования.

Цель данной курсовой работы это - научиться использовать методы математического моделирования для исследования различных природных социальных процессов.

Задачи поставленные для достижения цели:

n Изучить теоретические вопросы математического моделирования, классификация моделей.

ОСНОВНЫЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Моделирование - метод научного исследования явлений, процессов, объектов, устройств или систем (обобщенно – объектов исследований), основанный на построении и изучении моделей с целью получения новых знаний, совершенствования характеристик объектов исследований или управления ими.

Модель - материальный объект или образ (мысленный или условный: гипотеза, идея, абстракция, изображение, описание, схема, формула, чертеж, план, карта, блок-схема алгоритма, ноты и т.п.), которые упрощенно отображают самые существенные свойства объекта исследования.

Любая модель всегда проще реального объекта и отображает лишь часть его самых существенных черт, основных элементов и связей. По этой причине для одного объекта исследования существует множество различных моделей. Вид модели зависит от выбранной цели моделирования.

В основе термина «модель» лежит латинское слово modulus - мера, образец. Модель – это заместитель реального объекта исследования. Модель всегда проще исследуемого объекта. При изучении сложных явлений, процессов, объектов не удается учесть полную совокупность всех элементов и связей, определяющих их свойства.

Но все элементы и связи в создаваемой модели и не следует учитывать. Нужно лишь выделить наиболее характерные, доминирующие составляющие, которые в подавляющей степени определяют основные свойства объекта исследования. В результате объект исследования заменяется некоторым упрощенным подобием, но обладающим характерными, главными свойствами, аналогичными свойствам объекта исследования. Появившийся вследствие проведенной подмены новый объект (или абстракция) принято называть моделью объекта исследования.

Для составления математических моделей можно использовать любые математические средства - дифференциальное и интегральное исчисления, регрессионный анализ, теорию вероятностей, математическую статистику и т. д. Математическая модель представляет собой совокупность формул, уравнений, неравенств, логических условий и т.д. Использованные в математическом моделировании математические соотношения определяют процесс изменения состояния объекта исследования в зависимости от его параметров, входных сигналов, начальных условий и времени. По существу, вся математика создана для формирования математических моделей.

О большом значении математики для всех других наук (в том числе и моделирования) говорит следующий факт. Великий английский физик И.Ньютон (1643-1727 г.г.) в середине 17-го века познакомился с работами Рене Декарта и Пьера Гассенди. В этих работах утверждалось, что все строение мира может быть описано математическими формулами. Под влиянием этих трудов И.Ньютон стал усиленно изучать математику. Сделанный им вклад в физику и математику широко известен.

Математическое моделирование - метод изучения объекта исследования, основанный на создании его математической модели и использовании её для получения новых знаний, совершенствования объекта исследования или управления объектом.

Для математического моделирования характерно то, что процессы функционирования объекта записывают в виде математических соотношений (алгебраические, интегральные), записывают в виде логических условий.

Дифференциальные уравнения являются одним из основных средств составления математических моделей, наиболее широко применяемых при решении математических задач. При исследовании физических процессов, решении различных прикладных задач, как правило, не удается непосредственно найти законы, которые связывают величины, характеризующие исследуемые явления. Обычно легче устанавливаются зависимости между теми же величинами и их производными или дифференциалами. Соотношения такого рода и называются дифференциальными уравнениями. Возможности и правила составления дифференциальных уравнений определяются знаниями законов той области науки, с которой связана природа изучаемой задачи. Так, например, в механике могут использоваться законы Ньютона, в теории скоростей химических реакций – закон действия масс и т.д. Однако на практике часто встречаются случаи, когда законы, которые могли бы позволить составить дифференциальное уравнение, неизвестны. Тогда прибегают к различным упрощающим предположениям, касающимся протекания процесса при малых изменениях параметров-переменных. К дифференциальным уравнениям в таком случае приводит предельный переход. Вопрос соответствия математической модели и реального явления решается на основе анализа результатов, опытов и сравнения их с поведением решения полученного дифференциального уравнения

ПРЕДИСЛОВИЕ

Целью курса моделирование подъемно-транспортных систем является обучение основам моделирования подъемно-транспортных машин (ПТМ), что включает в себя составление математических моделей ПТМ, программную реализацию моделей на ЭВМ, а также получение, обработку и анализ результатов моделирования.

Для самостоятельного ознакомления с перечисленными вопросами рекомендуется следующая литература: Брауде В. И., Тер-Мхитаров М. С. «Системные методы расчета грузоподъемных машин», Игнатьев Н. Б., Ильевский Б. З., Клауз Л. П. «Моделирование системы машин», Рачков Е. В., Силиков Ю. В. «Подъемно - транспортные машины и механизмы», а также справочники и учебные пособия по численным методам вычислительной математики и использованию математического редактора MathCad.

§1. ОСНОВНЫЕ ЦЕЛИ, ОПРЕДЕЛЕНИЯ И ПРИНЦИПЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ, ВИДЫ МОДЕЛЕЙ

1.1 Основные определения

Моделирование - это теоретико-экспериментальный метод познавательной деятельности, это метод исследования и объяснения явлений, процессов и систем (объектов-оригиналов) на основе создания новых объектов - моделей.

Моделирование – это замещение исследуемого объекта (оригинала) его условным образом или другим объектом (моделью) и изучение свойств оригинала путем исследования свойств модели.

В зависимости от способа реализации все модели можно разделить на 4 группы: физические, математические, предметно-математические и комбинированные [, ].

Физическая модель – реальное воплощение тех свойств оригинала, которые интересует исследователя. Физические модели называют еще макетами, поэтому физическое моделирование называется макетированием.

Математическая модель – это формализованное описание системы (или процесса) с помощью некоторого абстрактного языка (математически), например, в виде графов, уравнений, алгоритмов, математических соответствий и пр.

Предметно-математические модели являются аналоговыми, т.е. при этом для моделирования используется принцип одинакового математического описания процессов, реального и протекающего в модели.

Комбинированные модели представляют собой сочетание математической или предметно-математической и физической модели. Они используются тогда, когда математическое описание одного из элементов исследуемой системы неизвестно или затруднительно, а также по условиям моделирования необходимо ввести в качестве элемента физическую модель (например, тренажер).

Математическое моделирование – это замещение оригинала математической моделью и исследование свойств оригинала на данной модели.

Системой называется объединение нескольких объектов (элементов), взаимосвязанных между собой, образующее определенную целостность.

Элемент - это относительно самостоятельная часть системы, рассматриваемая на данном уровне анализа как единое целое, предназначенная для реализацию некоторой функции.

Система обладает следующими, т.н. «системными» свойствами:

    структурой, т.е. строго определенным порядком объединения элементов в группы;

    целенаправленностью или функциональностью, т.е. наличием цели, для которой создана система;

    эффективностью, способностью достигать цели с наименьшими затратами ресурсов;

    устойчивостью, способностью сохранять характеристики своих свойств неизменными в определенных пределах при изменении внешних условий.

В настоящее время в технике для исследования работы машинных комплексов и машин используется понятие «человеко-машинной системы» (ЧМС), т.е. смешанной системы, составной частью которой наряду с техническими объектами является человек-оператор [, ]. Кроме того, ЧМС взаимодействует с окружающей средой. Таким образом, для моделирования ПТС необходимо рассматривать систему Человек-Машина-Среда, которая может быть отображена следующим графом (Рис. 1).

Р
ис. 1 Граф системы Человек-Машина-Среда.

Стрелками на графе изображены потоки энергии, вещества и информации, которыми обмениваются элементы системы.

Процессы, протекающие в технических системах, образованы совокупностью простейших операций. Операции – преобразования входных физических величин в выходные в низкоуровневом элементе системы (Рис. 2).

В каждом элементе системы (E i) происходит преобразование входных воздействий (X i) в выходные (Y i), причем выходные воздействия одного элемента могут являться входными следующего. Соединение элементов в структурную схему по характеру передачи воздействий происходит последовательно или параллельно.

Рис. 2 Структурная схема системы.

Подъемно-транспортными системами (ПТС), изучаемыми в рамках данного курса, будем называть системы, включающими в себя человека, окружающую среду и подъемно-транспортные машины (ПТМ).

ПТМ – это машины, предназначенные для перемещения груза на относительно небольшие расстояния без его переработки. ПТМ применяются для облегчения, ускорения, повышения эффективности перегрузочных работ.

1.2 Принципы и виды математического моделирования

Математические модели должны обладать следующими свойствами:

    адекватность, свойство соответствия модели и объекта исследований;

    достоверность, обеспечение заданной вероятности попадания результатов моделирования в доверительный интервал,

    точность, незначительное (в пределах допустимой погрешности) расхождение результатов моделирования с показателями реальных объектов (процессов);

    устойчивость, свойство соответствия малых изменений выходных параметров малым изменениям входных;

    эффективность, способность достижения цели с малыми затратами ресурсов;

    адаптабельность, способность легко перестраиваться для решения различных задач.

Для достижения этих свойств существуют некоторые принципы (правила) математического моделирования , ряд которых приведен ниже.

    Принцип целенаправленности заключается в том, что модель должна обеспечивать достижение строго определенных целей и, в первую очередь, отражать те свойства оригинала, которые необходимы для достижения цели.

    Принцип информационной достаточности заключается в ограничении количества информации об объекте при создании его модели и поиске оптимума между вводимой информацией и результатами моделирования. Он может быть проиллюстрирован следующей схемой.

Все возможные случаи моделирования располагаются в столбце 2.

    Принцип осуществимости состоит в том, что модель должна обеспечивать достижение поставленной цели с вероятностью близкой к 1 и за конечное время. Этот принцип можно выразить двумя условиями

и
,
(1)

где
- вероятность достижения цели, - время достижения цели,
и - допустимые значения вероятности и времени достижения цели.

    Принцип агрегатирования заключается в том, что модель должна состоять из подсистем 1-го уровня, которые, в свою очередь, состоят из подсистем 2-го уровня и т.д. Подсистемы должны оформляться в виде отдельных самостоятельных блоков. Подобное построение модели позволяет использовать стандартные процедуры расчетов, а также делает более легкой адаптацию модели к решению различных задач.

    Принцип параметризации состоит в замене при моделировании определенных параметров подсистем, описанных функциями, соответствующими числовыми характеристиками.

Процесс моделирования с использованием этих правил заключается в выполнении следующих 5 шагов (этапов).

    Определение целей моделирования.

    Разработка концептуальной модели (расчетной схемы).

    Формализация.

    Реализация модели.

    Анализ и интерпретация результатов моделирования.

Существенные различия в выполнении 3-5 этапов позволяют говорить о двух подходах к построению модели.

Аналитическое моделирование – это использование математической модели в виде дополненных системой ограничений уравнений, связывающих входные переменные с выходными параметрами. Аналитическое моделирование используется, если существует законченная постановка задачи на исследования и необходимо получить один конечный результат, соответствующий ей.

Имитационное моделирование – это использование математической модели для описания функционирования системы во времени при различных сочетаниях параметров системы и различных внешних воздействиях. Имитационное моделирование используется, если конечной постановки задачи не существует и необходимо исследовать протекающие в системе процессы. Имитационное моделирование предполагает соблюдение временного масштаба. Т.е. события на одели происходят через интервалы времени пропорциональные событиям на оригинале с постоянным коэффициентом пропорциональности.

По использованию средств для реализации модели можно выделить еще один вид моделирования, компьютерное моделирование. Компьютерное моделирование – это математическое моделирование с использованием средств вычислительной техники.

1.3 Классификация математических моделей

Все математические модели можно разделить на несколько групп по следующим классификационным признакам.

    По виду моделируемой системы модели бывают статические и динамические. Статические модели служат для исследования статических систем, динамические для исследования динамических. Динамические системы характеризуются тем, что обладают множеством состояний, которые изменяют во времени.

    По целям моделирования модели подразделяются на нагрузочные, управленческие и функциональные. Нагрузочные модели служат для определения нагрузок, действующих на элементы системы, управленческие – для определения кинематических параметров исследуемой системы, к которым относятся скорости и перемещения элементов системы, функциональные – для определения координат модели в пространстве возможных функциональных состояний системы.

    По степени дискретизации модели подразделяются на дискретные, смешанные и континуальные. Дискретные модели содержат элементы, связанные между собой, характеристики которых сосредоточены в точках. Это могут быть массы, объемы, силовые и прочие воздействия, сосредоточенные в точках. Континуальные модели содержат элементы, параметры которых распределены по длине, по площади или по объему всего элемента. Смешанные модели содержат элементы обоих типов.