Математические методы и модели основные понятия. Понятие о математическом моделировании. Виды моделирования

Математические модели

Математическая модель - приближенное опи сание объекта моделирования, выраженное с помо щью математической символики.

Математические модели появились вместе с математикой много веков назад. Огромный толчок развитию математического моделирования придало появление ЭВМ. Применение вычислительных машин позволило проанализировать и применить на практике многие математические модели, которые раньше не поддавались аналитическому исследованию. Реализованная на компьютере математиче ская модель называется компьютерной математической моделью , а проведение целенаправленных расчетов с помощью компьютерной модели называется вычислительным экспериментом .

Этапы компьютерного математического мо делирования изображены на рисунке. Первый этап - определение целей моделирования. Эти цели могут быть различными:

  1. модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия
    с окружающим миром (понимание);
  2. модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);
  3. модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).
Поясним на примерах. Пусть объект исследования - взаимодействие потока жидкости или газа с телом, являющимся для этого потока препятствием. Опыт показывает, что сила сопротивления потоку со стороны тела растет с ростом скорости потока, но при некоторой достаточно высокой скорости эта сила скачком уменьшается с тем, чтобы с дальнейшим увеличением скорости снова возрасти. Что же вызвало уменьшение силы сопротивления? Математическое моделирование позволяет получить четкий ответ: в момент скачкообразного уменьшения сопротивления вихри, образующиеся в потоке жидкости или газа позади обтекаемого тела, начинают отрываться от него и уноситься потоком.

Пример совсем из другой области: мирно сосуществовавшие со стабильными численностями популяции двух видов особей, имеющих общую кормовую базу, "вдруг" начинают резко менять численность. И здесь математическое моделирование позволяет (с известной долей достоверности) установить причину (или по крайней мере опровергнуть определенную гипотезу).

Выработка концепции управления объектом - другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.

Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом в несложных физических системах, так и чрезвычайно сложным - на грани выполнимости - в системах биолого-экономических, социальных. Если ответить на вопрос об изменении режима распространения тепла в тонком стержне при изменениях в составляющем его сплаве относительно легко, то проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства несравненно труднее. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительную помощь.

Второй этап: определение входных и выходных параметров модели; разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием, или разделением по рангам (см. "Формализа ция и моделирование" ).

Третий этап: построение математической модели. На этом этапе происходит переход от абстрактной формулировки модели к формулировке, имеющей конкретное математическое представление. Математическая модель - это уравнения, системы уравнений, системы неравенств, дифференциальные уравнения или системы таких уравнений и пр.

Четвертый этап: выбор метода исследования математической модели. Чаще всего здесь используются численные методы, которые хорошо поддаются программированию. Как правило, для решения одной и той же задачи подходит несколько методов, различающихся точностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса моделирования.

Пятый этап: разработка алгоритма, составление и отладка программы для ЭВМ - трудно формализуемый процесс. Из языков программирования многие профессионалы для математического моделирования предпочитают FORTRAN: как в силу традиций, так и в силу непревзойденной эффективности компиляторов (для расчетных работ) и наличия написанных на нем огромных, тщательно отлаженных и оптимизированных библиотек стандартных программ математических методов. В ходу и такие языки, как PASCAL, BASIC, С, - в зависимости от характера задачи и склонностей программиста.

Шестой этап: тестирование программы. Работа программы проверяется на тестовой задаче с заранее известным ответом. Это - лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. Обычно тестирование заканчивается тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.

Седьмой этап: собственно вычислительный эксперимент, в процессе которого выясняется, соответствует ли модель реальному объекту (процессу). Модель достаточно адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментально полученными характеристиками с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.

Классификация математических моделей

В основу классификации математических моделей можно положить различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.). Можно классифицировать по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.). Наконец, если исходить из общих задач моделирования в разных науках безотносительно к математическому аппарату, наиболее естественна такая классификация:

  • дескриптивные (описательные) модели;
  • оптимизационные модели;
  • многокритериальные модели;
  • игровые модели.

Поясним это на примерах.

Дескриптивные (описательные) модели . Например, моделирование движения кометы, вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.

Оптимизационные модели используются для описания процессов, на которые можно воздействовать, пытаясь добиться достижения заданной цели. В этом случае в модель входит один или несколько параметров, доступных влиянию. Например, меняя тепловой режим в зернохранилище, можно задаться целью подобрать такой режим, чтобы достичь максимальной сохранности зерна, т.е. оптимизировать процесс хранения.

Многокритериальные модели . Нередко приходится оптимизировать процесс по нескольким параметрам одновременно, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, нужно организовать питание больших групп людей (в армии, детском летнем лагере и др.) физиологически правильно и, одновременно с этим, как можно дешевле. Ясно, что эти цели совсем не совпадают, т.е. при моделировании будет использоваться несколько критериев, между которыми нужно искать баланс.

Игровые модели могут иметь отношение не только к компьютерным играм, но и к весьма серьезным вещам. Например, полководец перед сражением при наличии неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный раздел современной математики - теория игр, - изучающий методы принятия решений в условиях неполной информации.

В школьном курсе информатики начальное представление о компьютерном математическом моделировании ученики получают в рамках базового курса. В старших классах математическое моделирование может глубоко изучаться в общеобразовательном курсе для классов физико-математического профиля, а также в рамках специализированного элективного курса.

Основными формами обучения компьютерному математическому моделированию в старших классах являются лекционные, лабораторные и зачетные занятия. Обычно работа по созданию и подготовке к изучению каждой новой модели занимает 3-4 урока. В ходе изложения материала ставятся задачи, которые в дальнейшем должны быть решены учащимися самостоятельно, в общих чертах намечаются пути их решения. Формулируются вопросы, ответы на которые должны быть получены при выполнении заданий. Указывается дополнительная литература, позволяющая получить вспомогательные сведения для более успешного выполнения заданий.

Формой организации занятий при изучении нового материала обычно служит лекция. После завершения обсуждения очередной модели учащиеся имеют в своем распоряжении необходимые теоретические сведения и набор заданий для дальнейшей работы. В ходе подготовки к выполнению задания учащиеся выбирают подходящий метод решения, с помощью какого-либо известного частного решения тестируют разработанную программу. В случае вполне возможных затруднений при выполнении заданий дается консультация, делается предложение более детально проработать указанные разделы в литературных источниках.

Наиболее соответствующим практической части обучения компьютерному моделированию является метод проектов. Задание формулируется для ученика в виде учебного проекта и выполняется в течение нескольких уроков, причем основной организационной формой при этом являются компьютерные лабораторные работы. Обучение моделированию с помощью метода учебных проектов может быть реализовано на разных уровнях. Первый - проблемное изложение процесса выполнения проекта, которое ведет учитель. Второй - выполнение проекта учащимися под руководством учителя. Третий - самостоятельное выполнение учащимися учебного исследовательского проекта.

Результаты работы должны быть представлены в численном виде, в виде графиков, диаграмм. Если имеется возможность, процесс представляется на экране ЭВМ в динамике. По окончанию расчетов и получению результатов проводится их анализ, сравнение с известными фактами из теории, подтверждается достоверность и проводится содержательная интерпретация, что в дальнейшем отражается в письменном отчете.

Если результаты удовлетворяют ученика и учителя, то работа считается завершенной, и ее конечным этапом является составление отчета. Отчет включает в себя краткие теоретические сведения по изучаемой теме, математическую постановку задачи, алгоритм решения и его обоснование, программу для ЭВМ, результаты работы программы, анализ результатов и выводы, список использованной литературы.

Когда все отчеты составлены, на зачетном занятии учащиеся выступают с краткими сообщениями о проделанной работе, защищают свой проект. Это является эффективной формой отчета группы, выполняющей проект, перед классом, включая постановку задачи, построение формальной модели, выбор методов работы с моделью, реализацию модели на компьютере, работу с готовой моделью, интерпретацию полученных результатов, прогнозирование. В итоге учащиеся могут получить две оценки: первую - за проработанность проекта и успешность его защиты, вторую - за программу, оптимальность ее алгоритма, интерфейс и т.д. Учащиеся получают отметки и в ходе опросов по теории.

Существенный вопрос - каким инструментарием пользоваться в школьном курсе информатики для математического моделирования? Компьютерная реализация моделей может быть осуществлена:

  • с помощью табличного процессора (как правило, MS Excel);
  • путем создания программ на традиционных языках программирования (Паскаль, Бейсик и др.), а также на их современных версиях (Delphi, Visual
    Basic for Application и т.п.);
  • с помощью специальных пакетов прикладных программ для решения математических задач (MathCAD и т.п.).

На уровне основной школы первое средство представляется более предпочтительным. Однако в старшей школе, когда программирование является, наряду с моделированием, ключевой темой информатики, желательно привлекать его в качестве инструмента моделирования. В процессе программирования учащимся становятся доступными детали математических процедур; более того, они просто вынуждены их осваивать, а это способствует и математическому образованию. Что же касается использования специальных пакетов программ, то это уместно в профильном курсе информатики в качестве дополнения к другим инструментам.

Задание :

  • Составить схему ключевых понятий.

Под математическим моделированием, в узком смысле слова, понимают описание в виде уравнений и неравенств реальных физических, химических, технологических, биологических, экономических и других процессов. Для того чтобы использовать математические методы для анализа и синтеза различных процессов, необходимо уметь описать эти процессы на языке математики, то есть описать в виде системы уравнений и неравенств .

Математические методы выступают как способ получения новых знаний об объекте. Это относится не только к системам. Оглядываясь назад, обращаясь к истории науки, исследователь видит, что всю динамику науки можно рассматривать как непрерывный процесс построения новых, более совершенных и мощных моделей. Укоренилось представление, что «всякое познание является моделированием» (Н.Амосов). Под воздействием общей теории систем произошло переосмысление, переоценка и классических представлений. Понятие математического моделирования стало толковаться настолько расширительно, что включило в себя всю формализацию и математизацию знания. «Математическая модель - это лишь специальный способ описания, позволяющий для анализа использовать формально-логический аппарат математики » (Моисеев Н.Н., 1973).

Но модели сложных и больших систем - это нечто иное принципиально, качественно. Аналитического, формально-логического аппарата здесь уже недостаточно. В рамках этой работы под математической моделью понимается любая математическая конструкция, являющаяся большой и/или сложной динамической системой и обладающая свойством структурно-функционального изоморфизма по отношению к исследуемой системе (системе-оригиналу).

Между моделированием и получением количественного или качественного результата математическими методами существует глубокое различие. Применение математики становится возможным тогда, когда становится ясно, что и с какой целью определять, оценивать, измерять, что и как обрабатывать математическими методами. Модель для этих задач не служит. Математическое моделирование − это не приложение математического инструмента к объекту, не решение конкретных задач математическими средствами. Это построение формальными методами и средствами абстрактного объекта изофункционального исследуемому объекту для последующего приложения математических методов количественного и качественного анализа. В то же время, использование в моделировании математики в качестве языка (метатеории) придает полученным выводам доказательную силу. Деятельность по построению моделей не принадлежит математике и выполняется (должна выполняться) не математиками, а специалистами в конкретной области знания.

Для построения модели системы нужны те содержательные эмпирические представления, те описательные науки, которые предшествуют появлению формализованных наук. Эти описания не входят в виде составных частей в формализованную науку, а лишь облегчают процесс формализации, обогащают эвристические возможности формализации. Модель не требует предварительного описания моделируемого объекта, потому что она сама является формой описания.

Отношение модели и реальности иное, чем отношение реальности и математической формулы. Формула − это иероглиф, знак действительности. Модель − это сама действительность. Можно возразить, что физик или математик отлично чувствует динамику, реальные отношения, которые скрываются за формулой, не воспринимает ее как иероглиф, а, кроме того, современная математика − это далеко не просто и не только формула. И все же, формулами ученый мыслить не может. Иное дело модель. Она обладает динамикой, она живет (не только в переносном, порой и в прямом смысле слова). Исследователь может мыслить моделями, он получает возможность образного мышления. В мире моделей смыкается художественное и логическое восприятие действительности.

Математическое моделирование не исключает использование классической математики, более того, в составе модели математика получает ту силу и всеобщность проникновения, которой была лишена в классическую эпоху.

Если мы рассматриваем некоторый объект как целое, заданное своими внешними свойствами, мы можем эффективно использовать аналитические способы описания для процессов, происходящих вне этого целого. Но стоит поставить задачу внутреннего описания большой и/или сложной системы, описания взаимодействий между ее частями, элементами и подсистемами методами классической математики, как мы немедленно сталкиваемся с непреодолимыми трудностями.

С другой стороны, попытка описать процедурными методами некоторую систему, в общем, не проникая в ее внутреннее устройство, в ее структуру и функции элементов, как правило, не приведет к значимому результату. Каждому методу свое место.

В математике аналитических структур мы должны сначала понять, а потом описать. В моделировании, в математике алгоритмических процессов, сам процесс описания того, что еще не понято, нередко становится средством понимания.

Как методология научных исследований математическое моделирование сочетает в себе опыт различных отраслей науки о природе и обществе, прикладной математики, информатики и системного программирования для решения фундаментальных проблем. Математическое моделирование объектов сложной природы – единый сквозной цикл разработок от фундаментального исследования проблемы до конкретных численных расчетов показателей эффективности объекта. Результатом разработок бывает система математических моделей, которые описывают качественно разнородные закономерности функционирования объекта и его эволюцию в целом как сложной системы в различных условиях. Вычислительные эксперименты с математическими моделями дают исходные данные для оценки показателей эффективности объекта. Поэтому математическое моделирование как методология организации научной экспертизы крупных проблем незаменимо при проработке народнохозяйственных решений. (В первую очередь это относится к моделированию экономических систем).По своей сути математическое моделирование есть метод решения новых сложных проблем, поэтому исследования по математическому моделированию должны быть опережающими. Следует заранее разрабатывать новые методы, готовить кадры, умеющие со знанием дела применять эти методы для решения новых практических задач.Математическая модель может возникнуть тремя путями: 1. В результате прямого изучения реального процесса. Такие модели называются феноменологическими.2. В результате процесса дедукции. Новая модель является частным случаем некоторой общей модели. Такие модели называются асимптотическими.3. В результате процесса индукции. Новая модель является обобщением элементарных моделей. Такие модели называют моделями ансамблей. Процесс моделирования начинается с моделирования упрощенного процесса, который с одной стороны отражает основные качественные явления, с другой стороны допускает достаточно простое математическое описание. По мере углубления исследования строятся новые модели, более детально описывающие явление. Факторы, которые считаются второстепенными на данном этапе, отбрасываются. Однако, на следующих этапах исследования, по мере усложнения модели, они могут быть включены в рассмотрение. В зависимости от цели исследования один и тот же фактор может считаться основным или второстепенным.Математическая модель и реальный процесс не тождественны между собой. Как правило, математическая модель строится с некоторым упрощением и при некоторой идеализации. Она лишь приближенно отражает реальный объект исследования, и результаты исследования реального объекта математическими методами носят приближенный характер. Точность исследования зависит от степени адекватности модели и объекта и от точности применяемых методов вычислительной математики. Схема построения математических моделей следующая: 1. Выделение параметра или функции, подлежащей исследованию.2. Выбор закона, которому подчиняется эта величина.3. Выбор области, в которой требуется изучить данное явление.

Теоретическая дисциплина становится точной наукой, когда она оперирует количественными характеристиками. За качественным описанием модели следует вторая фаза абстрагирования − количественное описание модели. Еще Галилео Галилей сказал, что книга природы написана на языке математики. Иммануил Кант провозгласил, что «во всякой науке столько истины, сколько в ней математики». А Давиду Гильберту принадлежат слова: «Математика основа всего точного естествознания».

Математическое моделирование − это теоретико-экспериментальный метод познавательно-созидательной деятельности, это метод исследования и объяснения явлений, процессов и систем (объектов-оригиналов) на основе создания новых объектов − математических моделей.

Под математической моделью принято понимать совокупность соотношений (уравнений, неравенств, логических условий, операторов и т.п.), определяющих характеристики состояний объекта моделирования, а через них и выходные значения – реакции , в зависимости от параметров объекта-оригинала , входных воздействий , начальных и граничных условий, а также времени.

Математическая модель, как правило, учитывает лишь те свойства (атрибуты) объекта-оригинала , которые отражают, определяют и представляют интерес с точки зрения целей и задач конкретного исследования. Следовательно, в зависимости от целей моделирования, при рассмотрении одного и того же объекта-оригинала с различных точек зрения и в различных аспектах, последний может иметь различные математические описания и, как следствие, быть представлен различными математическими моделями.

Принимая во внимание, изложенное выше, дадим наиболее общее, но в то же время строгое конструктивное определение математической модели, сформулированное П.Дж. Коэном.

Определение 4.1. Математическая модель − это формальная система, представляющая собой конечное собрание символов и совершенно строгих правил оперирования этими символами в совокупности с интерпретацией свойств определенного объекта некоторыми отношениями, символами или константами.

Как следует из приведенного определения, конечное собрание символов (алфавит) и совершенно строгих правил оперирования этими символами («грамматика» и «синтаксис» математических выражений) приводят к формированию абстрактных математических объектов (АМО). Только интерпретация делает этот абстрактный объект математической моделью.

Математическая модель представляет собой количест-венную формализацию абстрактных представлений об изучаемом явлении или объекте.

Математические модели могут быть представлены различны­ми математическими средствами:

· действительными или комплексными величинами;

· векторами, матрицами;

· геометрическими образами;

· не­равенствами;

· функциями и функционалами;

· множествами, различными уравнениями;

· функциями распределения вероятностей, статистиками и т.д.

«В физической науке писал Томпсон, при изучении любого объекта первый и наиболее существенный шаг состоит в том, чтобы найти принципы численной оценки и практические методы из­мерения некоторого количества, присущего этому объекту».

Переход от первой ко второй фазе абстрагирования, т.е. от физической модели к математической часто освобождает модель от специфических черт, присущих данному изучаемому явлению или объ­екту. Очень многие математические модели, лишившись физической или технической оболочки, приобретают универсальность, т.е. спо­собность количественного описания различных по своей физической природе процессов или по техническому назначению объектов. В этом проявляется одно из важнейших свойств математической форма­лизации предмета исследования, благодаря которому при постановке и решении прикладных задач в большинстве случаев не требуется создавать новый математический аппарат, а можно воспользоваться существующим, с необходимыми для конкретной ситуации усовершенс­твованием и интерпретацией. Таким образом, одна математическая модель может быть использована для решения большого числа част­ных, конкретных задач и в этом смысле она выражает одно из глав­ных практических назначений теории.

Конечно, построение физической модели часто неразрывно свя­зано с построением математической модели и оба этих процесса представляют две стороны единого процесса абстрагирования.

Нас окружают сложные технические объекты (технические системы), созданные человеком . В процессе проектирования новой или модернизации существующей технической системы решаются задачи расчета параметров и исследования процессов в этой системе. При проведении многовариантных расчетов реальную систему заменяют моделью. В широком смысле модель определяют как отражение наиболее существенных свойств объекта.

Определение 4 .2 . Математическая модель технического объекта - совокупность математических объектов и отношений между ними, которая адекватно отражает свойства исследуемого объекта, интересующие исследователя (инженера).

Модель может быть представлена различными способами.

Формы представления модели

· инвариантная − запись соотношений модели с помощью традиционного математического языка безотносительно к методу решения уравнений модели;

· аналитическая − запись модели в виде результата аналитического решения исходных уравнений модели;

· алгоритмическая − запись соотношений модели и выбранного численного метода решения в форме алгоритм;

· схемная (графическая) − представление модели на некотором графическом языке (например, язык графов, эквивалентные схемы, диаграммы и т.п.);

· физическая;

· аналоговая;

Математическое моделирование является наиболее универсальным описанием процессов.

В понятие математического моделирования иногда включают и процесс решения задачи на ЭВМ (что в принципе не совсем верно, так как решение задачи на ЭВМ предусматривает кроме всего прочего создание алгоритмической и программной модели, реализующей вычисление в соответствии с математической моделью).

Определение 4.3. ММ− это образ исследуемого объекта, создаваемый в уме субъекта-исследователя с помощью определенных формальных (математических) систем с целью изучения (оценки) определенных свойств данного объекта.

Пусть некоторый объект Q обладает некоторым интересующим нас свойством C 0 .

Для получения математической модели, описывающей данное свойство необходимо:

1. Определить показатель данного свойства (т.е. определить меру свойства в некоторой системе измерения ).

2. Установить перечень свойств С 1 , ..., С m, с которыми свойство С 0 связано некоторыми отношениями (это могут быть внутренние свойства объекта и свойства внешней среды, влияющие на объект).

3. Описать в избранной форматной системе свойства внешней среды, как внешние факторы х 1 , ..., х n , влияющие на искомый показатель Y , внутренние свойства объекта, как параметры z 1 , ..., z r , а неучтенные свойства отнести к группе неучитываемых факторов .

4. Выяснить, если это возможно, закономерные отношения между Y и всеми учитываемыми факторами и параметрами, и составить математическое описание (модель ).

Реальный объект характеризуется следующим функциональным отношением между показателями его свойств:

Однако в модели отображаются только те факторы и параметры оригинального объекта, которые имеют существенное значение для решения исследуемой проблемы. Кроме того, измерения существенных факторов и параметров практически всегда содержат ошибки, вызываемые неточностью измерительных приборов и незнанием некоторых факторов. В силу этого ММ является только приближенным описанием свойств изучаемого объекта.

Математическую модель можно определить еще и как абстракцию изучаемой реальной сущности .

Модели обычно отличаются от оригиналов по природе своих внутренних параметров. Подобие заключается в адекватности реакции Y модели и оригинала на изменение внешних факторов . Поэтому в общем случае математическая модель представляет собой функцию

где - внутренние параметры модели, адекватные параметрам оригинала.

В зависимости от применяемых методов математического описания изучаемых объектов (явлений, процессов) ММ бывают аналитические, логические, графические, автоматные и т.д.

Главным вопросом математического моделирования является вопрос о том, как точно составленная ММ отражает отношения между учитываемыми факторами, параметрами и показателем Y оцениваемого свойства реального объекта, т.е. на сколько точно уравнение (4.2) соответствует уравнению (4.1). Иногда уравнение (4.2) может быть получено сразу в явном виде, например, в виде системы дифференциальных уравнений, или в виде иных явных математических соотношений.

В более сложных случаях вид уравнения (4.2) неизвестен и задача исследователя состоит, прежде всего, в том, чтобы найти это уравнение. При этом к числу варьируемых параметров , относят все учитываемые внешние факторы и параметры исследуемого объекта, а к числу искомых параметров относят внутренние параметры модели , связывающие факторы , с показателем Y " наиболее правдоподобным отношением. Решением этой проблемы занимается теория эксперимента. Суть этой теории состоит в том, чтобы, основываясь на выборочных измерениях значений параметров , и показателя Y ", найти параметры , при которых функция (4.2) наиболее точно отражает реальную закономерность (4.1).

Решение практических задач математическими методами последовательно осуществляется путем формулировки задачи (разработки математической модели), выбора метода исследования полученной математической модели, анализа полученного математического результата. Математическая формулировка задачи обычно представляется в виде геометрических образов, функций, систем уравнений и т.п. Описание объекта (явления) может быть представлено с помощью непрерывной или дискретной, детерминированной или стохастической и другими математическими формами.

Теория математического моделирования обеспечивает выявление закономерностей протекания различных явлений окружающего мира или работы систем и устройств путем их математического описания и моделирования без проведения натурных испытаний. При этом используются положения и законы математики, описывающие моделируемые явления, системы или устройства на некотором уровне их идеализации.

Математическая модель (ММ) представляет собой формализованное описание системы (или операции) на некотором абстрактном языке, например, в виде совокупности математических соотношений или схемы алгоритма, т. е. такое математическое описание, которое обеспечивает имитацию работы систем или устройств на уровне, достаточно близком к их реальному поведению, получаемому при натурных испытаниях систем или устройств. Любая ММ описывает реальный объект, явление или процесс с некоторой степенью приближения к действительности. Вид ММ зависит как от природы реального объекта, так и от задач исследования.

Математическое моделирование общественных, экономических, биологических и физических явлений, объектов, систем и различных устройств является одним из важнейших средств познания природы и проектирования самых разнообразных систем и устройств. Известны примеры эффективного использования моделирования в создании ядерных технологий, авиационных и аэрокосмических систем, в прогнозе атмосферных и океанических явлений, погоды и т.д.

Однако для таких серьезных сфер моделирования нередко нужны суперкомпьютеры и годы работы крупных коллективов ученых по подготовке данных для моделирования и его отладки. Тем не менее, и в этом случае математическое моделирование сложных систем и устройств не только экономит средства на проведение исследований и испытаний, но и может устранить экологические катастрофы – например, позволяет отказаться от испытаний ядерного и термоядерного оружия в пользу его математического моделирования или испытаний аэрокосмических систем перед их реальными полетами.

Между тем математическое моделирование на уровне решения более простых задач, например, из области механики, электротехники, электроники, радиотехники и многих других областей науки и техники в настоящее время стало доступным выполнять на современных ПК. А при использовании обобщенных моделей становится возможным моделирование и достаточно сложных систем, например, телекоммуникационных систем и сетей, радиолокационных или радионавигационных комплексов.

Целью математического моделирования является анализ реальных процессов (в природе или технике) математическими методами. В свою очередь, это требует формализации ММ процесса, подлежащего исследованию. Модель может представлять собой математическое выражение, содержащее переменные, поведение которых аналогично поведению реальной системы. Модель может включать элементы случайности, учитывающие вероятности возможных действий двух или большего числа «игроков», как, например, в теории игр; либо она может представлять реальные переменные параметры взаимосвязанных частей действующей системы.

Математическое моделирование для исследования характеристик систем можно разделить на аналитическое, имитационное и комбинированное. В свою очередь, ММ делятся на имитационные и аналитические.

Содержание Предмет математического моделирования. Основы моделирования. Понятие модели. Принцип моделирования. Моделирование как метод научного познания. Этапы моделирования. Характеристика 1 – 2 этапов. Этапы моделирования. Характеристика 3 – 4 этапов. Классификация моделей. Общий обзор. Классификация экономико-математических моделей. Этапы экономико-математического моделирования. Математическая модель. Линейное программирование. Постановка задачи линейного программирования. Геометрическая интерпретация и графическое решение задачи линейного программирования. Симплексный метод. Построение начального опорного плана. Симплексные таблицы. Признак оптимальности опорного плана. Понятие двойственности. Построение двойственных задач и их свойства. Транспортная задача. Построение исходного опорного плана. Транспортная задача. Метод потенциалов.

Содержание Основные понятия и определения теории графов. Упорядочение элементов орграфа. Алгоритм Фалкерсона. Решение задач о нахождении кратчайших путей в графе. Задача о максимальном потоке и ее приложения. Транспортная задача в сетевой постановке. Элементы сетевого планирования. Принципы динамического программирования, вычислительная процедура метода. Метод Монте-Карло. Суть метода. Решение задач методом Монте-Карло. Элементы теории матричных игр. Парные матричные игры с нулевой суммой. Методы решения матричных игр. Игры с природой. Критерии для принятия решения. Пакет Maple 7. Общий обзор пакета. Его возможности. Интерфейс программы, работа с командами. Использование переменных. Работа с таблицами.

Предмет математического моделирования. Основы моделирования Математическое моделирование - это исследование явлений, процессов, систем или объектов путем построения и изучения их моделей и использования последних для определения или уточнения характеристик и рациональных способов построения вновь конструируемых технологических процессов, систем и объектов. Математическая модель - это абстракция реального мира, в которой интересующие исследователя отношения между реальными элементами заменены подходящими отношениями между математическими категориями. Эти отношения, как правило, представлены в форме уравнений и (или) неравенств, характеризующих функционирование моделируемой реальной системы. Искусство построения математических моделей состоит в том, чтобы совместить как можно большую лаконичность в ее математическом описании с достаточной точностью модельного воспроизводства именно тех сторон анализируемой реальности, которые интересуют исследователя. Меню Моделирование - творческий процесс, требующий серьезной подготовки и переработки большого объема информации, сочетающий в себе трудоемкость и эвристические начала и носящий вероятностный характер.

Понятие модели. Моделирование как метод научного познания Модель - это некоторое упрощенное подобие реального объекта, явления или процесса. Модель - это такой материальный или мысленно представляемый объект, который замещает объект-оригинал с целью его исследования, сохраняя некоторые важные для данного исследования типичные черты и свойства оригинала. Хорошо построенная модель, как правило, доступнее для исследования, чем реальный объект (например, такой, как экономика страны, Солнечная система и т. п.). Другое, не менее важное назначение модели состоит в том, что с ее помощью выявляются наиболее существенные факторы, формирующие те или иные свойства объекта. Модель также позволяет учиться управлять объектом, что важно в тех случаях, когда экспериментировать с объектом бывает неудобно, трудно или невозможно (например, когда эксперимент имеет большую продолжительность или когда существует риск привести объект в нежелательное или необратимое состояние). Таким образом, можно сделать вывод, что модель необходима для того, чтобы: понять, как устроен конкретный объект - каковы его структура, основные свойства, законы развития и взаимодействия с окружающим миром; научиться управлять объектом или процессом и определить наилучшие способы управления при заданных целях и критериях (оптимизация); Меню прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект, процесс.

Этапы моделирования Характеристика 1 этапа I этап. Постановка задачи Под задачей в самом общем смысле понимается некая проблема, которую надо решить. Главное - определить объект моделирования и понять, что собой должен представлять результат. По характеру постановки все задачи можно разделить на две основные группы. К первой группе можно отнести задачи, в которых требуется исследовать, как изменяется характеристика объекта при некотором воздействии на него. Такую постановку задачи принято называть "что будет, если. . . ". Вторая группа задач имеет такую обобщенную формулировку: какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию? Такая постановка задачи часто называется "как сделать, чтобы. . . ". Цели моделирования определяются расчетными параметрами модели. Чаще всего это поиск ответа на вопрос, поставленный в формулировке задачи. Далее переходят к описанию объекта или процесса. На этой стадии выявляются факторы, от которых зависит поведение модели. При моделировании в электронных таблицах учитывать можно только те параметры, которые имеют количественные характеристики. Иногда задача может быть уже сформулирована в упрощенном виде, и в ней четко поставлены цели и определены параметры модели, которые надо учесть. При анализе объекта необходимо ответить на следующий вопрос: можно ли исследуемый объект или процесс рассматривать как единое целое или же это система, состоящая из более простых объектов? Если это единое целое, то можно перейти к построению информационной модели. Если система - надо перейти к анализу объектов, ее составляющих, определить связи между ними. Меню

Этапы моделирования Характеристика 2 этапа II этап. Разработка модели По результатам анализа объекта составляется информационная модель. В ней детально описываются все свойства объекта, их параметры, действия и взаимосвязи. Далее информационная модель должна быть выражена в одной из знаковых форм. Учитывая, что мы будем работать в среде электронных таблиц, то информационную модель необходимо преобразовать в математическую. На основе информационной и математической моделей составляется компьютерная модель в форме таблиц, в которой выделяются три области данных: исходные данные, промежуточные расчеты, результаты. Исходные данные вводятся "вручную". Расчеты, как промежуточные, так и окончательные, проводятся по формулам, записанным по правилам электронных таблиц. Меню

Этапы моделирования Характеристика 3 этапа III этап. Компьютерный эксперимент Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лабораторных условиях на специально создаваемых для него установках, либо на натуре, т. е. на настоящем образце изделия, подвергая его всяческим испытаниям. Это требует больших материальных затрат и времени. В помощь пришли компьютерные исследования моделей. При проведении компьютерного эксперимента проверяют правильность построения моделей. Изучают поведение модели при различных параметрах объекта. Каждый эксперимент сопровождается осмыслением результатов. Если результаты компьютерного эксперимента противоречат смыслу решаемой задачи, то ошибку надо искать в неправильно выбранной модели или в алгоритме и методе ее решения. После выявления и устранения ошибок компьютерный эксперимент повторяется. Меню

Этапы моделирования Характеристика 4 этапа IV этап. Анализ результатов моделирования Заключительный этап моделирования - анализ модели. По полученным расчетным данным проверяется, насколько расчеты отвечают нашему представлению и целям моделирования. На этом этапе определяются рекомендации по совершенствованию принятой модели и, если возможно, объекта или процесса. Меню

Классификация моделей Классификация по области использования Учебные: наглядные пособия, различные тренажеры, обучающие программы. Опытные: уменьшенные или увеличенные копии исследуемого объекта для дальнейшего изучения (модели корабля, автомобиля, самолета, гидростанции). Научно-технические модели создают для исследования процессов и явлений (стенд для проверки телевизоров; синхротрон - ускоритель электронов и др.). Игровые: военные, экономические, спортивные, деловые игры. Имитационные: отражают реальность с той или иной степенью точности (испытание нового лекарственного средства в ряде опытах на мышах; эксперименты по внедрению в производство новой технологии). Классификация с учетом фактора времени Статическая модель - модель объекта в данный момент времени. Динамическая модель позволяет увидеть изменения объекта во времени. Меню

Классификация моделей Классификация по способу представления Материальная модель - это физическое подобие объекта. Они воспроизводят геометрические и физические свойства оригинала (чучела птиц, муляжи животных, внутренних органов человеческого организма, географические и исторические карты, схема солнечной системы). Информационная модель - это совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром. Любая информационная модель содержит лишь существенные сведения об объекте с учетом той цели, для которой она создается. Информационные модели одного и того же объекта, предназначенные для разных целей, могут быть совершенно разными. Вербальная модель - информационная модель в мысленной или разговорной форме. Знаковая модель - информационная модель, выраженная специальными знаками, т. е. средствами любого формального языка. Знаковые модели - это рисунки, тексты, графики, схемы, таблицы и т. д. Компьютерная модель - модель, реализованная средствами программной среды. Прежде чем построить модель объекта (явления, процесса), необходимо выделить составляющие его элементы и связи между ними (провести системный анализ) и "перевести" полученную структуру в какую-либо заранее определенную форму - формализовать информацию. Меню Формализация - это процесс выделения и перевода внутренней структуры предмета, явления или процесса в определенную информационную структуру - форму.

Классификация экономикоматематических моделей Экономико-математические модели – модели управляемых и регулируемых экономических процессов, использующиеся для преобразования экономической действительности. Адекватность моделей объектам моделирования определяется по совпадению результатов исследования с наблюдаемыми фактами. Практика в этом случае означает действительность. По целевому назначению экономико-математические модели бывают Теоретико-аналитические Прикладные Экономико-математические модели делятся на модели всего народного хозяйства и его подсистем (отраслей, регионов и т. д.) Модели бывают функциональные и структурные. Модели бывают дескрептивные и нормативные. Дескрептивные модели отвечают на вопрос, как это происходит и как может дальше развиваться? Нормативные модели отвечают на вопрос как это должно быть? То есть предполагают целенаправленную деятельность. Различают модели жёстко детерминистские и модели, учитывающие случайность и неопределённость. Модели бывают статически и динамические. По длительности рассматриваемого периода различают модели краткосрочного (1 -5 лет) и долгосрочного (10 -15 и более лет) прогнозирования, планирования. Само время в таких моделях может изменяться либо, непрерывно либо дискретно. Меню Модели могут быть линейные и нелинейные.

Этапы экономико-математического моделирования. Постановка экономической проблемы и её анализ. Главное – определить сущность проблемы, принимаемые допущения и те вопросы на которые, требуется получить ответы. Этап включает выделение важнейших черт и свойств объекта, абстрагирование от второстепенных. Формирование гипотез, если требуется, объясняющих поведение и развитие объекта. Построение математической модели. Этап формализации экономической проблемы. Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше. Изменение сложности и громоздкости модели затрудняет процесс исследования. Нужно учитывать реальные возможности информационного и математического обеспечения. Нужно сопоставить затраты на моделирование с получаемым эффектом. Одной из важнейших особенностей математической модели является потенциальная возможность их использования для решения разных задач. Меню

Этапы экономико-математического моделирования. Математический анализ модели. Целью данного этапа является выяснение общих свойств модели. Важный момент – доказательство существования решения. Подготовка исходной информации Надо учитывать за какие сроки будет собрана нужная информация, учитывать затраты на подготовку информации. В процессе подготовки широко используются методы теории вероятности, теоретической и математической статистики. Численное решение. Разработка алгоритмов для численного решения задачи, составления программ для компьютера и непосредственно проведение расчетов. Трудность на этом этапе создаёт большая размерность экономических задач и необходимость обработки значительных массивов информации. Меню Анализ численных результатов и их применение. На этом этапе встаёт вопрос о правильности и полноте результатов моделирования, о степени их практической применимости.

Линейное программирование. Это раздел математического моделирования, все зависимости которого линейны. Математическая модель любой задачи линейного программирования имеет вид Z= max(min) Меню Условия не отрицательности Xj ≥ 0

Пример: При изготовлении изделий u 1 и u 2 используются токарные и фрезерные станки, а также сталь и цветные металлы, по технологическим нормам на производство единице изделия u 1 требуется 300 и 200 единиц соответственно токарного и фрезерного оборудования (в часах), и 10 и 20 единиц стали и цветных металлов (в кг.). для производства изделия u 2 требуется 400, 100, 70, 50 соответственно единиц тех же ресурсов. Цех располагает 12400 и 6800 часами, 640 и 840 кг. материала. Прибыль от реализации единице изделия u 1=6000 ден. ед. , u 2=16000 ден. ед. Требуется: Свести исходные данные в таблицу, удобную для построения модели. Составить математическую модель задачи. Определить план выпуска изделий, обеспечить max прибыль при условие что, время работы фрезерных станков должно быть использовано полностью.

Решение: Пусть х1 - число изделий u 1, а х2 – число изделий u 2, z – суммарная прибыль.

Линейное программирование. Эта общая или производная форма записи. Переменные Xj, которые удовлетворяют системе ограничений и условию не отрицательности, называются допустимыми. Допустимые переменные, которые превращают целевую функцию в max или min, называются оптимальными. Методы решения таких задач подразделяются на универсальные и специальные. Универсальным методом решают любые ЗЛП. Специальные методы учитывают особенности модели. Особенностью ЗЛП является то, что max (min) целевая функция достигает на границе области допустимых решений. К ЗЛП относятся: задача о выборе оптимальных технологий; задача о смесях; задача о раскрое материала; транспортная задача; Меню задача о наилучшем использовании ресурсов; задача о размещении заказа;

Постановка задачи линейного программирования Любая ЗЛП записывается с помощью математической модели. Существует 3 формы записи ЗЛП Меню Общая (произвольная)

Постановка задачи линейного программирования Все эти формы эквивалентны. Чтобы от max перейти к min (или наоборот) надо поменять знаки у каждого слагаемого в записи целевой функции. Чтобы превратить неравенство вида в неравенство вида (и наоборот) нужно обе части неравенства умножить на -1. Меню Каноническая (основная) Чтобы неравенство превратить в равенство (и наоборот) нужно добавить или отнять от левой части дополнительную неотрицательную переменную, она называется балансовой. При записи целевой функции она имеет коэффициент =0.

По учебнику Советова и Яковлева : «модель (лат. modulus - мера) - это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.» (с. 6) «Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием.» (с. 6) «Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи.»

Наконец, наиболее лаконичное определение математической модели: "Уравнение , выражающее идею . "

Классификация моделей

Формальная классификация моделей

Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий. Например, один из популярных наборов дихотомий :

и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом - распределённые модели и т. д.

Классификация по способу представления объекта

Наряду с формальной классификацией, модели различаются по способу представления объекта:

  • Структурные или функциональные модели

Структурные модели представляют объект как систему со своим устройством и механизмом функционирования. Функциональные модели не используют таких представлений и отражают только внешне воспринимаемое поведение (функционирование) объекта. В их предельном выражении они называются также моделями «чёрного ящика» Возможны также комбинированные типы моделей, которые иногда называют моделями «серого ящика».

Содержательные и формальные модели

Практически все авторы, описывающие процесс математического моделирования, указывают, что сначала строится особая идеальная конструкция, содержательная модель . Устоявшейся терминологии здесь нет, и другие авторы называют этот идеальный объект концептуальная модель , умозрительная модель или предмодель . При этом финальная математическая конструкция называется формальной моделью или просто математической моделью, полученной в результате формализации данной содержательной модели (предмодели). Построение содержательной модели может производиться с помощью набора готовых идеализаций, как в механике, где идеальные пружины, твёрдые тела, идеальные маятники, упругие среды и т. п. дают готовые структурные элементы для содержательного моделирования. Однако в областях знания, где не существует полностью завершенных формализованных теорий (передний край физики , биология , экономика , социология , психология , и большинство других областей), создание содержательных моделей резко усложняется.

Содержательная классификация моделей

Никакая гипотеза в науке не бывает доказана раз и навсегда. Очень чётко это сформулировал Ричард Фейнман :

«У нас всегда есть возможность опровергнуть теорию, но, обратите внимание, мы никогда не можем доказать, что она правильна. Предположим, что вы выдвинули удачную гипотезу, рассчитали, к чему это ведет, и выяснили, что все ее следствия подтверждаются экспериментально. Значит ли это, что ваша теория правильна? Нет, просто-напросто это значит, что вам не удалось ее опровергнуть.»

Если модель первого типа построена, то это означает что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только вре́менной паузой: статус модели первого типа может быть только вре́менным.

Тип 2: Феноменологическая модель (ведем себя так, как если бы …)

Феноменологическая модель содержит механизм для описания явления. Однако этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус вре́менных решений. Считается, что ответ всё ещё неизвестен и необходимо продолжить поиск «истинных механизмов». Ко второму типу Пайерлс относит, например, модели теплорода и кварковую модель элементарных частиц.

Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично, новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа и те могут быть переведены во второй. Так, кварковая модель постепенно переходит в разряд гипотез; атомизм в физике возник как временное решение, но с ходом истории перешёл в первый тип. А вот модели эфира , проделали путь от типа 1 к типу 2, а сейчас находятся вне науки.

Идея упрощения очень популярна при построении моделей. Но упрощение бывает разным. Пайерлс выделяет три типа упрощений в моделировании.

Тип 3: Приближение (что-то считаем очень большим или очень малым )

Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый прием в этом случае - использование приближений (моделей типа 3). Среди них модели линейного отклика . Уравнения заменяются линейными. Стандартный пример - закон Ома .

А вот и тип 8, широко распространенный в математических моделях биологических систем.

Тип 8: Демонстрация возможности (главное - показать внутреннюю непротиворечивость возможности )

Это тоже мысленные эксперименты с воображаемыми сущностями, демонстрирующие, что предполагаемое явление согласуется с базовыми принципам и внутренне непротиворечиво. В этом основное отличие от моделей типа 7, которые вскрывают скрытые противоречия.

Один из самых знаменитых таких экспериментов - геометрия Лобачевского (Лобачевский называл её «воображаемой геометрией»). Другой пример - массовое производство формально - кинетических моделей химических и биологических колебаний, автоволн и др. Парадокс Эйнштейна - Подольского - Розена был задуман как модель 7 типа, для демонстрации противоречивости квантовой механики. Совершенно незапланированным образом он со временем превратился в модель 8 типа - демонстрацию возможности квантовой телепортации информации.

Пример

Рассмотрим механическую систему, состоящую из пружины, закрепленной с одного конца, и груза массой m , прикрепленного к свободному концу пружины. Будем считать, что груз может двигаться только в направлении оси пружины (например, движение происходит вдоль стержня). Построим математическую модель этой системы. Будем описывать состояние системы расстоянием x от центра груза до его положения равновесия. Опишем взаимодействие пружины и груза с помощью закона Гука (F = − k x ) после чего воспользуемся вторым законом Ньютона , чтобы выразить его в форме дифференциального уравнения :

где означает вторую производную от x по времени: .

Полученное уравнение описывает математическую модель рассмотренной физической системы. Эта модель называется «гармоническим осциллятором ».

По формальной классификация эта модель линейная, детерминисткая, динамическая, сосредоточенная, непрерывная. В процессе её построения мы сделали множество допущений (об отсутствии внешних сил, отсутствии трения, малости отклонений и т.~д.), которые в реальности могут не выполняться.

По отношению к реальности это, чаще всего, модель типа 4 упрощение («опустим для ясности некоторые детали»), поскольку опущены некоторые существенные универсальные особенности (например, диссипация). В некотором приближении (скажем, пока отклонение груза от равновесия невелико, при малом трении, в течение не слишком большого времени и при соблюдении некоторых других условий), такая модель достаточно хорошо описывает реальную механическую систему, поскольку отброшенные факторы оказывают пренебрежимо малое влияние на её поведение. Однако модель можно уточнить, приняв во внимание какие-то из этих факторов. Это приведет к новой модели, с более широкой (хотя и снова ограниченной) областью применимости.

Впрочем, при уточнении модели сложность её математического исследования может существенно возрасти и сделать модель фактически бесполезной. Зачастую более простая модель позволяет лучше и глубже исследовать реальную систему, чем более сложная (и, формально, «более правильная»).

Если применять модель гармонического осциллятора к объектам, далёким от физики, её содержательный статус может быть другим. Например, при приложении этой модели к биологическим популяциям, её следует отнести, скорее всего, к типу 6 аналогия («учтём только некоторые особенности»).

Жёсткие и мягкие модели

Гармонический осциллятор - пример так называемой «жёсткой» модели. Она получена в результате сильной идеализации реальной физической системы. Для решения вопроса о её применимости необходимо понять, насколько существенными являются факторы, которыми мы пренебрегли. Иными словами, нужно исследовать «мягкую» модель, получающуюся малым возмущением «жёсткой». Она может задаваться, например, следующим уравнением:

Здесь - некоторая функция, в которой может учитываться сила трения или зависимость коэффициента жёсткости пружины от степени её растяжения, - некоторый малый параметр. Явный вид функции f нас в данный момент не интересует. Если мы докажем, что поведение мягкой модели принципиально не отличается от поведения жёсткой (вне зависимости от явного вида возмущающих факторов, если они достаточно малы), задача сведется к исследованию жёсткой модели. В противном случае применение результатов, полученных при изучении жёсткой модели, потребует дополнительных исследований. Например, решением уравнения гармонического осциллятора являются функции вида , то есть колебания с постоянной амплитудой. Следует ли из этого, что реальный осциллятор будет бесконечно долго колебаться с постоянной амплитудой? Нет, поскольку рассматривая систему со сколь угодно малым трением (всегда присутствующим в реальной системе), мы получим затухающие колебания . Поведение системы качественно изменилось.

Если система сохраняет свое качественное поведение при малом возмущении, говорят, что она структурно устойчива. Гармонический осциллятор - пример структурно-неустойчивой (негрубой) системы. Тем не менее, эту модель можно применять для изучения процессов на ограниченных промежутках времени.

Универсальность моделей

Важнейшие математические модели обычно обладают важным свойством универсальности : принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в U -образном сосуде или изменение силы тока в колебательном контуре. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений. Именно этот изоморфизм законов, выражаемых математическими моделями в различных сегментах научного знания, подвиг Людвига фон Берталанфи на создание «Общей теории систем ».

Прямая и обратная задачи математического моделирования

Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задается как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются, как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы.

Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.

Прямая задача : структура модели и все её параметры считаются известными, главная задача - провести исследование модели для извлечения полезного знания об объекте. Какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда ни различной скорости), как самолёт преодолеет звуковой барьер, не развалится ли он от флаттера , - вот типичные примеры прямой задачи. Постановка правильной прямой задачи (задание правильного вопроса) требует специального мастерства. Если не заданы правильные вопросы, то мост может обрушиться, даже если была построена хорошая модель для его поведения. Так, в 1879 г. в Англии обрушился металлический мост через реку Тей , конструкторы которого построили модель моста, рассчитали его на 20-кратный запас прочности на действие полезной нагрузки, но забыли о постоянно дующих в тех местах ветрах. И через полтора года он рухнул.

В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения.

Обратная задача : известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего, структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования ). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение ) или быть результатом специально планируемого в ходе решения экперимента (активное наблюдение ).

Одним из первых примеров виртуозного решения обратной задачи с максимально полным использованием доступных данных был построенный И. Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.

Дополнительные примеры

где x s - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению x s , причем такое поведение структурно устойчиво.

Эта система имеет равновесное состояние , когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к колебаниям численности кроликов и лис, аналогичным колебаниям гармонического осциллятора . Как и в случае гармонического осциллятора, это поведение не является структурно устойчивым : малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения . Например, равновесное состояние может стать устойчивым, и колебания численности будут затухать . Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Вольтерра - Лотки ответа не дает: здесь требуются дополнительные исследования.

Примечания

  1. «A mathematical representation of reality»(Encyclopaedia Britanica)
  2. Новик И. Б. , О философских вопросах кибернетического моделирования. М., Знание, 1964.
  3. Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  4. Самарский А. А. , Михайлов А. П. Математическое моделирование. Идеи. Методы. Примеры. . - 2-е изд., испр.. - М.: Физматлит, 2001. - ISBN 5-9221-0120-X
  5. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  6. Wiktionary: mathematical model
  7. CliffsNotes
  8. Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena, Springer, Complexity series, Berlin-Heidelberg-New York, 2006. XII+562 pp. ISBN 3-540-35885-4
  9. «Теория считается линейной или нелинейной в зависимости от того, какой - линейный или нелинейный - математический аппарат, какие - линейные или нелинейные - математические модели она использует. … ез отрицание последней. Современный физик, доведись ему заново создавать определение столь важной сущности, как нелинейность, скорее всего, поступил бы иначе, и, отдав предпочтение нелинейности как более важной и распространенной из двух противоположностей, определил бы линейность как „не нелинейность“.» Данилов Ю. А. , Лекции по нелинейной динамике. Элементарное введение. Серия «Синергетика: от прошлого к будущему». Изд.2. - M.: URSS, 2006. - 208 с. ISBN 5-484-00183-8
  10. «Динамические системы, моделируемые конечным числом обыкновенных дифференциальных уравнений, называют сосредоточенными или точечными системами. Они описываются с помощью конечномерного фазового пространства и характеризуются конечным числом степеней свободы. Одна и та же система в различных условиях может рассматриваться либо как сосредоточенная, либо как распределенная. Математические модели распределенных систем - это дифференциальные уравнения в частных производных, интегральные уравнения или обыкновенные уравнения с запаздывающим аргументом. Число степеней свободы распределенной системы бесконечно, и требуется бесконечное число данных для определения ее состояния.» Анищенко В. С. , Динамические системы, Соросовский образовательный журнал, 1997, № 11, с. 77-84.
  11. «В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. Детерминированное моделирование отображает детерминированные процессы, то есть процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. … Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.» Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  12. Обычно в математической модели отражается структура (устройство) моделируемого объекта, существенные для целей исследования свойства и взаимосвязи компонентов этого объекта; такая модель называется структурной. Если же модель отражает только то, как объект функционирует - например, как он реагирует на внешние воздействия,- то она называется функциональной или, образно, черным ящиком. Возможны и модели комбинированного типа. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  13. «Очевидный, но важнейший начальный этап построения или выбора математической модели - это получение по возможности более четкого представления о моделируемом объекте и уточнение его содержательной модели, основанное на неформальных обсуждениях. Нельзя жалеть времени и усилий на этот этап, от него в значительной мере зависит успех всего исследования. Не раз бывало, что значительный труд, затраченный на решение математической задачи, оказывался малоэффективным или даже потраченным впустую из-за недостаточного внимания к этой стороне дела.» Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4, с. 35.
  14. «Описание концептуальной модели системы. На этом подэтапе построения модели системы: а) описывается концептуальная модель М в абстрактных терминах и понятиях; б) дается описание модели с использованием типовых математических схем; в) принимаются окончательно гипотезы и предположения; г) обосновывается выбор процедуры аппроксимации реальных процессов при построении модели.» Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2, с. 93.