Как узнать множество значений функции. Основные элементарные функции. Их свойства и графики

МИНИСТЕРСТВО ОБРАЗОВАНИЯ САХАЛИНСКОЙ ОБЛАСТИ

ГБПОУ «СТРОИТЕЛЬНЫЙ ТЕХНИКУМ»

Практические работы

По дисциплине «Математика»

Раздел: « Функции, их свойства и графики».

Тема: Функции. Область определения и множество значений функции. Четные и нечетные функции.

(дидактический материал)

Составила:

Преподаватель

Казанцева Н.А.

Южно-сахалинск-2017

Практические работы по математике по разделу « и методические указания по их выполнению предназначены для студентов ГБПОУ «Сахалинский строительный техникум»

Составител ь : Казанцева Н. А., преподаватель математики

Материал содержит практические работы по математике « Функции, их свойства и графики» и указания по их выполнению. Методические указания составлены в соответствии с рабочей программой по математике и предназначены для студентов Сахалинского строительного техникума , обучающихся по программам общего образования.

1)Практическое занятие №1. Функции. Область определения и множество значений функции.……………………………………………………………...4

2)Практическое занятие №2 . Четные и нечетные функции……………….6

Практическое занятие №1

Функции. Область определения и множество значений функции.

Цели: закрепить умения и навыки решения задач по теме: «Область определения и множество значений функции.

Оборудование:

Указание. Сначала следует повторить теоретический материал по теме: «Область определения и множество значений функции», после чего можно приступать к выполнению практической части.

Методические указания:

Определение : Область определения функции – это множество всех значений аргумента х, на котором задается функция (или множество х при которых функция имеет смысл).

Обозначение: D (у), D ( f )- область определения функции.

Правило: Для нахождения о бласти определения функции по графику необходимо график спроектировать на ОХ.

Определение: Область значения функции – это множество у, при которых функция имеет смысл.

Обозначение: Е(у), Е(f )- область значения функции.

Правило: Для нахождения о бласти значения функции по графику необходимо график спроектировать на ОУ.

1.Найдите значения функции:

a ) f (x ) = 4 x + в точках 2;20 ;

б) f (x ) = 2 · cos (x ) в точках; 0;

в) f (x ) = в точках 1;0; 2;

г) f (x ) = 6 sin 4 x в точках; 0;

е) f (x ) = 2 9 x + 10 в точках 2; 0; 5.

2.Найдите область определения функции:

a) f(x) = ; б ) f(x) = ; в ) f(x) = ;

г) f (x ) = ; д) f (x ) = ; е) f (x ) = 6 x +1;

ж) f (x ) = ; з) f (x ) = .

3. Найдите область значений функции:

а) f (x ) = 2+3 x ; б) f (x ) = 2 7 x + 3.

4.Найдите область определения и область значения функции, график которой изображен на рисунке:

Практическое занятие №2

Четные и нечетные функции.

Цели: закрепить умения и навыки решения задач по теме: «Четные и нечетные функции».

Оборудование: тетрадь для практических работ, ручка, методические рекомендации по выполнению работы

Указание. Сначала следует повторить теоретический материал по теме: «Четные и нечетные функции», после чего можно приступать к выполнению практической части.

Не забывайте о правильном оформлении решения.

Методические указания:

К важнейшим свойствам функций относится четность и нечетность.

Определение: Функция называется нечетной меняет свое значение на противоположное,

т.е. f (х )= f (х ) .

График нечетной функции симметричен относительно начала координат (0;0).

Примеры : нечетными функциями являются у=х, у= , у= sin х и др.

Например, график у= действительно обладает симметричностью относительно начала координат (см. рис.1):

Рис.1. Г рафик у= (кубическая парабола)

Определение: Функция называется четной , если при изменении знака аргумента, она не меняет свое значение, т.е. f (х )= f (х ) .

График четной функции симметричен относительно оси ОУ.

Примеры : четными функциями являются функции у= , у= ,

у= cos x и др.

Например, покажем симметричность графика у= относительно оси ОУ:

Рис.2. Г рафик у=

Задания для практической работы:

1. Исследуйте функцию на четность или нечетность аналитическим путем:

1) f (х ) = 2 х 3 – 3; 2) f (х ) = 5 х 2 + 3;

3) g (х ) = – + ; 4) g (х ) = –2 х 3 + 3;

5) у(х)= 7хс tg x ; 6) у(х)= + cos x ;

7) t (х)= tg x 3; 8) t (х)= + sin x .

2. Исследуйте функцию на четность или нечетность аналитическим путем:

1) f (х ) = ; 2) f (х ) = 6 + · sin 2 x · cos x ;

3) f (х ) = ; 4) f (х ) = 2 + · cos 2 x · sin x ;

5) f (х ) = ; 6) f (х ) = 3 + · sin 4 x · cos x ;

7) f (х ) = ; 8) f (х ) = 3 + · cos 4 x · sin x .

3. Исследуйте функцию на четность или нечетность по графику:

4. Проверьте, является ли четной или нечетной функция?

Сегодня на уроке мы обратимся к одному из основных понятий математики - понятию функции; более детально рассмотрим одно из свойств функции - множество ее значений.

Ход урока

Учитель. Решая задачи, мы замечаем, что подчас именно нахождение множества значений функции ставит нас в затруднительные ситуации. Почему? Казалось бы, изучая функцию с 7-го класса, мы знаем о ней достаточно много. Поэтому у нас есть все основания сделать упреждающий ход. Давайте сегодня сами «поиграем» с множеством значений функции, чтобы снять многие вопросы этой темы на предстоящем экзамене.

Множества значений элементарных функций

Учитель. Для начала необходимо повторить графики, уравнения и множества значений основных элементарных функций на всей области определения.

На экран проецируются графики функций: линейной, квадратичной, дробно-рациональной, тригонометрических, показательной и логарифмической, для каждой из них устно определяется множество значений. Обратите внимание учащихся на то, что у линейной функции E(f) = R или одно число, у дробно-линейной

Это наша азбука. Присоединив к ней наши знания о преобразованиях графиков: параллельный перенос, растяжение, сжатие, отражение, мы сможем решить задачи первой части ЕГЭ и даже чуть сложнее. Проверим это.

Самостоятельная работа

Условия задач и системы координат напечатаны для каждого ученика .

1. Найдите множество значений функции на всей области определения:

а) y = 3 sin х ;
б) y = 7 – 2 х ;
в) y = –arccos (x + 5):
г) y = | arctg x |;
д)

2. Найдите множество значений функции y = x 2 на промежутке J , если:

а) J = ;
б) J = [–1; 5).

3. Задайте функцию аналитически (уравнением), если множество ее значений:

1) E (f (x )) = (–∞ ; 2] и f (x ) - функция

а) квадратичная,
б) логарифмическая,
в) показательная;

2) E (f (x )) = R \{7}.

При обсуждении задания 2 самостоятельной работы обратите внимание учащихся на то, что, в случае монотонности и непрерывности функции y = f (x ) на заданном промежутке [a ; b ], множество ее значений - промежуток , концами которого являются значения f (a ) и f (b ).

Варианты ответов к заданию 3.

1.
а) y = –x 2 + 2 , y = –(x + 18) 2 + 2,
y = a (x x в) 2 + 2 при а < 0.

б) y = –| log 8 x | + 2,

в) y = –| 3 x – 7 | + 2, y = –5 | x | + 3.

2.
а) б)

в) y = 12 – 5x , где x ≠ 1 .

Нахождение множества значений функции с помощью производной

Учитель. В 10-м классе мы знакомились с алгоритмом нахождения экстремумов непрерывной на отрезке функции и отыскания ее множества значений, не опираясь на график функции. Вспомните, как мы это делали? (С помощью производной .) Давайте вспомним этот алгоритм.

1. Убедиться, что функция y = f (x ) определена и непрерывна на отрезке J = [a ; b ].

2. Найти значения функции на концах отрезка: f(a) и f(b).

Замечание . Если мы знаем, что функция непрерывна и монотонна на J , то можно сразу дать ответ: E (f ) = [f (a ); f (b )] или E (f ) = [f (b ); f (а )].

3. Найти производную, а затем критические точки x k J .

4. Найти значения функции в критических точках f (x k ).

5. Сравнить значения функции f (a ), f (b ) и f (x k ), выбрать наибольшее и наименьшее значения функции и дать ответ: E (f )= [f наим; f наиб ].

Задачи на применение данного алгоритма встречаются в вариантах ЕГЭ. Так, например, в 2008 году была предложена такая задача. Вам предстоит решить ее дома .

Задание С1. Найдите наибольшее значение функции

f (x ) = (0,5x + 1) 4 – 50(0,5x + 1) 2

при | x + 1| ≤ 3.

Условия домашних задач распечатаны для каждого ученика .

Нахождение множества значений сложной функции

Учитель. Основную часть нашего урока составят нестандартные задачи, содержащие сложные функции, производные от которых являются очень сложными выражениями. Да и графики этих функций нам неизвестны. Поэтому для решения мы будем использовать определение сложной функции, то есть зависимость между переменными в порядке их вложенности в данную функцию, и оценку их области значений (промежутка изменения их значений). Задачи такого вида встречаются во второй части ЕГЭ. Обратимся к примерам.

Задание 1. Для функций y = f (x ) и y = g (x ) записать сложную функцию y = f (g (x )) и найти ее множество значений:

а) f (x ) = –x 2 + 2x + 3, g (x ) = sin x ;
б) f (x ) = –x 2 + 2x + 3, g (x ) = log 7 x ;
в) g (x ) = x 2 + 1;
г)

Решение. а) Сложная функция имеет вид: y = –sin 2 x + 2sin x + 3.

Вводя промежуточный аргумент t , мы можем записать эту функцию так:

y = –t 2 + 2t + 3, где t = sin x .

У внутренней функции t = sin x аргумент принимает любые значения, а множество ее значений - отрезок [–1; 1].

Таким образом, для внешней функции y = –t 2 +2t + 3 мы узнали промежуток изменения значений ее аргумента t : t [–1; 1]. Обратимся к графику функции y = –t 2 +2t + 3.

Замечаем, что квадратичная функция при t [–1; 1] принимает наименьшее и наибольшее значения на его концах: y наим = y (–1) = 0 и y наиб = y (1) = 4. А так как эта функция непрерывна на отрезке [–1; 1], то она принимает и все значения между ними.

Ответ : y .

б) Композиция этих функций приводит нас к сложной функции которая после введения промежуточного аргумента, может быть представлена так:

y = –t 2 + 2t + 3, где t = log 7 x ,

У функции t = log 7 x

x (0; +∞ ), t (–∞ ; +∞ ).

У функции y = –t 2 + 2t + 3 (см. график) аргумент t принимает любые значения, а сама квадратичная функция принимает все значения не больше 4.

Ответ : y (–∞ ; 4].

в) Сложная функция имеет следующий вид:


Вводя промежуточный аргумент, получаем:

где t = x 2 + 1.

Так как для внутренней функции x R , а t .

Ответ : y (0; 3].

г) Композиция двух данных функций дает нам сложную функцию

которая может быть записана как

Заметим, что

Значит, при

где k Z , t [–1; 0) (0; 1].

Нарисовав график функции видим, что при этих значениях t

y (–∞ ; –4] c ;

б) на всей области определения.

Решение. Вначале исследуем данную функцию на монотонность. Функция t = arcctg x - непрерывная и убывающая на R и множество ее значений (0; π). Функция y = log 5 t определена на промежутке (0; π), непрерывна и возрастает на нем. Значит, данная сложная функция убывает на множестве R . И она, как композиция двух непрерывных функций, будет непрерывна на R .

Решим задачу «а».

Так как функция непрерывна на всей числовой оси, то она непрерывна и на любой ее части, в частности, на данном отрезке. А тогда она на этом отрезке имеет наименьшее и наибольшее значения и принимает все значения между ними:


f
(4) = log 5 arcctg 4.

Какое из полученных значений больше? Почему? И каким же будет множество значений?

Ответ:

Решим задачу «б».

Ответ: у (–∞ ; log 5 π) на всей области определения.

Задача с параметром

Теперь попробуем составить и решить несложное уравнение с параметром вида f (x ) = a , где f (x ) - та же функция, что и в задании 4.

Задание 5. Определите количество корней уравнения log 5 (arcctg x ) = а для каждого значения параметра а .

Решение. Как мы уже показали в задании 4, функция у = log 5 (arcctg x ) - убывает и непрерывна на R и принимает значения меньше log 5 π. Этих сведений достаточно, чтобы дать ответ.

Ответ: если а < log 5 π, то уравнение имеет единственный корень;

если а ≥ log 5 π, то корней нет.

Учитель. Сегодня мы рассмотрели задачи, связанные с нахождением множества значений функции. На этом пути мы открыли для себя новый метод решения уравнений и неравенств - метод оценки, поэтому нахождение множества значений функции стало средством решения задач более высокого уровня. При этом мы увидели, как конструируются такие задачи и как свойства монотонности функции облегчают их решение.

И мне хочется надеяться, что та логика, которая связала рассмотренные сегодня задачи, вас поразила или хотя бы удивила. Иначе и быть не может: восхождение на новую вершину никого не оставляет равнодушным! Мы замечаем и ценим красивые картины, скульптуры и т.д. Но и в математике есть своя красота, притягивающая и завораживающая - красота логики. Математики говорят, что красивое решение - это, как правило, правильное решение, и это не просто фраза. Теперь Вам самим предстоит находить такие решения и один из путей к ним мы указали сегодня. Удачи вам! И помните: дорогу осилит идущий!

Функция-это модель. Определим X, как множество значений независимой переменной // независимая -значит любая.

Функция это правило, с помощью которого по каждому значению независимой переменной из множества X можно найти единственное значение зависимой переменной. // т.е. для каждого х есть один у.

Из определения следует, что существует два понятия- независимая переменная (которую обозначаем х и она может принимать любые значения) и зависимая переменная (которую обозначаем y или f(х) и она высчитывается из функции, когда мы подставляем х).

НАПРИМЕР у=5+х

1. Независимая -это х, значит берем любое значение, пусть х=3

2. а теперь вычисляем у, значит у=5+х=5+3=8. (у зависима от х, потому что какой х подставим, такой у и получим)

Говорят, что переменная y функционально зависит от переменной x и обозначается это следующим образом: y = f (x).

НАПРИМЕР.

1.у=1/х. (наз.гипербола)

2. у=х^2. (наз. парабола)

3.у=3х+7. (наз. прямая)

4. у= √ х. (наз. ветвь параболы)

Независимая переменная (кот. мы обозначаем х) имеет название аргумент функции.

Область определения функции

Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f) или D (y).

Рассмотрим D (у) для 1.,2.,3.,4.

1. D (у)= (∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля.

2. D (у)= (∞; +∞)//всё мн-во действит.чисел

3. D (у)= (∞; +∞)//всё мн-во действит.чисел

4. D (у)= }