Что такое прилив и отлив? Особенности, описание и интересные факты. График приливов и отливов на Земле. Влияние приливов и отливов на организмы, населяющие Землю

В конце декабря 2004 года недалеко от острова Суматра, расположенного в Индийском океане, произошло одно из самых сильных землетрясений за последние полстолетия. Последствия его оказались катастрофическими: из-за смещения литосферных плит образовался огромный разлом, а с океанического дна поднялось большое количество воды, которая со скоростью, достигающей один километр в час, начала стремительное движение по всему Индийскому океану.

В результате пострадало тринадцать стран, около миллиона человек осталось без «крыши над головой», а более двухсот тысяч — погибли или пропали без вести. Это бедствие оказалось самым страшным в истории человечества.

Цунами - это длинные и высокие волны, появляющиеся в результате резкого смещения литосферных плит океанического дна во время подводных или прибрежных землетрясений (длина вала составляет от 150 до 300 км). В отличие от обыкновенных волн, появляющихся в результате воздействия на водную поверхность сильного ветра (например, шторма), волна цунами затрагивает воду от дна до поверхности океана, из-за чего даже невысоко поднятая вода нередко может привести к катастрофам.

Интересно, что для кораблей, находящихся в это время в океане, эти волны не опасны: большая часть взбудораженной воды находится в его недрах, глубина которых составляет несколько километров – а потому высота волн над поверхностью воды составляет от 0,1 до 5 метров. Приблизившись к побережью, тыльная часть волны догоняет переднюю, которая в это время слегка притормаживается, вырастает до высоты от 10 до 50 метров (чем глубже океан, тем больше вал) и на ней появляется гребень.

Следует учитывать, что наибольшую скорость надвигающийся вал развивает в Тихом океане (она составляет от 650 до 800 км/ч). Что касается средней скорости большинства волн, то она колеблется от 400 до 500 км/ч, но были зафиксированы случаи, когда они разгонялись до скорости в тысячу километров (скорость обычно увеличивается после прохождения волны над глубоководным желобом).

Перед тем как обрушиться на побережье, вода внезапно и быстро отходит от линии берега, обнажая дно (чем дальше она отступила, тем выше будет волна). Если люди не знают о приближающейся стихии, они вместо того, чтобы как можно дальше уйти от берега, наоборот, бегут собирать ракушки или подбирать не успевшую уйти в море рыбу. А буквально через несколько минут прибывшая сюда на огромной скорости волна, не оставляет им на спасение ни малейшего шанса.

Необходимо учитывать, что если на побережье накатывает волна с противоположной стороны океана, то вода не всегда отступает.

В конечном счете огромная масса воды затапливает всю прибрежную линию и уходит вглубь суши на расстояние от 2 до 4 км, разрушая постройки, дороги, причалы и приводит к гибели людей и животных. Перед валом, расчищающий путь воде, всегда идёт воздушная ударная волна, которая буквально взрывает оказавшиеся на её пути здания и сооружения.

Интересно, что это смертельно опасное явление природы состоит из нескольких валов, а первая волна является далеко не самой большой: она лишь смачивает побережье, уменьшая сопротивление для следующих за ней валов, которые нередко приходят не сразу, и с интервалом в два-три часа. Роковой ошибкой людей является их возвращение на берег после ухода первого наскока стихии.

Причины образования

Одной из основных причин смещения литосферных плит (в 85% случаев) являются подводные землетрясения, во время которых одна часть дна поднимается, а другая – опускается. Вследствие этого океаническая поверхность начинает колебаться по вертикали, пытаясь вернуться к начальному уровню, формируя волны. Стоит заметить, что подводные землетрясения далеко не всегда приводят к образованию цунами: лишь те, где очаг расположен на небольшом расстоянии от океанического дна, а сотрясение было не менее семи баллов.

Причины образования цунами довольно разные. К основным относятся подводные оползни, которые в зависимости от крутизны материкового склона способны преодолевать огромные расстояния – от 4 до 11 км строго по вертикали (зависит от глубины океана или ущелья) и до 2,5 км – если поверхность незначительно наклонена.


Большие волны могут вызвать упавшие в воду огромные предметы – горные породы или глыбы льда. Так, самое большое цунами в мире, высота которого превысила пятьсот метров, было зафиксировано на Аляске, в штате Литуйя, когда в результате сильного землетрясения с гор сошёл оползень – и в залив обрушилось 30 миллионов кубических метров камней и льда.

К основным причинам возникновения цунами также можно отнести извержения вулканов (около 5%). Во время сильных вулканических взрывов образуются волны, и вода мгновенно заполняет освободившееся пространство внутри вулкана, в результате чего формируется и начинает свой путь огромных размеров вал.

Например, в период извержения индонезийского вулкана Кракатау в конце XIX ст. «волна-убийца» уничтожила около 5 тысяч морских судов и вызвала гибель 36 тысяч человек.

Кроме вышеназванных, специалисты выделяют ещё две возможные причины возникновения цунами. Прежде всего это человеческая деятельность. Так, например, американцы в середине прошлого века на глубине шестидесяти метров произвели подводный атомный взрыв, вызвав волну высотой около 29 метров, правда, продержалась она недолго и упала, максимально преодолев 300 метров.

Ещё одной причиной образования цунами является падение в океан метеоритов диаметром более 1 км (удар которого обладает достаточной силой, чтобы вызвать стихийное бедствие). По одной из версий учёных, несколько тысяч лет назад именно метеориты вызвали сильнейшие волны, ставшие причинами крупнейших климатических катастроф в истории нашей планеты.

Классификация

При классификации цунами учёные учитывают достаточное число факторов их возникновения, среди которых – метеорологические катаклизмы, взрывы и даже отливы и приливы, при этом в список вносят низкие накаты волн высотой около 10 см.
По силе вала

Силу вала измеряют, учитывая его максимальную высоту, а также то, насколько катастрофические последствия он вызвал и, согласно международной шкале IIDA, выделяют 15 категорий, от -5 до +10 (чем больше жертв, тем выше категория).

По интенсивности

По интенсивности «волны-убийцы» разделяют на шесть баллов, которые дают возможность дать характеристику последствиям стихии:

  1. Волны, имеющие категорию один балл до того малы, что их фиксируют лишь приборы (об их наличии большинство даже не догадывается).
  2. Двухбалльные волны способны незначительно затопить берег, поэтому от колебания обыкновенных волн их способны отличить лишь специалисты.
  3. Волны, которые относят к трехбалльным, обладают достаточной силой для того, чтобы выбросить на побережье небольшие лодки.
  4. Четырехбалльные волны могут не только прибить к берегу крупные морские судна, но и выбросить их на побережье.
  5. Пятитибалльные волны приобретают уже масштабы катастрофы. Они способны разрушить невысокие строения, деревянные постройки, и привести к человеческим жертвам.
  6. Что касается шестибалльных волн, то нахлынувшие на побережье волны полностью опустошают его вместе с прилегающими землями.

По количеству жертв

По числу смертельных случаев выделяют пять групп этого опасного явления. К первой относятся ситуации, когда смертельные исходы зафиксированы не были. Ко второй – волны, повлёкшие за собой гибель до пятидесяти человек. Валы, относящиеся к третьей категории, вызывают смерть от пятидесяти до ста человек. К четвёртой категории принадлежат «волны-убийцы», погубившие от ста до тысячи человек.


Последствия цунами, относящиеся к пятой категории — катастрофичны, поскольку влекут за собой смерть более тысячи человек. Обычно такие катастрофы характерны для акватории самого глубокого в мире океана, Тихого, но нередко происходят и в других точках планеты. Это относится к катастрофам 2004 года возле Индонезии и 2011 года в Японии (25 тыс. погибших). Были в истории зафиксированы «волны-убийцы» и на территории Европы, например, в середине XVIII столетия тридцатиметровый вал обрушился на побережье Португалии (во время этой катастрофы погибло от 30 до 60 тысяч человек).

Экономический ущерб

Что касается экономического ущерба, то его измеряют в американских долларах и подсчитывают, учитывая затраты, которые надо выделить на восстановление разрушенной инфраструктуры (утраченное имущество и разрушенные дома не учитываются, потому как относятся к социальным расходам страны).

По размерам убытков экономисты выделяют пять групп. К первой категории относят волны, не причинившие особого вреда, ко второй – с потерями до 1 миллиона долларов, к третьей – до 5 миллионов долларов, к четвёртой – до 25 миллионов долларов.

Ущерб от волн, относящийся к пятой группе, превышает 25 миллионов. Например, убытки от двух сильнейших стихийных бедствий, произошедших в 2004 году возле Индонезии и в 2011 – в Японии, составили около 250 миллиардов долларов. Стоит учитывать и экологический фактор, поскольку волны, повлёкшие за собой гибель 25 тысяч человек, повредили в Японии атомную станцию, вызвав аварию.

Системы опознавания стихийного бедствия

К сожалению, «волны-убийцы» нередко возникают настолько неожиданно и движутся на такой большой скорости, что определить их появление чрезвычайно трудно, а потому сейсмологи часто не справляются с возложенной на них задачей.

В основном системы предупреждения стихийного бедствия построены на обработке сейсмических данных: если есть подозрение на то, что землетрясение будет иметь магнитуду более семи балов, а его очаг будет находиться на океаническом (морском) дне, то все страны, которые находятся в зоне риска, получают предупреждения о приближении огромных волн.

К сожалению, катастрофа 2004 года произошла потому, что почти все близлежащие страны не имели системы опознавания. Несмотря на то, что между землетрясением и нахлынувшим валом прошло около семи часов, население о приближающемся бедствии предупреждено не было.

Чтобы определить наличие опасных волн в открытом океане, учёные используют специальные датчики гидростатического давления, которые передают данные на спутник, что позволяет довольно точно определить время их прибытия в тот или иной пункт.

Как выжить во время стихии

Если так получилось, что вы оказались в зоне, где велика вероятность возникновения смертельно опасных волн, обязательно нужно не забывать следить за прогнозами сейсмологов и запомнить все сигналы оповещения приближающейся беды. Необходимо также узнать границы самых опасных зон и о кратчайших дорогах, по которым можно покинуть опасную территорию.

Услышав сигнал, предупреждающий о приближающейся воде, следует немедленно покинуть опасную зону. Специалисты не смогут точно сказать, сколько есть времени на эвакуацию: может быть пару минут или несколько часов. Если вы не успеваете покинуть местность и проживаете в многоэтажном здании, то нужно подняться на последние этажи, закрыв все окна и двери.

А вот если вы находитесь в одно- или двухэтажном доме, его нужно немедленно покинуть и бежать к высокому зданию или взобраться на какую-либо возвышенность (в крайнем случае, можно залезть на дерево и крепко за него зацепиться). Если так получилось, что покинуть опасное место вы не успели и оказались в воде, нужно попытаться освободиться от обуви и мокрой одежды и попробовать зацепиться за плывущие предметы.

Когда схлынет первая волна, то необходимо покинуть опасный район, поскольку за ней, скорее всего, придёт следующая. Вернуться можно лишь тогда, когда волн не будет около трёх-четырёх часов. Оказавшись дома, проверьте стены и перекрытия на наличие трещин, утечки газа и состояние электричества.

Надпись (иероглифами), вырезанная в камне

26 декабря 2004 г. в Индийском океане вблизи о. Суматра произошло сильнейшее землетрясение и последующее цунами, приведшие к беспрецедентным в истории жертвам и разрушениям (более 260 тыс. жертв). Катастрофа носила глобальный характер: пострадали не только районы в непосредственной близости от эпицентра, но и участки побережья, удалённые от него на тысячи километров. Волны были зарегистрированы повсеместно – в Атлантике, Тихом океане, на побережье Антарктиды и т.д. Фактически мы оказались свидетелями катастрофы планетарного масштаба, стоящей в одном ряду с падением Тунгусского метеорита, взрывом вулкана Кракатау и др. Поисковые группы обнаружили участки побережья на юге Суматры, где высота наводнения достигала 35 м! Это выше 12-этажного дома.

Что же такое цунами? Слово это японского происхождения и означает большая волна. Япония является страной, наиболее часто подвергавшейся атакам этих чудовищных волн. Там, на берегу, можно встретить старинные каменные столбы с надписями, предупреждающими об опасности цунами.

Учитывая специфический характер поражающих факторов цунами, это стихийное бедствие можно отнести к одному из наиболее неотвратимых природных явлений. Чудовищные объёмы морской воды, накатывающие на берег, в большинстве случаев не могут быть остановлены искусственными защитными сооружениями. Высота наводнения порой превышает 10 м, а в некоторых зонах побережья (в области мелководного шельфа, в устьях рек и др.) волна приобретает форму бора (бурлящего водяного вала, водной стены). Двигаясь с огромной скоростью в глубь берега, этот вал воды аккумулирует колоссальную динамическую энергию, уничтожая на своём пути суда и строения (рис. 1).

Рис. 1. Волна в виде бора

Возникают такие волны в большинстве случаев в результате сильного подводного землетрясения. Однако известны случаи, когда цунами возникало в случае взрывов подводных вулканов, падений скал в воду, подводных оползней и др. На рис. 2 показаны различные механизмы возбуждения волн цунами: сейсмический, вулканический, оползневый, метеорологический. Что же объединяет все эти механизмы? Общим является эффект быстрого вытеснения значительных объёмов воды: в результате сейсмо-тектонического разлома дна, вулканического взрыва на дне океана, внедрения в воду огромных масс оползня, движущегося по наклонному дну, или резкого изменения атмосферного давления (водная поверхность испытывает внезапное воздействие атмосферы, например, во время грозового фронта).

Рис. 2. Различные механизмы возбуждения волн цунами

Волны цунами относятся к так называемым длинным волнам – расстояние от гребня к гребню (длина волны) значительно превосходит глубину океана. С точки зрения гидродинамики волны цунами близки по своей природе к приливам. Цунами и приливы отличаются от обычных ветровых (штормовых) волн и морской зыби. Ветровое волнение затрагивает лишь верхний слой океана, на глубине 50 м волнение уже не ощущается. А приливы и течения, вызванные волной цунами, вовлекают в движение всю водную массу – от дна до поверхности (рис. 3).

Рис. 3. Траектории частиц воды ветровых волн и волн цунами

Скорость распространения волны цунами определяется глубиной океана H и ускорением свободного падения g : . (К сожалению, вывод формулы для скорости длинных гравитационных поверхностных волн сложен для школы. Однако с помощью размерного анализа её можно вывести с точностью до константы. Если жидкость бесконечно глубокая, единственная величина, имеющая линейный размер, это длина волны . Другой физический параметр – это гравитационная постоянная g , обеспечивающая возвращающую силу при колебаниях частиц воды Других физических параметров, влияющих на скорость, нет. Тогда размерность скорости можно составить только из комбинации . Соответственно , или, в простом случае, (когда . Для неглубокой жидкости ~ H и формула сложнее, размерным анализом не обойтись. Стоит заметить, скорость длинных волн записывается почти так же, как скорость истечения жидкости из сосуда с дырочкой в дне, высота заполнения которого равна H : .)

При приближении к берегу глубина океана уменьшается, и волна замедляется. Кинетическая энергия частиц жидкости, распределённая по вертикали, сосредотачивается во всё меньшем столбе жидкости. Именно поэтому высота волны возрастает при приближении к берегу. Высота волны цунами в открытом океане обычно невелика – не более 1 м (рис. 4). Однако, приближаясь к берегу, гребень волны становится выше и круче, и наконец на мелководье происходит его обрушение и образуется бор.

Рис. 4. Схема образования и распространения волны цунами

В глубоком океане (H = 4000 м) скорость распространения волны огромна: (720 км/ч). Такова примерно скорость реактивного самолёта! Когда волна выходит на мелководье (H = 10 м), скорость снижается до «автомобильной», (36 км/ч), но при этом высота гребня может достигать 10 и более метров!

Специалисты службы оповещения о волнах цунами, получив сведения о сильном подводном землетрясении (положение эпицентра), рассчитывают время подхода волны к берегу по формуле , где x и y – координаты точки на карте глубин. На рис. 5 приведена такая карта Тихого океана, на которой нанесены изолинии времён добегания волны Шикотанского цунами 4 октября 1994 г. Видно, что волна достигла побережья самой южной части Южной Америки примерно за сутки. На основе таких расчётов принимается решение: необходимо ли эвакуировать население немедленно или есть время, чтобы подготовиться к нему.

Как и все виды волн (звук, свет, радиоволны), цунами испытывает затухание, отражение, преломление и рассеяние.

Рис. 5. Расчёт времен добегания волны Шикотанского цунами 4 октября 1994 г. Изолинии нанесены в часах. Эпицентр отмечен чёрным кружком

Затухание волн. В открытом океане с ровным дном энергия волны затухает как 1/r , где r – расстояние от источника. Соответственно амплитуда (высота) волны уменьшается как . Такое затухание иногда называют геометрическим расхождением. Кроме эффекта геометрического расхождения волна испытывает затухание за счёт рассеяния на неоднородностях рельефа дна.

Отражение. Отражение волны от крутого берега приводит к удвоению её амплитуды на берегу. Если амплитуда набегающей волны 5 м, то при отражении на линии берега высота составит 10 м. Коэффициент отражения от берега-стенки близок к 1. Однако, если берег покатый, при выходе волны на мелководье происходит обрушение гребня. Оказывается, когда высота волны a сравнима с глубиной воды H, разница между скоростями движения «подошвы» волны и её гребня становится существенной. Вершина волны, скорость движения которой равна , догоняет подошву, движущуюся со скоростью , что и вызывает обрушение (рис. 6). Естественно, после этого коэффициент отражения становится существенно меньше единицы. Волновая энергия в этом случае расходуется на трение в бурлящем потоке.

Рис. 6. Обрушение волны цунами при выходе на мелководье

Преломление. В роли коэффициента преломления для волн цунами выступает скорость . Чем меньше глубина воды, тем скорость распространения меньше. Соответственно «луч» цунами всегда загибается в сторону мелководья. Особенности топографии дна могут создавать дополнительные эффекты. На шельфе, глубина которого в среднем 200 м, могут образовываться так называемые «захваченные» волны. Если источник цунами находится в пределах протяжённого шельфа, часть лучей цунами не может покинуть мелководную часть и уйти в глубокий океан из-за эффекта полного внутреннего отражения (рис. 7).

Рис. 7. Схема образования захваченных и излучённых волн

Захваченные шельфом волны, распространяясь вдоль берега, практически не затухают. Такая особенность волнового поля называется волноводом. Явление волновода может возникать не только вблизи берега. Академик М.М.Лаврентьев показал, что цунами-волноводы могут образовываться и над подводными хребтами. При этом эффект полного внутреннего отражения проявляется справа и слева от оси хребта.

Цунамиопасные зоны. Наиболее часто цунами возникают в зонах высокой сейсмичности. К ним прежде всего относятся так называемые зоны субдукции или, иными словами, зоны сочленения океанической и материковой тектонических плит. На карте Тихого океана (рис. 8) хорошо видно, что сильнейшие землетрясения и цунами возникали в ХХ в. по периметру океана в окрестности континентального склона в океане. Согласно теории плитовой тектоники океанические плиты постоянно «раздвигаются» в обе стороны от срединного океанического хребта в направлении материка (рис. 9) со скоростью несколько сантиметров в год. Источником такого движения плит является постоянный выход наружу магмы из глубины Земли в районе срединных океанических хребтов. Сталкиваясь с материковой плитой, относительно тонкая океаническая плита погружается в глубь Земли. Постоянный «напор» океанической плиты постепенно приводит к накоплению энергии упругого сжатия в земной коре, которая в конце концов высвобождается в виде мощного землетрясения – возникает тектонический разлом. Часть дна вздымается вверх, а часть опускается. Это смещение может достигать нескольких метров и более, при этом горизонтальные размеры очага порой превышают 1000 км. Именно это внезапное смещение дна, образуемое при возникновении тектонического разлома земной коры, и формирует гигантские волны цунами в океане.

Рис. 8. Карта Тихого океана. Показаны очаги цунами в ХХ в.

Рис. 9. Тектоническая схема возникновения землетрясений в зоне субдукции

Основные зоны субдукции расположены по периметру Тихого и Атлантического океанов. Наиболее тектонически активные участки прилегают к побережьям Японии, Чили, Курильских островов, Камчатки, Алеутских островов, Аляски и Индонезии. Здесь скорость движения океанической плиты достигает 6–8 см/год. Как следствие время от времени здесь происходят мощные подводные землетрясения и цунами. Самое страшное цунами в нашей стране обрушилось на побережье Курильских островов и Камчатки 4 ноября 1952 г. в результате подводного землетрясения. Тогда был полностью смыт п. Северокурильск и погибли около 3000 человек. Последнее цунами произошло у берегов о. Шикотан 2 октября 1994 г. Никто не погиб, но на о. Кунашир были затоплены и смыты дома в низине, несколько рыбацких судов выбросило на берег.

Оценка энергии цунами. Попробуем оценить энергию, которую несут волны цунами. Во время землетрясения над очагом формируется начальное смещение поверхности океана. Мы можем считать, что вся энергия цунами в этот момент представлена в виде потенциальной энергии поднятия столба жидкости над очагом. Обозначим среднюю высоту смещения поверхности океана через a . Тогда потенциальная энергия выразится формулой , где – плотность воды, а S – площадь очага. Размеры источника возьмём 100 . 1000 км . км – это типично для мощных землетрясений. Для источника со средней высотой смещения поверхности a = 0,5 м получается примерно 10 21 эрг (10 14 Дж), что равняется энергии бомбы, взорванной в Хиросиме. Однако, согласно расчётам канадского учёного Т.Мурти, энергия цунами 26 декабря 2004 г. оказалась в 390 раз больше! Это означает, что средняя высота начального возмущения уровня составила около 10 м.

Как видно из рис. 8, в ХХ в. в районе южнее Суматры не наблюдалось ни одного мощного землетрясения, способного вызвать цунами. Учёные предполагают, что такое длительное «молчание» зоны субдукции привело к накоплению огромной энергии сжатия, которая высвободилась 26 декабря 2004 г.

На рис. 10 показана карта Индийского океана, где нанесён эпицентр основного сейсмического толчка и последующих афтершоков (меньших по мощности землетрясений). Протяжённость зоны разлома превысила 1000 км. Серым цветом отмечен предполагаемый очаг цунами. На карте нанесены изолинии времён добегания цунами. Хорошо видно, что для большей части пострадавших побережий «запас времени» был достаточный, чтобы организовать эвакуацию населения из прибрежной зоны. Однако службы оповещения о цунами в этом районе не было. Люди не знали, что такое цунами. Более того, когда вода стала отступать, многие находящиеся на берегу углубились в зону отлива, чтобы собрать раковины и кораллы. Спустя несколько минут пришла волна. В отдельных районах о. Суматра вал прокатился в глубь на 10 км! Последствия были ужасны. В прибрежной зоне и на мелких островах смыло целые деревни. Люди, попадая в бушующий поток, гибли от столкновения с плавающими предметами. Этот поток представлял собой «кашу» из обломков домов и деревьев, частей автомобилей и людей. Шансов выжить в нём было мало.

Рис. 10. Карта Индийского океана. Нанесён эпицентр основного землетрясения и последующих афтершоков. Чёрным обведена область предполагаемого очага цунами. Нанесены изолинии добегания волны цунами

На рис. 11 показано, как высоко была смыта растительность на маленьком острове. Две следующих фотографии (рис. 12) – снимки из космоса территории Андаманских островов до и после цунами. Хорошо видно, что в результате землетрясения часть суши погрузилась в море.

Рис. 11. Результат воздействия волны цунами 26 декабря 2004 г. на о. Суматра. Хорошо видно, как высоко поднимался уровень океана

Рис. 12. Последствия землетрясения и цунами 26 декабря 2004 г. в Индийском океане (снимки из космоса до и после цунами)

Как спастись от цунами? Максимальную амплитуду цунами имеет непосредственно вблизи сейсмического источника. Поэтому здесь первым признаком цунами является само землетрясение. Жителям Курильских островов и Камчатки хорошо известно, что после подземных толчков необходимо быстро уходить из прибрежной зоны. Иногда перед приходом волны море быстро отступает от берега, обнажая дно на сотни метров. Многие свидетели отмечают наступление «тишины» перед приходом основной волны. Этот необычный отлив является признаком приближающейся волны цунами. А наступление «тишины» обусловлено тем, что быстрое отливное течение «уносит» от берега ветровые волны – шум прибоя затихает. Появление на горизонте пенящегося вала означает приближение цунами. Необходимо немедленно уходить на возвышение! Многие люди спаслись, забравшись на крепкие деревья, укрывшись на крыше крепкого здания. Известно, что многие животные и люди из кочевых племён как-то почувствовали катастрофу и ушли в горы.

Евгений Александрович Куликов – выпускник МФТИ 1973 г. В 1973–1986 гг. работал в Институте морской геологии и геофизики ДВО РАН, в 1979 г. защитил диссертацию на звание кандидата физико-математических наук. Сейчас – заведующий лабораторией цунами в Институте океанологии им. П.П.Ширшова РАН, автор около ста научных публикаций по цунами, волновым процессам в краевых областях океана и др., в том числе двух монографий, один из самых крупных специалистов-любителей по идеям Чучхе (учения Ким Ир Сена), за что награждён значком с изображением Великого вождя, приверженец теоретической кулинарии (см. сайт http://www.proza.ru/author.html?kulikove) и основатель нового вида спорта бананометания (http://kulikov.korolev.net.ru). Имеет троих теперь уже взрослых детей.

В нескольких местах на Земле местные ландшафты и приливы становятся причиной феномена, который называется приливной волной. Она формируется, когда огромные массы воды попадают в узкое русло реки.

9-метровая приливная волна на реке Цяньтан в Китае признана уникальным природным явлением. Во время прилива миллионы кубометров воды, огибая небольшие островки, движутся против течения этой реки, завораживая взгляды наблюдателей. Приливные волны есть и в других местах, таких, Аляска, Бразилия (река Амазонка) и самая большая по протяжённости река в Великобритании - Северн.

Момент столкновения волны с волнорезами на берегу является особенно зрелищным. Но наблюдать за этим явлением крайне опасно, и высокая волна периодически становится причиной гибели людей, наблюдающих за ней. 22 августа 2013. (Фото ChinaFotoPress | ChinaFotoPress via Getty Images):

Иногда цунами ошибочно называют «приливной волной», но в реальности оно не имеет ничего общего с приливами.

Но экстремалов этим не напугать. Провинция Чжэцзян на востоке Китая, 31 августа 2011. (Фото AP Photo):

Наиболее интересно поведение волны в заливах и в «закрытых» морях, которые сообщаются с океаном нешироким проливом. В таком море возникает собственная приливная волна – из-за того же искривления поверхности Земли. Но такая волна не успевает образоваться – ведь чем слабее сила, тем дольше она должна действовать, чтобы создать большую амплитуду. Из-за недостаточно больших размеров моря, прилив успевает пройти с одного берега до другого, не нарастивши существенной амплитуды.

В эти моря заходит приливная волна из океана. Если глубина оказывается меньше – быстро повышается высота и спадает скорость волны. Также движение волн сильно зависит от формы береговой линии. Заливе Фанди, где наблюдаются самые высокие приливы, широкий у основания и резко сужается к материку. Вода оказывается стесненной берегом, по этой причине также ее уровень повышается. В Белом море, наоборот, приливная волна, рассеивается на берегах и островах вытянутого моря.

Интересное явление происходит, когда прилив подходит к устью реки, впадающей в океан. Когда он попадает в узкий, да еще и мелкий водоем, амплитуда приливной волны резко возрастает и вверх по течению движется высокая водяная стена. Это явление называется бора.

Приливная волна на реке Цяньтан в Китае, 31 августа 2011. Около 20 человек получили тогда ранения. (Фото Reuters | China Daily):

Против течения: приливная волна в Анкориджа, Аляска, 5 июня 2012. (Фото AP Photo | Ron Barta):

Байдарочники ловят приливную волну, Анкориджа, Аляска, 5 июня 2012. (Фото AP Photo | Ron Barta):

На приливной волне в каноэ в северной Бразилии, 12 марта 2001. (Фото AP Photo | Paulo Santos):

Серферы на реке Северн в графстве Глостершир, Англия, 2 марта 2010. Это самая большая по протяжённости река в Великобритании. Длина течения реки составляет 354 километра. (Фото Matt Cardy | Getty Images):

Но вернемся к экстремалам в Китай. Приливная волна на реке Цяньтан, 22 августа 2013. (Фото China FotoPress | ChinaFotoPress via Getty Images):

Народу нравится. Приливная волна на реке Цяньтан, 24 августа 2013. (Фото Reuters | Stringer):

(Фото STR | AFP | Getty Images):

Приливная волна Амазонки называется поророка, она особенно мощна во время весеннего половодья. В это время года, хорошие серферы могут катится на ней целых шесть минут. Скорость волны поророка 35 км в час, высота может достигать шести метров. Она с корнем вырывает деревья и переворачивает суда. Ширина приливной волны иногда достигает 16-ти км. Иногда приливную волну еще называют гремящая вода.

Видео: серфинг на Амазонке.

Также приливные волны возникают и в других местах. Например на атлантическом побережье Франции приливную волну называют маскаре, в Малайзии бенак.

Еще можно отметить приливные волны на реке Птикодьяк в Канаде и в заливе Кука, высота этих боров не превышает двух метров.

Уникальная приливная волна March 14th, 2017

В нескольких местах на Земле местные ландшафты и приливы становятся причиной феномена, который называется приливной волной. Она формируется, когда огромные массы воды попадают в узкое русло реки.

9-метровая приливная волна на реке Цяньтан в Китае признана уникальным природным явлением. Во время прилива миллионы кубометров воды, огибая небольшие островки, движутся против течения этой реки, завораживая взгляды наблюдателей. Приливные волны есть и в других местах, таких, Аляска, Бразилия (река Амазонка) и самая большая по протяжённости река в Великобритании — Северн.



Момент столкновения волны с волнорезами на берегу является особенно зрелищным. Но наблюдать за этим явлением крайне опасно, и высокая волна периодически становится причиной гибели людей, наблюдающих за ней. 22 августа 2013. (Фото ChinaFotoPress | ChinaFotoPress via Getty Images):

Иногда цунами ошибочно называют «приливной волной», но в реальности оно не имеет ничего общего с приливами.

Но экстремалов этим не напугать. Провинция Чжэцзян на востоке Китая, 31 августа 2011. (Фото AP Photo):



Наиболее интересно поведение волны в заливах и в «закрытых» морях, которые сообщаются с океаном нешироким проливом. В таком море возникает собственная приливная волна - из-за того же искривления поверхности Земли. Но такая волна не успевает образоваться - ведь чем слабее сила, тем дольше она должна действовать, чтобы создать большую амплитуду. Из-за недостаточно больших размеров моря, прилив успевает пройти с одного берега до другого, не нарастивши существенной амплитуды.

В эти моря заходит приливная волна из океана. Если глубина оказывается меньше - быстро повышается высота и спадает скорость волны. Также движение волн сильно зависит от формы береговой линии. Заливе Фанди, где наблюдаются самые высокие приливы, широкий у основания и резко сужается к материку. Вода оказывается стесненной берегом, по этой причине также ее уровень повышается. В Белом море, наоборот, приливная волна, рассеивается на берегах и островах вытянутого моря.

Интересное явление происходит, когда прилив подходит к устью реки, впадающей в океан. Когда он попадает в узкий, да еще и мелкий водоем, амплитуда приливной волны резко возрастает и вверх по течению движется высокая водяная стена. Это явление называется бора.





Приливная волна на реке Цяньтан в Китае, 31 августа 2011. Около 20 человек получили тогда ранения. (Фото Reuters | China Daily):


Против течения: приливная волна в Анкориджа, Аляска, 5 июня 2012. (Фото AP Photo | Ron Barta):



Байдарочники ловят приливную волну, Анкориджа, Аляска, 5 июня 2012. (Фото AP Photo | Ron Barta):


На приливной волне в каноэ в северной Бразилии, 12 марта 2001. (Фото AP Photo | Paulo Santos):



Серферы на реке Северн в графстве Глостершир, Англия, 2 марта 2010. Это самая большая по протяжённости река в Великобритании. Длина течения реки составляет 354 километра. (Фото Matt Cardy | Getty Images):



Но вернемся к экстремалам в Китай. Приливная волна на реке Цяньтан, 22 августа 2013. (Фото China FotoPress | ChinaFotoPress via Getty Images):


Народу нравится. Приливная волна на реке Цяньтан, 24 августа 2013. (Фото Reuters | Stringer):




(Фото STR | AFP | Getty Images):




Приливная волна Амазонки называется поророка, она особенно мощна во время весеннего половодья. В это время года, хорошие серферы могут катится на ней целых шесть минут. Скорость волны поророка 35 км в час, высота может достигать шести метров. Она с корнем вырывает деревья и переворачивает суда. Ширина приливной волны иногда достигает 16-ти км. Иногда приливную волну еще называют гремящая вода.

Видео: серфинг на Амазонке.


Также приливные волны возникают и в других местах. Например на атлантическом побережье Франции приливную волну называют маскаре, в Малайзии бенак.

Еще можно отметить приливные волны на реке Птикодьяк в Канаде и в заливе Кука, высота этих боров не превышает двух метров.




Вспомните познавательный пост

Британский фотограф Майкл Мартин (Michael Marten) создал серию оригинальных снимков, фиксирующих побережье Бритаиии в одинаковых ракурсах, но в разное время. Один снимок во время прилива, а второй во время отлива.

Получилось весьма необычно, а положительные отзывы о проекте, буквально вынудили автора заняться выпуском книги. Книга, получившая название «Sea Change», увидела свет в августе этого года и была выпущена на двух языках. На создание своей внушительной серии снимков, у Майкла Мартина (Michael Marten) ушло порядка восьми лет. Время между большой и малой водой составляет в среднем немногим более шести часов. Поэтому, Майклу приходится в каждом месте задерживаться дольше, чем просто время нескольких щелчков затвора.

1. Идея создания серии таких работ вынашивалась автором давно. Он искал, как реализовать на пленке изменения природы, без воздействия человека. И нашел случайно, в одной из приморских шотландских деревушек, где провел весь день и застал время прилива и отлива.

3. Периодические колебания уровня воды (подъемы и спады) в акваториях на Земле называются приливы и отливы.

Самый высокий уровень воды, наблюдаемый за сутки или половину суток во время прилива, называется полной водой, самый низкий уровень во время отлива – малой водой, а момент достижения этих предельных отметок уровня – стоянием (или стадией) соответственно прилива или отлива. Средний уровень моря – условная величина, выше которой расположены отметки уровня во время приливов, а ниже – во время отливов. Это результат осреднения больших рядов срочных наблюдений.

Вертикальные колебания уровня воды во время приливов и отливов сопряжены с горизонтальными перемещениями водных масс по отношению к берегу. Эти процессы осложняются ветровым нагоном, речным стоком и другими факторами. Горизонтальные перемещения водных масс в береговой зоне называют приливными (или приливо-отливными) течениями, тогда как вертикальные колебания уровня воды – приливами и отливами. Все явления, связанные с приливами и отливами, характеризуются периодичностью. Приливные течения периодически меняют направление на противоположное, в отличии от них океанические течения, движущиеся непрерывно и однонаправленно, обусловлены общей циркуляцией атмосферы и охватывают большие пространства открытого океана.

4. Приливы и отливы циклически чередуются в соответствии с изменяющейся астрономической, гидрологической и метеорологической обстановкой. Последовательность фаз приливов и отливов определяется двумя максимумами и двумя минимумами в суточном ходе.

5. Хотя Солнце играет существенную роль в приливо-отливных процессах, решающим фактором их развития служит сила гравитационного притяжения Луны. Степень воздействия приливообразующих сил на каждую частицу воды, независимо от ее местоположения на земной поверхности, определяется законом всемирного тяготения Ньютона.
Этот закон гласит, что две материальные частицы притягиваются друг к другу с силой, прямо пропорциональной произведению масс обеих частиц и обратно пропорциональной квадрату расстояния между ними. При этом подразумевается, что чем более масса тел, тем больше возникающая между ними сила взаимного притяжения (при одинаковой плотности меньшее тело создаст меньшее притяжение, чем большее).

6. Закон также означает, что чем больше расстояние между двумя телами, тем меньше между ними притяжение. Поскольку эта сила обратно пропорциональна квадрату расстояния между двумя телами, в определении величины приливообразующей силы фактор расстояния играет значительно б?льшую роль, чем массы тел.

Гравитационное притяжение Земли, действующее на Луну и удерживающее ее на околоземной орбите, противоположно силе притяжения Земли Луной, которая стремится сместить Землю по направлению к Луне и «приподнимает» все объекты, находящиеся на Земле, в направлении Луны.

Точка земной поверхности, расположенная непосредственно под Луной, удалена всего на 6400 км от центра Земли и в среднем на 386 063 км от центра Луны. Кроме того, масса Земли в 81,3 раза больше массы Луны. Таким образом, в этой точке земной поверхности притяжение Земли, действующее на любой объект, приблизительно в 300 тыс. раз больше притяжения Луны.

7. Распространено представление, что вода на Земле, находящаяся прямо под Луной, поднимается в направлении Луны, что приводит к оттоку воды из других мест земной поверхности, однако, поскольку притяжение Луны столь мало в сравнении с притяжением Земли, его было бы недостаточно, чтобы поднять столь огромный вес.
Тем не менее океаны, моря и большие озера на Земле, будучи крупными жидкими телами, свободны перемещаться под действием силы бокового смещения, и любая слабая тенденция к сдвигу по горизонтали приводит их в движение. Все воды, не находящиеся непосредственно под Луной, подчиняются действию составляющей силы притяжения Луны, направленной тангенциально (касательно) к земной поверхности, как и ее составляющей, направленной вовне, и подвергаются горизонтальному смещению относительно твердой земной коры.

В результате возникает течение воды из прилегающих районов земной поверхности по направлению к месту, находящемуся под Луной. Результирующее скопление воды в точке под Луной образует там прилив. Собственно приливная волна в открытом океане имеет высоту лишь 30–60 см, но она значительно увеличивается при подходе к берегам материков или островов.
За счет перемещения воды из соседних районов в сторону точки под Луной происходят соответствующие отливы воды в двух других точках, удаленных от нее на расстояние, равное четверти окружности Земли. Интересно отметить, что понижение уровня океана в этих двух точках сопровождается повышением уровня моря не только на стороне Земли, обращенной к Луне, но и на противоположной стороне.

8. Этот факт тоже объясняется законом Ньютона. Два или несколько объектов, расположенные на разных расстояниях от одного и того же источника тяготения и подвергающиеся, следовательно, ускорению силы тяжести разной величины, перемещаются относительно друг друга, поскольку ближайший к центру тяготения объект сильнее всего притягивается к нему.

Вода в подлунной точке испытывает более сильное притяжение к Луне, чем Земля под ней, но Земля, в свою очередь, сильнее притягивается к Луне, чем вода, на противоположной стороне планеты. Таким образом, возникает приливная волна, которая на обращенной к Луне стороне Земли называется прямой, а на противоположной – обратной. Первая из них всего на 5% выше второй.

9. Благодаря вращению Луны по орбите вокруг Земли между двумя последовательными приливами или двумя отливами в данном месте проходит примерно 12 ч 25 мин. Интервал между кульминациями последовательных прилива и отлива ок. 6 ч 12 мин. Период продолжительностью 24 ч 50 мин между двумя последовательными приливами называется приливными (или лунными) сутками.

10. Неравенства величин прилива. Приливо-отливные процессы очень сложны, поэтому, чтобы разобраться в них, необходимо принимать во внимание многие факторы. В любом случае главные особенности будут определяться:
1) стадией развития прилива относительно прохождения Луны;
2) амплитудой прилива и
3) типом приливных колебаний, или формой кривой хода уровня воды.
Многочисленные вариации в направлении и величине приливообразующих сил порождают разницу в величинах утренних и вечерних приливов в данном порту, а также между одними и теми же приливами в разных портах. Эти различия называются неравенствами величин прилива.

Полусуточный эффект. Обычно в течение суток благодаря основной приливообразующей силе – вращению Земли вокруг своей оси – образуются два полных приливных цикла.

11. Если смотреть со стороны Северного полюса эклиптики, то очевидно, что Луна вращается вокруг Земли в том же направлении, в каком Земля вращается вокруг своей оси, – против часовой стрелки. При каждом следующем обороте данная точка земной поверхности вновь занимает позицию непосредственно под Луной несколько позже, чем при предыдущем обороте. По этой причине и приливы и отливы каждый день запаздывают приблизительно на 50 мин. Эта величина называется лунным запаздыванием.

12. Полумесячное неравенство. Этому основному типу вариаций присуща периодичность примерно в 143/4 суток, что связано с вращением Луны вокруг Земли и прохождением ею последовательных фаз, в частности сизигий (новолуний и полнолуний), т.е. моментов, когда Солнце, Земля и Луна располагаются на одной прямой.

До сих пор мы касались только приливообразующего воздействия Луны. Гравитационное поле Солнца также действует на приливы, однако, хотя масса Солнца намного больше массы Луны, расстояние от Земли до Солнца настолько превосходит расстояние до Луны, что приливообразующая сила Солнца составляет менее половины приливообразующей силы Луны.

13. Однако, когда Солнце и Луна находятся на одной прямой как по одну сторону от Земли, так и по разные (в новолуние или полнолуние), силы их притяжения складываются, действуя вдоль одной оси, и происходит наложение солнечного прилива на лунный.

14. Подобным же образом притяжение Солнца усиливает отлив, вызванный воздействием Луны. В результате приливы становятся выше, а отливы ниже, чем если бы они были вызваны только притяжением Луны. Такие приливы называются сизигийными.

15. Когда векторы силы притяжения Солнца и Луны взаимно перпендикулярны (во время квадратур, т.е. когда Луна находится в первой или последней четверти), их приливообразующие силы противодействуют, поскольку прилив, вызванный притяжением Солнца, накладывается на отлив, вызванный Луной.

16. В таких условиях приливы не столь высоки, а отливы – не столь низки, как если бы они были обусловлены только силой притяжения Луны. Такие промежуточные приливы и отливы называются квадратурными.

17. Диапазон отметок полных и малых вод в этом случае сокращается приблизительно в три раза по сравнению с сизигийным приливом.

18. Лунное параллактическое неравенство. Период колебаний высот приливов, возникающий за счет лунного параллакса, составляет 271/2 суток. Причина этого неравенства состоит в изменении расстояния Луны от Земли в процессе вращения последней. Из-за эллиптической формы лунной орбиты приливообразующая сила Луны в перигее на 40% выше, чем в апогее.

Суточное неравенство. Период этого неравенства составляет 24 ч 50 мин. Причины его возникновения – вращение Земли вокруг своей оси и изменение склонения Луны. Когда Луна находится вблизи небесного экватора, два прилива в данные сутки (а также два отлива) слабо различаются, и высоты утренних и вечерних полных и малых вод весьма близки. Однако с увеличением северного или южного склонения Луны утренние и вечерние приливы одного и того же типа различаются по высоте, и, когда Луна достигает наибольшего северного или южного склонения, эта разница максимальна.

19. Известны также тропические приливы, называемые так из-за того, что Луна находится почти над Северным или Южным тропиками.

Суточное неравенство существенно не влияет на высоты двух последовательных отливов в Атлантическом океане, и даже его воздействие на высоты приливов мало по сравнению с общей амплитудой колебаний. Однако в Тихом океане суточная неравномерность проявляется в уровнях отливов втрое сильнее, чем в уровнях приливов.

Полугодовое неравенство. Его причиной является обращение Земли вокруг Солнца и соответствующее изменение склонения Солнца. Дважды в год в течение нескольких суток во время равноденствий Солнце находится близ небесного экватора, т.е. его склонение близко к 0. Луна также располагается вблизи небесного экватора приблизительно в течение суток каждые полмесяца. Таким образом, во время равноденствий существуют периоды, когда склонения и Солнца и Луны приблизительно равны 0. Суммарный приливообразующий эффект притяжения этих двух тел в такие моменты наиболее заметно проявляется в районах, расположенных вблизи земного экватора. Если в то же самое время Луна находится в фазе новолуния или полнолуния, возникают т.н. равноденственные сизигийные приливы.

20. Солнечное параллактическое неравенство. Период проявления этого неравенства составляет один год. Его причиной служит изменение расстояния от Земли до Солнца в процессе орбитального движения Земли. Один раз за каждый оборот вокруг Земли Луна находится на кратчайшем от нее расстоянии в перигее. Один раз в год, примерно 2 января, Земля, двигаясь по своей орбите, также достигает точки наибольшего приближения к Солнцу (перигелия). Когда эти два момента наибольшего сближения совпадают, вызывая наибольшую суммарную приливообразующую силу, можно ожидать более высоких уровней приливов и более низких уровней отливов. Подобно этому, если прохождение афелия совпадает с апогеем, возникают менее высокие приливы и менее глубокие отливы.

21. Наибольшие амплитуды приливов. Самый высокий в мире прилив формируется в условиях сильного течения в бухте Минас в заливе Фанди. Приливные колебания здесь характеризуются нормальным ходом с полусуточным периодом. Уровень воды во время прилива часто поднимается за шесть часов более чем на 12 м, а затем в течение последующих шести часов понижается на ту же величину. Когда воздействие сизигийного прилива, положение Луны в перигее и максимальное склонение Луны приходятся на одни сутки, уровень прилива может достигать 15 м. Такая исключительно большая амплитуда приливо-отливных колебаний отчасти обусловлена воронкообразной формой залива Фанди, где глубины уменьшаются, а берега сближаются по направлению к вершине залива.Причины возникновения приливов, бывшие предметом постоянного изучения в течение многих столетий, относятся к тем проблемам, которые породили много противоречивых теорий даже в сравнительно недавнее время

22. Ч.Дарвин писал в 1911 г.: “Нет необходимости искать античную литературу ради гротесковых теорий приливов”. Однако морякам удается измерять их высоту и использовать возможности приливов, не имея представления о действительных причинах их возникновения.

Думаю что и нам можно особенно не заморачиваться по поводу причин происхождения приливов. На основании многолетних наблюдений для любой точки акватории земли рассчитываются специальные таблицы в которых указывается время высокой и низкой воды на каждый день. Планирую свою поездку например в Египет, который как раз славится своими не глубокими лагунами, по пробуйте заранее подгадать так чтобы полная вода приходилась на первую половину дня, что позволит большую часть светлого времени полноценно кататься.
Еще один вопрос связанный с приливами интересный для кайтера, это взаимосвязь ветра и колебания уровня воды.

23. Народная примета утверждает что на прилив ветер усиливается а на отлив наоборот скисает.
Более понятно влияние ветра на приливо-отливные явления. Ветер с моря нагоняет воду в сторону берега, высота прилива увеличивается сверх обычной, и при отливе уровень воды тоже превосходит средний. Напротив, при ветре, дующем с суши, вода сгоняется от берега, и уровень моря понижается.

24. Второй механизм действует за счет повышения атмосферного давления над обширной акваторией, происходит понижение уровня воды, так как добавляется наложенный вес атмосферы. Когда атмосферное давление возрастает на 25 мм рт. ст., уровень воды понижается приблизительно на 33 см. Зона высокого давления или антициклон обычно называют хорошей погодой, но только не для кайтера. В центре антициклона штиль. Понижение атмосферного давления вызывает соответствующее повышение уровня воды. Следовательно, резкое падение атмосферного давления в сочетании с ветром ураганной силы способно вызвать заметный подъем уровня воды. Подобные волны, хотя и называются приливными, на самом деле не связаны с воздействием приливообразующих сил и не обладают периодичностью, характерной для приливо-отливных явлений.

Но вполне возможно, что и отливы могут оказывать влияние на ветер, к примеру понижение уровня воды в прибрежных лагунах, ведет к большему прогреву воды, и как следствие к уменьшению разницы температур между холодным морем и нагретой сушей что ослабляет бризовой эффект.