Углеводы Вам помогут. Что такое углеводы

УГЛЕВОДЫ

Углеводы входят в состав клеток и тканей всех растительных и животных организмов и по массе составляют основную часть органического вещества на Земле. На долю углеводов приходится около 80% сухого вещества растений и около 20% животных. Растения синтезируют углеводы из неорганических соединений - углекислого газа и воды (СО 2 и Н 2 О ).

Углеводы делятся на две группы: моносахариды (монозы) и полисахариды (полиозы).

Моносахариды

Для подробного изучения материала, связанного с классификацией углеводов, изомерией, номенклатурой, строением и др., необходимо просмотреть анимационные фильмы " Углеводы. Генетический D - ряд сахаров" и "Построение формул Хеуорса для D - галактозы" (данный видеоматериал доступен только на CD - ROM ). Тексты, сопровождающие эти фильмы, в полном объеме перенесены в данный подраздел и ниже следуют.

Углеводы. Генетический D- ряд сахаров

"Углеводы широко распространены в природе и выполняют в живых организмах различные важные функции. Они поставляют энергию для биологических процессов, а также являются исходным материалом для синтеза в организме других промежуточных или конечных метаболитов. Углеводы имеют общую формулу C n (H 2 O ) m , откуда и возникло название этих природных соединений.

Углеводы делятся на простые сахара или моносахариды и полимеры этих простых сахаров или полисахариды. Среди полисахаридов следует выделить группу олигосахаридов, содержащих в молекуле от 2 до 10 моносахаридных остатков. К ним относятся, в частности, дисахариды.

Моносахариды являются гетерофункциональными соединениями. В их молекулах одновременно содержатся и карбонильная (альдегидная или кетонная), и несколько гидроксильных групп, т.е. моносахариды представляют собой полигидроксикарбонильные соединения - полигидроксиальдегиды и полигидроксикетоны. В зависимости от этого моносахариды подразделяются на альдозы (в моносахариде содержится альдегидная группа) и кетозы (содержится кетогруппа). Например , глюкоза – это альдоза, а фруктоза – это кетоза.

(глюкоза (альдоза)) (фруктоза (кетоза))

В зависимости от числа атомов углерода в молекуле моносахарид называется тетрозой, пентозой, гексозой и т.д. Если объединить последние два типа классификации, то глюкоза – это альдогексоза, а фруктоза – кетогексоза. Большинство встречающихся в природе моносахаридов – это пентозы и гексозы.

Моносахариды изображаются в виде проекционных формул Фишера, т.е. в виде проекции тетраэдрической модели атомов углерода на плоскость чертежа. Углеродная цепь в них записывается вертикально. У альдоз наверху помещают альдегидную группу, у кетоз – соседнюю с карбонильной первичноспиртовую группу. Атом водорода и гидроксильную группу при асимметрическом атоме углерода располагают на горизонтальной прямой. Асимметрический атом углерода находится в образующемся перекрестье двух прямых и не обозначается символом. С групп, расположенных вверху, начинают нумерацию углеродной цепи. (Дадим определение асимметрическому атому углерода: это атом углерода, связанный с четырьмя различными атомами или группами).

Установление абсолютной конфигурации, т.е. истинного расположения в пространстве заместителей у асимметрического атома углерода является весьма трудоемкой, а до некоторого времени было даже невыполнимой задачей. Существует возможность характеризовать соединения путем сравнения их конфигураций с конфигурациями эталонных соединений, т.е. определять относительные конфигурации.

Относительная конфигурация моносахаридов определяется по конфигурационному стандарту – глицериновому альдегиду, которому еще в конце прошлого столетия произвольно были приписаны определенные конфигурации, обозначенные как D - и L - глицериновые альдегиды. С конфигурацией их асимметрических атомов углерода сравнивается конфигурация наиболее удаленного от карбонильной группы асимметрического атома углерода моносахарида. В пентозах таким атомом является четвертый атом углерода (С 4 ), в гексозах – пятый (С 5 ), т.е. предпоследние в цепи углеродных атомов. При совпадении конфигурации этих атомов углерода с конфигурацией D - глицеринового альдегида моносахарид относят к D - ряду. И, наоборот, при совпадении с конфигурацией L - глицеринового альдегида считают, что моносахарид принадлежит к L - ряду. Символ D означает, что гидроксильная группа при соответствующем асимметрическом атоме углерода в проекции Фишера располагается справа от вертикальной линии, а символ L - что гидроксильная группа расположена слева.

Генетический D- ряд сахаров

Родоначальником альдоз является глицериновый альдегид. Рассмотрим генетическое родство сахаров D - ряда с D - глицериновым альдегидом.

В органической химии существует метод увеличения углеродной цепи моносахаридов путем последовательного введения группы

Н–

I
С
I

–ОН

между карбонильной группой и соседним атомом углерода. Введение этой группы в молекулу D - глицеринового альдегида приводит к двум диастереомерным тетрозам – D - эритрозе и D - треозе. Это объясняется тем, что введенный в цепь моносахарида новый атом углерода становится асимметрическим. По этой же причине каждая полученная тетроза, а далее и пентоза при введении в их молекулу еще одного углеродного атома тоже дают два диастереомерных сахара. Диастереомеры – это стереоизомеры, отличающиеся конфигурацией одного или нескольких асимметрических атомов углерода.

Так получен D - ряд сахаров из D - глицеринового альдегида. Как видно, все члены приведенного ряда, будучи полученными из D - глицеринового альдегида, сохранили его асимметрический атом углерода. Это – последний асимметрический атом углерода в цепи углеродных атомов представленных моносахаридов.

Каждой альдозе D -ряда соответствует стереоизомер L - ряда, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение. Такие стереоизомеры называются энантиомерами.

Следует отметить в заключение, что приведенный ряд альдогексоз не исчерпывается четырьмя изображенными. Представленным выше образом из D - рибозы и D - ксилозы можно получить еще две пары диастереомерных сахаров. Однако мы остановились лишь на альдогексозах, имеющих наибольшее распространение в природе."

Построение формул Хеуорса для D- галактозы

"Одновременно с введением в органическую химию представлений о строении глюкозы и других моносахаридов как о полигидроксиальдегидах или полигидроксикетонах, описываемых открытоцепными формулами, в химии углеводов стали накапливаться факты, которые трудно было объяснить с позиций таких структур. Оказалось, что глюкоза и другие моносахариды существуют в виде циклических полуацеталей, образующихся в результате внутримолекулярной реакции соответствующих функциональных групп.

Обычные полуацетали образуются при взаимодействии молекул двух соединений – альдегида и спирта. В процессе реакции разрывается двойная связь карбонильной группы, по месту разрыва к которой присоединяются атом водорода гидроксила и остаток спирта. Циклические полуацетали образуются за счет взаимодействия аналогичных функциональных групп, принадлежащих молекуле одного соединения – моносахарида. Реакция протекает в том же направлении: разрывается двойная связь карбонильной группы, к карбонильному кислороду присоединяется атом водорода гидроксила и образуется цикл за счет связывания атомов углерода карбонильной и кислорода гидроксильной групп.

Наиболее устойчивые полуацетали образуются за счет гидроксильных групп при четвертом и пятом углеродных атомах. Возникающие при этом пятичленные и шестичленные кольца называют соответственно фуранозной и пиранозной формами моносахаридов. Эти названия происходят от названий пяти- и шестичленных гетероциклических соединений с атомом кислорода в цикле – фурана и пирана.

Моносахариды, имеющие циклическую форму, удобно изображать перспективными формулами Хеуорса. Они представляют собой идеализированные плоские пяти- и шестичленные циклы с атомом кислорода в цикле, дающие возможность видеть взаимное расположение всех заместителей относительно плоскости кольца.

Рассмотрим построение формул Хеуорса на примере D - галактозы.

Для построения формул Хеуорса необходимо в первую очередь пронумеровать углеродные атомы моносахарида в проекции Фишера и повернуть ее направо так, чтоб цепь углеродных атомов заняла горизонтальное положение. Тогда атомы и группы, расположенные в проекционной формуле слева, будут находиться вверху, а расположенные справа – внизу от горизонтальной прямой, а при дальнейшем переходе к циклическим формулам – соответственно над и под плоскостью цикла. В действительности же углеродная цепь моносахарида не расположена на прямой линии, а принимает в пространстве изогнутую форму. Как видно, гидроксил при пятом углеродном атоме значительно удален от альдегидной группы, т.е. занимает положение, неблагоприятное для замыкания кольца. Для сближения функциональных групп осуществляется поворот части молекулы вокруг валентной оси, соединяющей четвертый и пятый углеродный атомы, против часовой стрелки на один валентный угол. В результате такого поворота гидроксил пятого атома углерода приближается к альдегидной группе, при этом два других заместителя также меняют свое положение – в частности, группировка – СН 2 ОН располагается над цепью углеродных атомов. Одновременно с этим и альдегидная группа за счет поворота вокруг s - связи между первым и вторым углеродными атомами сближается с гидроксилом. Сблизившиеся функциональные группы взаимодействуют между собой по указанной выше схеме, приводя к образованию полуацеталя с шестичленным пиранозным циклом.

Возникающую в результате реакции гидроксильную группу называют гликозидной. Образование циклического полуацеталя приводит к появлению нового асимметрического атома углерода, называемого аномерным. В результате возникают два диастереомера – a - и b - аномеры, различающиеся конфигурацией только первого углеродного атома.

Различные конфигурации аномерного атома углерода возникают вследствии того, что альдегидная группа, имеющая плоскую конфигурацию, из-за поворота вокруг s - связи между первым и вторым углеродными атомами обращается к атакующему реагенту (гидроксильной группе) как одной, так и противоположной сторонами плоскости. Гидроксильная группа при этом атакует карбонильную группу с любой стороны двойной связи, приводя к полуацеталям с различными конфигурациями первого атома углерода. Другими словами, основная причина одновременного образования a - и b -аномеров состоит в нестереоселективности обсуждаемой реакции.

У a - аномера конфигурация аномерного центра одинакова с конфигурацией последнего асимметрического атома углерода, опеределяющего принадлежность к D - и L - ряду, а у b - аномера – противоположна. У альдопентоз и альдогексоз D - ряда в формулах Хеуорса гликозидная гидроксильная группа у a - аномеров расположена под плоскостью, а у b - аномеров – над плоскостью цикла.

По аналогичным правилам осуществляется переход и к фуранозным формам Хеуорса. Разница лишь в том, что в реакции участвует гидроксил четвертого углеродного атома, а для сближения функциональных групп необходим поворот части молекулы вокруг s - связи между третьим и четвертым атомами углерода и по часовой стрелке, в результате чего пятый и шестой углеродный атомы расположатся под плоскостью цикла.

Названия циклических форм моносахаридов включают в себя указания на конфигурацию аномерного центра (a - или b -), на название моносахарида и его ряда (D - или L -) и размер цикла (фураноза или пираноза). Например , a , D - галактопираноза или b , D - галактофураноза."

Получение

В свободном виде в природе встречается преимущественно глюкоза. Она же является структурной единицей многих полисахаридов. Другие моносахариды в свободном состоянии встречаются редко и в основном известны как компоненты олиго- и полисахаридов. В природе глюкоза получается в результате реакции фотосинтеза:

6CO 2 + 6H 2 O ® C 6 H 12 O 6 (глюкоза ) + 6O 2

Впервые глюкоза получена в 1811 году русским химиком Г.Э.Кирхгофом при гидролизе крахмала. Позже синтез моносахаридов из формальдегида в щелочной среде предложен А.М.Бутлеровым.

В промышленности глюкозу получают гидролизом крахмала в присутствии серной кислоты.

(C 6 H 10 O 5) n (крахмал) + nH 2 O –– H 2 SO 4 ,t ° ® nC 6 H 12 O 6 (глюкоза )

Физические свойства

Моносахариды – твердые вещества, легко растворимые в воде, плохо – в спирте и совсем нерастворимые в эфире. Водные растворы имеют нейтральную реакцию на лакмус. Большинство моносахаридов обладают сладким вкусом, однако меньшим, чем свекловичный сахар.

Химические свойства

Моносахариды проявляют свойства спиртов и карбонильных соединений.

I. Реакции по карбонильной группе

1. Окисление.

a) Как и у всех альдегидов, окисление моносахаридов приводит к соответствующим кислотам. Так, при окислении глюкозы аммиачным раствором гидрата окиси серебра образуется глюконовая кислота (реакция "серебряного зеркала").

b) Реакция моносахаридов с гидроксидом меди при нагревании так же приводит к альдоновым кислотам.

c) Более сильные окислительные средства окисляют в карбоксильную группу не только альдегидную, но и первичную спиртовую группы, приводя к двухосновным сахарным (альдаровым) кислотам. Обычно для такого окисления используют концентрированную азотную кислоту.

2. Восстановление.

Восстановление сахаров приводит к многоатомным спиртам. В качестве восстановителя используют водород в присутствии никеля, алюмогидрид лития и др.

3. Несмотря на схожесть химических свойств моносахаридов с альдегидами, глюкоза не вступает в реакцию с гидросульфитом натрия (NaHSO 3 ).

II. Реакции по гидроксильным группам

Реакции по гидроксильным группам моносахаридов осуществляются, как правило, в полуацетальной (циклической) форме.

1. Алкилирование (образование простых эфиров).

При действии метилового спирта в присутствии газообразного хлористого водорода атом водорода гликозидного гидроксила замещается на метильную группу.

При использовании более сильных алкилирующих средств, каковыми являются, например , йодистый метил или диметилсульфат, подобное превращение затрагивает все гидроксильные группы моносахарида.

2. Ацилирование (образование сложных эфиров).

При действии на глюкозу уксусного ангидрида образуется сложный эфир – пентаацетилглюкоза.

3. Как и все многоатомные спирты, глюкоза с гидроксидом меди (II ) дает интенсивное синее окрашивание (качественная реакция).

III. Специфические реакции

Кроме приведенных выше, глюкоза характеризуется и некоторыми специфическими свойствами - процессами брожения. Брожением называется расщепление молекул сахаров под воздействием ферментов (энзимов). Брожению подвергаются сахара с числом углеродных атомов, кратным трем. Существует много видов брожения, среди которых наиболее известны следующие:

a) спиртовое брожение

C 6 H 12 O 6 ® 2CH 3 –CH 2 OH (этиловый спирт ) + 2CO 2 ­

b) молочнокислое брожение

c) маслянокислое брожение

C 6 H 12 O 6 ® CH 3 –CH 2 –СН 2 –СОOH (масляная кислота ) + 2 Н 2 ­ + 2CO 2 ­

Упомянутые виды брожения, вызываемые микроорганизмами, имеют широкое практическое значение. Например , спиртовое – для получения этилового спирта, в виноделии, пивоварении и т.д., а молочнокислое – для получения молочной кислоты и кисломолочных продуктов.

Дисахариды

Дисахариды (биозы) при гидролизе образуют два одинаковых или разных моносахарида. Для установления строения дисахаридов необходимо знать: из каких моносахаридов он построен, какова конфигурация аномерных центров у этих моносахаридов (a - или b -), каковы размеры цикла (фураноза или пираноза) и с участием каких гидроксилов связаны две молекулы моносахарида.

Дисахариды подразделяются на две группы: восстанавливающие и невосстанавливающие.

К восстанавливающим дисахаридам относится, в часности, мальтоза (солодовый сахар), содержащаяся в солоде, т.е. проросших, а затем высушенных и измельченных зернах хлебных злаков.

(мальтоза )

Мальтоза составлена из двух остатков D - глюкопиранозы, которые связаны (1–4) -гликозидной связью, т.е. в образовании простой эфирной связи участвуют гликозидный гидроксил одной молекулы и спиртовой гидроксил при четвертом атоме углерода другой молекулы моносахарида. Аномерный атом углерода (С 1 ), участвующий в образовании этой связи, имеет a - конфигурацию, а аномерный атом со свободным гликозидным гидроксилом (обозначен красным цветом) может иметь как a - (a - мальтоза), так и b - конфигурацию (b - мальтоза).

Мальтоза представляет собой белые кристаллы, хорошо растворимые в воде, сладкие на вкус, однако значительно меньше, чем у сахара (сахарозы).

Как видно, в мальтозе имеется свободный гликозидный гидроксил, вследствие чего сохраняется способность к раскрытию цикла и переходу в альдегидную форму. В связи с этим, мальтоза способна вступать в реакции, характерные для альдегидов, и, в частности, давать реакцию "серебряного зеркала", поэтому ее называют восстанавливающим дисахаридом. Кроме того, мальтоза вступает во многие реакции, характерные для моносахаридов, например , образует простые и сложные эфиры (см. химические свойства моносахаридов).

К невосстанавливающим дисахаридам относится сахароза (свекловичный или тростниковый сахар). Она содержится в сахарном тростнике, сахарной свекле (до 28% от сухого вещества), соках растений и плодах. Молекула сахарозы построена из a , D - глюкопиранозы и b , D - фруктофуранозы.

(сахароза)

В противоположность мальтозе гликозидная связь (1–2) между моносахаридами образуется за счет гликозидных гидроксилов обеих молекул, то есть свободный гликозидный гидроксил отсутствует. Вследствие этого отсутствует восстанавливающая способность сахарозы, она не дает реакции "серебряного зеркала", поэтому ее относят к невосстанавливающим дисахаридам.

Сахароза – белое кристаллическое вещество, сладкое на вкус, хорошо растворимое в воде.

Для сахарозы характерны реакции по гидроксильным группам. Как и все дисахариды, сахароза при кислотном или ферментативном гидролизе превращается в моносахариды, из которых она составлена.

Полисахариды

Важнейшие из полисахаридов – это крахмал и целлюлоза (клетчатка). Они построены из остатков глюкозы. Общая формула этих полисахаридов ( C 6 H 10 O 5 ) n . В образовании молекул полисахаридов обычно принимает участие гликозидный (при С 1 -атоме) и спиртовой (при С 4 -атоме) гидроксилы, т.е. образуется (1–4) -гликозидная связь.

Крахмал

Крахмал представляет собой смесь двух полисахаридов, построенных из a , D - глюкопиранозных звеньев: амилозы (10-20%) и амилопектина (80-90%). Крахмал образуется в растениях при фотосинтезе и откладывается в виде "резервного" углевода в корнях, клубнях и семенах. Например , зерна риса, пшеницы, ржы и других злаков содержат 60-80% крахмала, клубни картофеля – 15-20%. Родственную роль в животном мире выполняет полисахарид гликоген, "запасающийся", в основном, в печени.

Крахмал – это белый порошок, состоящий из мелких зерен, не растворимый в холодной воде. При обработке крахмала теплой водой удается выделить две фракции: фракцию, растворимую в теплой воде и состоящую из полисахарида амилозы , и фракцию, лишь набухающую в теплой воде с образованием клейстера и состоящую из полисахарида амилопектина .

Амилоза имеет линейное строение, a , D - глюкопиранозные остатки связаны (1–4) -гликозидными связями. Элементная ячейка амилозы (и крахмала вообще) представляется следующим образом:

Молекула амилопектина построена подобным образом, однако имеет в цепи разветвления, что создает пространственную структуру. В точках разветвления остатки моносахаридов связаны (1–6) -гликозидными связями. Между точками разветвления располагаются обычно 20-25 глюкозных остатков.

(амилопектин)

Крахмал легко подвергается гидролизу: при нагревании в присутствии серной кислоты образуется глюкоза.

(C 6 H 10 O 5 ) n (крахмал) + nH 2 O –– H 2 SO 4 , t ° ® nC 6 H 12 O 6 (глюкоза)

В зависимости от условий проведения реакции гидролиз может осуществляться ступенчато с образованием промежуточных продуктов.

(C 6 H 10 O 5 ) n (крахмал) ® (C 6 H 10 O 5 ) m (декстрины (m < n )) ® xC 12 H 22 O 11 (мальтоза) ® nC 6 H 12 O 6 (глюкоза)

Качественной реакцией на крахмал является его взаимодействие с йодом – наблюдается интенсивное синее окрашивание. Такое окрашивание появляется, если на срез картофеля или ломтик белого хлеба поместить каплю раствора йода.

Крахмал не вступает в реакцию "серебряного зеркала".

Крахмал является ценным пищевым продуктом. Для облегчения его усвоения продукты, содержащие крахмал, подвергают термообработке, т.е. картофель и крупы варят, хлеб пекут. Процессы декстринизации (образование декстринов), осуществляемые при этом, способствуют лучшему усвоению организмом крахмала и последующему гидролизу до глюкозы.

В пищевой промышленности крахмал используется при производстве колбасных, кондитерских и кулинарных изделий. Применяется также для получения глюкозы, при изготовлении бумаги, текстильных изделий, клеев, лекарственных средств и т.д.

Целлюлоза (клетчатка)

Целлюлоза – наиболее распространенный растительный полисахарид. Она обладает большой механической прочностью и исполняет роль опорного материала растений. Древесина содержит 50-70% целлюлозы, хлопок представляет собой почти чистую целлюлозу.

Как и у крахмала, структурной единицей целлюлозы является D - глюкопираноза, звенья которой связаны (1-4) -гликозидными связями. Однако, от крахмала целлюлоза отличается b - конфигурацией гликозидных связей между циклами и строго линейным строением.

Целлюлоза состоит из нитевидных молекул, которые водородными связями гидроксильных групп внутри цепи, а также между соседними цепями собраны в пучки. Именно такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу идеальным материалом для построения клеточных стенок.

b - Гликозидная связь не разрушается пищеварительными ферментами человека, поэтому целлюлоза не может служить ему пищей, хотя в определенном количестве является необходимым для нормального питания балластным веществом. В желудках жвачных животных имеются ферменты, расщепляющие целлюлозу, поэтому такие животные используют клетчатку в качестве компонента пищи.

Несмотря на нерастворимость целлюлозы в воде и обычных органических растворителях, она растворима в реактиве Швейцера (раствор гидроксида меди в аммиаке), а также в концентрированном растворе хлористого цинка и в концентрированной серной кислоте.

Как и крахмал, целлюлоза при кислотном гидролизе дает глюкозу.

Целлюлоза – многоатомный спирт, на элементную ячейку полимера приходятся три гидроксильных группы. В связи с этим, для целлюлозы характерны реакции этерификации (образование сложных эфиров). Наибольшее практическое значение имеют реакции с азотной кислотой и уксусным ангидридом.

Полностью этерифицированная клетчатка известна под названием пироксилин, который после соответствующей обработки превращается в бездымный порох. В зависимости от условий нитрования можно получить динитрат целлюлозы, который в технике называется коллоксилином. Он так же используется при изготовлении пороха и твердых ракетных топлив. Кроме того, на основе коллоксилина изготавливают целлулоид.

Триацетилцеллюлоза (или ацетилцеллюлоза) является ценным продуктом для изготовления негорючей кинопленки и ацетатного шелка. Для этого ацетилцеллюлозу растворяют в смеси дихлорметана и этанола и этот раствор продавливают через фильеры в поток теплого воздуха. Растворитель испаряется и струйки раствора превращаются в тончайшие нити ацетатного шелка.

Целлюлоза не дает реакции "серебряного зеркала".

Говоря о применении целлюлозы, нельзя не сказать о том, что большое количество целлюлозы расходуется для изготовления различной бумаги. Бумага – это тонкий слой волокон клетчатки, проклеенный и спрессованный на специальной бумагоделательной машине.

Из приведенного выше уже видно, что использование целлюлозы человеком столь широко и разнообразно, что применению продуктов химической переработки целлюлозы можно посвятить самостоятельный раздел.

КОНЕЦ РАЗДЕЛА

Углеводы

Переходя к рассмотрению органических веществ, нельзя не отметить значение углерода для жизни. Вступая в химические реакции, углерод образует прочные ковалентные связи, обобществляя четыре электрона. Атомы углерода, соединяясь между собой, способны образовывать стабильные цепи и кольца, служащие скелетами макромолекул. Углерод также может образовывать кратные ковалентные связи с другими углеродными атомами, а также с азотом и кислородом. Все эти свойства обеспечивают уникальное разнообразие органических молекул.

Макромолекулы , составляющие около 90 % массы обезвоженной клетки, синтезируются из более простых молекул, называемых мономерами . Существуют три основных типа макромолекул: полисахариды, белки и нуклеиновые кислоты ; мономерами для них являются, соответственно, моносахариды, аминокислоты и нуклеотиды.

Углеводами называют вещества с общей формулой C x (H 2 O) y , где x и y – натуральные числа. Название «углеводы» говорит о том, что в их молекулах водород и кислород находятся в том же отношении, что и в воде.

В животных клетках содержится небольшое количество углеводов, а в растительных – почти 70 % от общего количества органических веществ.

Моносахариды играют роль промежуточных продуктов в процессах дыхания и фотосинтеза , участвуют в синтезе нуклеиновых кислот, коферментов, АТФ и полисахаридов, служат , высвобождаемой при окислении в процессе дыхания. Производные моносахаридов – сахарные спирты, сахарные кислоты, дезоксисахара и аминосахара – имеют важное значение в процессе дыхания, а также используются при синтезе липидов, ДНК и других макромолекул.

Дисахариды образуются в результате реакции конденсации между двумя моносахаридами. Иногда они используются в качестве запасных питательных веществ. Наиболее распространенными из них являются мальтоза (глюкоза + глюкоза), лактоза (глюкоза + галактоза) и сахароза (глюкоза + фруктоза). содержится только в молоке. (тростниковый сахар) наиболее распространена в растениях; это и есть тот самый «сахар», который мы обычно употребляем в пищу.


Целлюлоза также является полимером глюкозы. В ней заключено около 50 % углерода, содержащегося в растениях. По общей массе на Земле целлюлоза занимает первое место среди органических соединений. Форма молекулы (длинные цепи с выступающими наружу –OH-группами) обеспечивает прочное сцепление между соседними цепями. При всей своей прочности, макрофибриллы, состоящие из таких цепей, легко пропускают воду и растворённые в ней вещества и потому служат идеальным строительным материалом для стенок растительной клетки. Целлюлоза – ценный источник глюкозы, однако для её расщепления необходим фермент целлюлаза, сравнительно редко встречающийся в природе. Поэтому в пищу целлюлозу употребляют только некоторые животные (например, жвачные). Велико и промышленное значение целлюлозы – из этого вещества изготовляют хлопчатобумажные ткани и бумагу.

, в зависимости от своего происхождения, содержит 70—80 % сахара.К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины .

Из всех потребляемых человеком пищевых веществ углеводы, несомненно, являются главным источником энергии. В среднем на их долю приходится от 50 до 70% калорийности дневных рационов. Несмотря на то, что человек потребляет значительно больше углеводов, чем жиров и белков, их резервы в организме невелики. Это означает, что снабжение ими организма должно быть регулярным.

Потребности в углеводах в очень большой степени зависят от энергетических трат организма. В среднем у взрослого мужчины, занятого преимущественно умственным или легким физическим трудом, суточная потребность в углеводах колеблется от 300 до 500 г. У работников физического труда и спортсменов она значительно выше. В отличие от белков и в известной степени жиров, количество углеводов в рационах питания без вреда для здоровья может быть существенно снижено. Тем, кто хочет похудеть, стоит обратить на это внимание: углеводы имеют главным образом энергетическую ценность. При окислении 1 г углеводов в организме освобождается 4,0 – 4,2 ккал. Поэтому за их счет легче всего регулировать калорийность питания.

Углеводы (сахариды) — общее название обширного класса природных органических соединений. Общую формулу моносахаридов можно написать как С n (Н 2 О) n . В живых организмах наиболее распространены сахара с 5-ю (пентозы) и с 6-ю (гексозы) атомами углерода.

Углеводы делятся на группы:

Простые углеводы легко растворяются в воде и синтезируются в зелёных растениях. Кроме небольших молекул, в клетке встречаются и крупные, они являются полимерами. Полимеры – это сложные молекулы, состоящие из отдельных «звеньев», соединенных друг с другом. Такие «звенья» называются мономерами. Такие вещества, как крахмал, целлюлоза и хитин, являются полисахаридами – биологическими полимерами.

К моносахаридам относятся глюкоза и фруктоза, придающие сладость фруктам и ягодам. Пищевой сахар сахароза состоит из ковалентно присоединенных друг к другу глюкозы и фруктозы. Подобные сахарозе соединения называются дисахаридами. Поли-, ди- и моносахариды называют общим термином – углеводы. К углеводам относятся соединения, обладающие разнообразными и часто совершенно различными свойствами.


Таблица: Многообразие углеводов и их свойства.

Группа углеводов

Примеры углеводов

Где встречаются

свойства

моносахара

рибоза

РНК

дезоксирибоза

ДНК

глюкоза

Свекловичный сахар

фруктоза

Фрукты, мед

галактоза

В состав лактозы молока

олигосахариды

мальтоза

Солодовый сахар

Сладкие на вкус, растворимые в воде, кристаллические,

сахароза

Тростниковый сахар

Лактоза

Молочный сахар в молоке

Полисахариды (построены из линейных или разветвленных моносахаров)

Крахмал

Растительный запасной углевод

Не сладкие, белого цвета, не растворяются в воде.

гликоген

Запасной животный крахмал в печени и мышцах

Клетчатка (целлюлоза)

хитин

муреин

воды . Для многих клеток человека (например, клеток мозга и мышц) глюкоза, приносимая кровью, служит главным источником энергии.Крахмал и очень похожее на него вещество животных клеток – гликоген – являются полимерами глюкозы, они служат для запасания ее внутри клетки.

2. Структурная функция, то есть участвуют в построении разных клеточных структур.

Полисахарид целлюлоза образует клеточные стенки растительных клеток, отличающиеся твердостью и жесткостью, она – один из главных компонентов древесины. Другими компонентами являются гемицеллюлоза, также принадлежащая к полисахаридам, и лигнин (он имеет не углеводную природу). Хитин тоже выполняет структурные функции. Хитин выполняет опорную и защитную функции.Клеточные стенки большинства бактерий состоят из пептидогликана муреина – в состав этого соединения входят остатки как моносахаридов, так и аминокислот.

3. Углеводы выполняют защитную роль у растений (клеточные стенки, состоящие из клеточных стенок мертвых клеток защитные образования — шипы, колючки и др.).

Общая формула глюкозы – С 6 Н 12 О 6 , это альдегидоспирт. Глюкоза содержится во многих фруктах, соках растений и цветочном нектаре, а также в крови человека и животных. Содержание глюкозы в крови поддерживается на определенном уровне (0,65–1,1 г на л). Если искусственно снизить его, то клетки мозга начинают испытывать острое голодание, которое может закончиться обмороком, комой и даже смертельным исходом. Длительное повышение содержания глюкозы в крови тоже отнюдь не полезно: при этом развивается заболевание сахарный диабет.

Млекопитающие, и человек в том числе, могут синтезировать глюкозу из некоторых аминокислот и продуктов расщепления самой глюкозы – например, молочной кислоты. Они не умеют получать глюкозу из жирных кислот, в отличие от растений и микробов.

Взаимопревращения веществ.

Избыток белка------углеводы

Избыток жиров--------------углеводы

Органические соединения, которые являются основным источником энергии, называются углеводами. Чаще всего сахара встречаются в пище растительного происхождения. Дефицит углеводов может вызвать нарушение работы печени, а их избыток вызывает повышение уровня инсулина. Поговорим о сахарах подробнее.

Что такое углеводы?

Это органические соединения, которые содержат карбонильную группу и несколько гидроксильных. Они входят в состав тканей организмов, а также являются важным компонентом клеток. Выделяют моно -, олиго - и полисахариды, а также более сложные углеводы, такие как гликолипиды, гликозиды и другие. Углеводы являются продуктом фотосинтеза, а также основным исходным веществом биосинтеза других соединений в растениях. Благодаря большому разнообразию соединений данный класс способен играть многоплановые роли в живых организмах. Подвергаясь окислению, углеводы обеспечивают энергией все клетки. Они участвуют в становлении иммунитета, а также входят в состав многих клеточных структур.

Виды сахаров

Органические соединения делятся на две группы - простые и сложные. Углеводы первого типа - моносахариды, которые содержат карбонильную группу и представляют собой производные многоатомных спиртов. Ко второй группе принадлежат олигосахариды и полисахариды. Первые состоят их остатков моносахаридов (от двух до десяти), которые соединены гликозидной связью. Вторые могут содержать в своем составе и сотни и даже тысячи мономеров. Таблица углеводов, которые чаще всего встречаются, выглядит следующим образом:

  1. Глюкоза.
  2. Фруктоза.
  3. Галактоза.
  4. Сахароза.
  5. Лактоза.
  6. Мальтоза.
  7. Раффиноза.
  8. Крахмал.
  9. Целлюлоза.
  10. Хитин.
  11. Мурамин.
  12. Гликоген.

Список углеводов обширен. Остановимся на некоторых из них подробнее.

Простая группа углеводов

В зависимости от места, которое занимает карбонильная группа в молекуле, различают два вида моносахаридов - альдозы и кетозы. У первых функциональной группой является альдегидная, у вторых - кетонная. В зависимости от числа углеродных атомов, входящих в молекулу, складывается название моносахарида. Например, альдогексозы, альдотетрозы, кетотриозы и так далее. Эти вещества чаще всего не имеют цвета, плохо растворимы в спирте, но хорошо в воде. Простые углеводы в продуктах - твердые, не гидролизуются при переваривании. Некоторые из представителей обладают сладким вкусом.

Представители группы

Что относится к углеводам простого строения? Во-первых, это глюкоза, или альдогексоза. Она существует в двух формах - линейной и циклической. Наиболее точно описывает химические свойства глюкозы - это вторая форма. Альдогексоза содержит шесть атомов углерода. Вещество не имеет цвета, но зато сладкое на вкус. Отлично растворяется в воде. Встретить глюкозу можно практически везде. Она существует в органах растений и животных организмах, а также во фруктах. В природе альдогексоза образуется в процессе фотосинтеза.

Во-вторых, это галактоза. Вещество отличается от глюкозы расположением в пространстве гидроксильной и водородной групп у четвертого атома углерода в молекуле. Обладает сладким вкусом. Она встречается в животных и растительных организмах, а также в некоторых микроорганизмах.

И третий представитель простых углеводов - фруктоза. Вещество является самым сладким сахаром, полученным в природе. Она присутствует в овощах, фруктах, ягодах, меде. Легко усваивается организмом, быстро выводится из крови, что обуславливает ее применение больными сахарным диабетом. Фруктоза содержит мало калорий и не вызывает кариес.

Продукты, богатые простыми сахарами

  1. 90 г - кукурузный сироп.
  2. 50 г - сахара-рафинад.
  3. 40,5 г - мед.
  4. 24 г - инжир.
  5. 13 г - курага.
  6. 4 г - персики.

Суточное употребление данного вещества не должно превышать 50 г. Что касается глюкозы, то в этом случае соотношение будет немного другое:

  1. 99,9 г - сахар-рафинад.
  2. 80,3 г - мед.
  3. 69,2 г - финики.
  4. 66,9 г - перловая крупа.
  5. 61,8 г - овсяные хлопья.
  6. 60,4 г - гречка.

Чтобы рассчитать суточное употребление вещества, необходимо вес умножить на 2,6. Простые сахара обеспечивают энергией человеческий организм и помогают справляться с разными токсинами. Но нельзя забывать, что при любом употреблении должна быть мера, иначе серьезные последствия не заставят долго ждать.

Олигосахариды

Наиболее часто встречающимся видом в данной группе являются дисахариды. Что такое углеводы, содержащие несколько остатков моносахаридов? Они представляют собой гликозиды, содержащие мономеры. Моносахариды связаны между собой гликозидной связью, которая образуется в результате соединения гидроксильных групп. Исходя из строения дисахариды делятся на два виды: восстанавливающие и не восстанавливающие. К первому относится мальтоза и лактоза, а ко второму сахароза. Восстанавливающий тип обладает хорошей растворимостью и имеет сладкий вкус. Олигосахариды могут содержать более двух мономеров. Если моносахариды одинаковые, то такой углевод относится к группе гомополисахаридов, а если разные, то к гетерополисахаридов. Примером последнего типа является трисахарид раффиноза, которая содержит остатки глюкозы, фруктозы и галактозы.

Лактоза, мальтоза и сахароза

Последнее вещество хорошо растворяется, имеет сладкий вкус. Сахарный тростник и свекла являются источником получения дисахарида. В организме при гидролизе сахароза распадается на глюкозу и фруктозу. Дисахарид в больших количествах содержится в сахаре-рафинаде (99,9 г на 100 г продукта), в черносливе (67,4 г), в винограде (61,5 г) и в других продуктах. При избыточном поступлении этого вещества увеличивается способность превращаться в жир практически всех пищевых веществ. Также повышается уровень холестерина в крови. Большое количество сахарозы негативно влияет на кишечную флору.

Молочный сахар, или лактоза, содержится в молоке и его производных. Углевод расщепляется до галактозы и глюкозы благодаря специальному ферменту. Если его в организме нет, то наступает непереносимость молока. Солодовый сахар или мальтоза является промежуточным продуктом распада гликогена и крахмала. В пищевых продуктах вещество встречается в солоде, патоке, меде и проросших зернах. Состав углеводов лактозы и мальтозы представлен остатками мономеров. Только в первом случае ими являются D-галактоза и D-глюкоза, а во втором вещество представлено двумя D-глюкозами. Оба углевода являются восстанавливающимися сахарами.

Полисахариды

Что такое углеводы сложные? Они отличаются друг от друга по нескольким признакам:

1. По строению мономеров, включенных в цепь.

2. По порядку нахождения моносахаридов в цепи.

3. По типу гликозидных связей, которые соединяют мономеры.

Как и у олигосахаридов, в данной группе можно выделить гомо -, и гетерополисахариды. К первой относятся целлюлоза и крахмал, а ко второй - хитин, гликоген. Полисахариды являются важным источником энергии, который образуется в результате обмена веществ. Они участвуют в иммунных процессах, а также в сцеплении клеток в тканях.

Список сложных углеводов представлен крахмалом, целлюлозой и гликогеном, их мы рассмотрим подробнее. Одним из главных поставщиков углеводов является крахмал. Это соединения, которые включают сотни тысяч остатков глюкозы. Углевод рождается и хранится в виде зернышек в хлоропластах растений. Благодаря гидролизу крахмал переходит в водорастворимые сахара, что способствует свободному перемещению по частям растения. Попадая в человеческий организм, углевод начинает распадаться уже во рту. В наибольшем количестве крахмал содержат зерна злаков, клубни и луковицы растений. В рационе на его долю приходится около 80% всего количества употребляемых углеводов. Наибольшее количество крахмала, в расчете на 100 г продукта, содержится в рисе - 78 г. Чуть меньше в макаронах и пшене - 70 и 69 г. Сто грамм ржаного хлеба включает в себя 48 г крахмала, а в той же порции картофеля его количество достигает лишь 15 г. Суточная потребность человеческого организма в данном углеводе равна 330-450 г.

Зерновые продукты также содержат клетчатку или целлюлозу. Углевод входит в состав клеточных стенок растений. Его вклад равен 40-50 %. Человек не способен переварить целлюлозу, так нет необходимого фермента, который бы осуществлял процесс гидролиза. Но мягкий тип клетчатки, например, картофеля и овощей, способен хорошо усваиваться в пищеварительном тракте. Каково содержание данного углевода в 100 г еды? Ржаные и пшеничные отруби являются самыми богатыми клетчаткой продуктами. Их содержание достигает 44 г. Какао-порошок включает 35 г питательного углевода, а сухие грибы лишь 25. Шиповник и молотый кофе содержат 22 и 21 г. Одними из самых богатых на клетчатку фруктов являются абрикос и инжир. Содержание углевода в них достигает 18 г. В сутки человеку нужно съедать целлюлозы до 35 г. Причем наибольшая потребность в углеводе наступает в возрасте от 14 до 50 лет.

В роле энергетического материала для хорошей работы мышц и органов используется полисахарид гликоген. Пищевого значения он не имеет, так как содержание его в еде крайне низкое. Углевод иногда называют животным крахмалом из-за схожести в строении. В данной форме в животных клетках хранится глюкоза (в наибольшем количестве в печени и мышцах). В печени у взрослых людей количество углевода может достигать до 120 г. Лидером по содержанию гликогена являются сахар, мед и шоколад. Также большим содержанием углевода могут «похвастаться» финики, изюм, мармелад, сладкая соломка, бананы, арбуз, хурма и инжир. Суточная норма гликогена равна 100 г в сутки. Если человек интенсивно занимается спортом или выполняет большую работу, связанную с умственной деятельностью, количество углевода должно быть увеличено. Гликоген относится к легко усваиваемым углеводам, которые хранятся про запас, что говорит о его использовании только в случае недостатка энергии от других веществ.

К полисахаридам также относятся следующие вещества:

1. Хитин. Он входит в состав роговых оболочек членистоногих, присутствует в грибах, низших растениях и в беспозвоночных животных. Вещество играет роль опорного материала, а также выполняет механические функции.

2. Мурамин. Он присутствует в качестве опорно-механического материала клеточной стенки бактерий.

3. Декстраны. Полисахариды выступают как заменители плазмы крови. Их получают путем воздействия микроорганизмов на раствор сахарозы.

4. Пектиновые вещества. Находясь вместе с органическими кислотами, могут образовывать желе и мармелад.

Белки и углеводы. Продукты. Список

Человеческий организм нуждается в определенном количестве питательных веществ каждый день. Например, углеводов необходимо употреблять в расчете 6-8 г на 1 кг массы тела. Если человек ведет активный образ жизни, то количество будет увеличиваться. Углеводы в продуктах содержатся практически всегда. Составим список их присутствия на 100 г пищи:

  1. Наибольшее количество (более 70 г) содержатся в сахаре, мюслях, мармеладе, крахмале и рисе.
  2. От 31 до 70 г - в мучных и кондитерских изделиях, в макаронах, крупах, сухофруктах, фасоли и горохе.
  3. От 16 до 30 г углеводов содержат бананы, мороженое, шиповник, картофель, томатная паста, компоты, кокос, семечки подсолнечника и орехи кешью.
  4. От 6 до 15 г - в петрушке, укропе, свекле, моркови, крыжовник, смородина, бобах, фруктах, орехах, кукурузе, пиве, семечках тыквы, сушеных грибах и так далее.
  5. До 5 г углеводов содержится в зеленом луке, томатах, кабачках, тыквах, капусте, огурцах, клюкве, в молочных продуктах, яйцах и так далее.

Питательного вещества не должно поступать в организм меньше 100 г в сутки. В противном случае клетка не будет получать положенную ей энергию. Головной мозг не сможет выполнять свои функции анализа и координации, следовательно, мышцы не будут получать команды, что в итоге приведет к кетозу.

Что такое углеводы, мы рассказали, но, помимо них, незаменимым веществом для жизни являются белки. Они представляют собой цепочку аминокислот, связанных пептидной связью. В зависимости от состава белки различаются по своим свойствам. Например, эти вещества исполняют роль строительного материала, так как каждая клетка организма включает их в свой состав. Некоторые виды белков являются ферментами и гормонами, а также источником энергии. Они оказывают влияние на развитие и рост организма, регулируют кислотно-щелочной и водный баланс.

Таблица углеводов в еде показала, что в мясе и в рыбе, а также в некоторых видах овощей их число минимально. А каково содержание белков в пище? Самым богатым продуктом является желатин пищевой, на 100 г в нем содержится 87,2 г вещества. Далее идет горчица (37,1 г) и соя (34,9 г). Соотношение белков и углеводов в суточном употреблении на 1 кг веса должно быть 0,8 г и 7 г. Для лучшего усвоения первого вещества необходимо принимать пищу, в которой он принимает легкую форму. Это касается белков, которые присутствуют в кисломолочных продуктах и в яйцах. Плохо сочетаются в одном приеме пищи белки и углеводы. Таблица по раздельному питанию показывает, каких вариаций лучше избегать:

  1. Рис с рыбой.
  2. Картофель и курица.
  3. Макароны и мясо.
  4. Бутерброды с сыром и ветчиной.
  5. Рыба в панировке.
  6. Ореховые пирожные.
  7. Омлет с ветчиной.
  8. Мучное с ягодами.
  9. Дыню и арбуз нужно есть отдельно за час до основного приема пищи.

Хорошо сочетаются:

  1. Мясо с салатом.
  2. Рыба с овощами или на гриле.
  3. Сыр и ветчина по отдельности.
  4. Орехи в целом виде.
  5. Омлет с овощами.

Правила раздельного питания основаны на знаниях законов биохимии и информации о работе ферментов и пищевых соков. Для хорошего пищеварения любой вид еды требует индивидуального набора желудочных жидкостей, определенного количества воды, щелочную или кислотную среду, а также присутствие или отсутствие энзимов. Например, кушанье, насыщенное углеводами, для лучшего переваривания требует пищеварительного сока с щелочными ферментами, которые расщепляют данные органические вещества. А вот еда, богатая белками, уже требует кислых энзимов... Соблюдая нехитрые правила соответствия продуктов, человек укрепляет свое здоровье и поддерживает постоянный вес, без помощи диет.

«Плохие» и «хорошие» углеводы

«Быстрые» (или «неправильные») вещества - соединения, которые содержат небольшое число моносахаридов. Такие углеводы способны быстро усваиваться, повышать уровень сахара в крови, а также увеличивать количество выделяемого инсулина. Последний снижает уровень сахара крови, путем превращения его в жир. Употребление углеводов после обеда для человека, который следит за своим весом, представляет наибольшую опасность. В это время организм наиболее предрасположен к увеличению жировой массы. Что именно содержит неправильные углеводы? Продукты, список которых представлен ниже:

1. Кондитерские изделия.

3. Варенье.

4. Сладкие соки и компоты.

7. Картофель.

8. Макароны.

9. Белый рис.

10. Шоколад.

В основном это продукты, не требующие долгого приготовления. После такой еды необходимо много двигаться, иначе лишний вес даст о себе знать.

«Правильные» углеводы содержат более трех простых мономеров. Они усваиваются медленно и не вызывают резкого подъема сахара. Данный вид углеводов содержит большое количество клетчатки, которая практически не переваривается. В связи с этим человек долго остается сытым, для расщепления такой пищи требуется дополнительная энергия, кроме того, происходит естественное очищение организма. Составим список сложных углеводов, а точнее, продуктов, в которых они встречаются:

  1. Хлеб с отрубями и цельнозерновой.
  2. Гречневая и овсяная каши.
  3. Зеленые овощи.
  4. Макароны из грубого помола.
  5. Грибы.
  6. Горох.
  7. Красная фасоль.
  8. Помидоры.
  9. Молочные продукты.
  10. Фрукты.
  11. Горький шоколад.
  12. Ягоды.
  13. Чечевица.

Для подержания себя в хорошей форме нужно больше есть «хороших» углеводов в продуктах и как можно меньше «плохих». Последние лучше принимать в первую половину дня. Если нужно похудеть, то лучше исключить употребление "неправильных" углеводов, так как при их использовании человек получает пищу в большем объеме. "Правильные" питательные вещества низкокалорийные, они способны надолго оставлять ощущение сытости. Это не означает полный отказ от "плохих» углеводов, а лишь только их разумное употребление.

План:

1.Определение понятия: углеводы. Классификация.

2. Состав, физические и химические свойства углеводов.

3.Рспространение в природе. Получение. Применение.

Углеводы – органические соединения, содержащие карбонильные и гидроксильные группировки атомов, имеющие общую формулу C n (H 2 O) m , (где n и m>3).

Углеводы – вещества, имеющие первостепенное биохимическое значение, широко распространены в живой природе и играют большую роль в жизни человека. Название углеводы возникло на основании данных анализа первых известных представителей этой группы соединения. Вещества этой группы состоят из углерода, водорода и кислорода, причем соотношение чисел атомов водорода и кислорода в них такое же, как и в воде, т.е. на каждые 2 атома водорода приходится один атом кислорода. В прошлом столетии их рассматривали как гидраты углерода. Отсюда и возникло русское название углеводы, предложенное в 1844г. К.Шмидтом. Общая формула углеводов, согласно сказанному, С м Н 2п О п. При вынесении «n» за скобки получается формула С м (Н 2 О) n , которая очень наглядно отражает название «угле - воды». Изучение углеводов показало, что существуют соединения, которые по всем свойствам нужно отнести в группу углеводов, хотя они имеют состав, не точно соответствующий формуле С м H 2п О п. Тем не менее старинное название «углеводы», сохранилось до наших дней, хотя наряду с этим названием для обозначения рассматриваемой группы веществ иногда применяют и более новое название – глициды.

Углеводы можно разделить на три группы : 1) Моносахариды – углеводы, способные гидролизоваться с образованием более простых углеводов. К данной группе относятся гексозы (глюкоза и фруктоза), а также пентоза (рибоза). 2) Олигосахариды – продукты конденсации нескольких моносахаридов (например, сахароза). 3) Полисахариды – полимерные соединения, содержащие большое число молекул моносахаридов.

Моносахариды . Моносахариды являются гетерофункциональными соединениями. В их молекулах одновременно содержатся и карбонильная (альдегидная или кетонная), и несколько гидроксильных групп, т.е. моносахариды представляют собой полигидроксикарбонильные соединения - полигидроксиальдегиды и полигидроксикетоны. В зависимости от этого моносахариды подразделяются на альдозы (в моносахариде содержится альдегидная группа) и кетозы (содержится кетогруппа). Например, глюкоза – это альдоза, а фруктоза – это кетоза.

Получение. В свободном виде в природе встречается преимущественно глюкоза. Она же является структурной единицей многих полисахаридов. Другие моносахариды в свободном состоянии встречаются редко и в основном известны как компоненты олиго- и полисахаридов. В природе глюкоза получается в результате реакции фотосинтеза: 6CO 2 + 6H 2 O ® C 6 H 12 O 6 (глюкоза) + 6O 2 Впервые глюкоза получена в 1811 году русским химиком Г.Э.Кирхгофом при гидролизе крахмала. Позже синтез моносахаридов из формальдегида в щелочной среде предложен А.М.Бутлеровым