Миелинизация нервных волокон приводит к. Челябинская государственная медицинская академия. Строение синапса. Механизм передачи возбуждения в синапсах

Очень часто при описании нервной системы используются «электрические» термины: например, нервы сравниваются с проводами. Это потому, что по нервному волокну действительно перемещается электрический сигнал. Каждому из нас известно, что оголенный провод опасен, ведь он бьет током, и по этой причине люди пользуются изоляционными материалами, не проводящими электричество. Природе тоже не чужда техника безопасности, и нервные «провода» она обматывает своим собственным изолирующим материалом - миелином.

Сложная обёртка

Рисунок 1. Нервное волокно, обернутое миелином. Видны ядра шванновских клеток (nucleus of Schwann cell) и перехваты Ранвье (nodes of Ranvier) - участки аксона, которые не покрыты миелиновой оболочкой.

Если говорить о белках, входящих в состав миелина, то надо уточнить, что это не только простые белки. В миелине встречаются гликопротеины - белки, к которым присоединены короткие углеводные последовательности. Важной составляющей миелина является главный структурный белок миелина (myelin basic protein , MBP ), впервые выделенный около 50 лет назад. MBP - это трансмембранный белок, который может многократно «прошивать» липидный слой клетки. Его различные изоформы (рис. 2) кодируются геном под названием Golli (gene in the oligodendrocyte lineage ). Структурной основой миелина служит изоформа массой 18,5 килодальтон .

Рисунок 2. Различные изоформы основного белка миелина (MBP) создаются на основе одного и того же гена. Например, для синтеза изоформы массой 18,5 кДа используются все экзоны, кроме экзона II.

В состав миелина входят сложные липиды цереброзиды . Они представляют собой аминоспирт сфингозин , соединенный с жирной кислотой и остатком углевода. В синтезе липидов миелина принимают участие пероксисомы олигодендроцитов. Пероксисомы - это липидные пузырьки с различными ферментами (в общей сложности известно около 50 видов пероксисомных энзимов). Эти органеллы занимаются, в частности, β-окислением жирных кислот: жирных кислот с очень длинной цепью (very long chain fatty acids , VLCFA ), некоторых эйкозаноидов и полиненасыщенных жирных кислот (ПНЖК, polyunsaturated fatty acids , PUFAs ). Поскольку миелин может содержать до 70% липидов, пероксисомы крайне важны для нормального метаболизма этого вещества. Они используют N-ацетиласпартат, вырабатываемый нервной клеткой, для постоянного синтеза новых липидов миелина и поддержания его существования. Кроме этого, пероксисомы принимают участие в поддержании энергетического метаболизма аксонов .

Важная обёртка

Миелинизация (постепенная изоляция нервных волокон миелином) начинается у людей уже в эмбриональном периоде развития. Первыми этот путь проходят подкорковые структуры. В течение первого года жизни происходит миелинизация отделов периферической и центральной нервной системы, отвечающих за двигательную активность. Миелинизация участков головного мозга, регулирующих высшую нервную деятельность, заканчивается к 12–13 годам. Из этого видно, что миелинизация тесно связана со способностью отделов нервной системы осуществлять специфические для них функции. Вероятно, именно активная работа волокон до рождения запускает их миелинизацию.

Дифференцировка клеток - предшественниц олигодендроцитов зависит от ряда факторов, связанных с работой нейронов. В частности, работающие отростки нейронов могут выделять белок нейролигин 3 , который способствует пролиферации и дифференциации клеток-предшественниц . В дальнейшем созревание олигодендроцитов происходит за счет ряда других факторов. В статье с характерным названием «Насколько велик миелинизирующий оркестр? » описывается происхождение олигодендроцитов в разных частях мозга . Во-первых , в различных частях мозга олигодендроциты начинают созревать в разное время. Во-вторых , за их созревание отвечают разные клеточные факторы, что тоже зависит от региона нервной системы (рис. 3). У нас может возникнуть вопрос: а сходны ли между собой олигодендроциты, появившиеся с таким расхождением в стартовых данных? И насколько схож у них миелин? В целом, авторы статьи считают, что между популяциями олигодендроцитов из разных участков головного мозга действительно существуют различия, и обусловлены они во многом именно местом закладки клеток, воздействием на них окружающих нейронов. И всё же типы миелина, синтезируемые разными пулами олигодендроцитов, не имеют настолько больших отличий, чтобы они не были взаимозаменяемыми.

Сам процесс миелинизации нервных волокон в центральной нервной системе происходит следующим образом (рис. 4). Олигодендроциты выпускают несколько отростков к аксонам разных нейронов. Входя с ними в контакт, отростки олигодендроцитов начинают оборачиваться вокруг них и расползаться по длине аксона. Количество оборотов постепенно увеличивается: в некоторых участках ЦНС их число доходит до 50. Мембраны олигодендроцитов становятся всё более тонкими, распространяясь по поверхности аксона и «выдавливая» из себя цитоплазму. Чем раньше слой миелина был обернут вокруг нервного окончания, тем более тонким он будет. Самый внутренний слой мембраны остается довольно толстым - для осуществления метаболической функции. Новые слои миелина наматываются поверх старых, перекрывая их так, как показано на рисунке 4 - не только сверху, но и увеличивая площадь аксона, покрытую миелином.

Рисунок 4. Миелинизация нервного волокна. Мембрана олигодендроцита наматывается на аксон, постепенно уплотняясь с каждым оборотом. Внутренний, прилегающий к аксону слой мембраны остается относительно толстым, что необходимо для выполнения метаболической функции. На разных частях рисунка (а-в ) с разных ракурсов показано постепенное наматывание новых слоев миелина на аксон. Красным цветом выделен более толстый, метаболически активный слой, синим - новые уплотняющиеся слои. Внутренний слой миелина (inner tongue на части б ) охватывается всё новыми и новыми слоями мембраны не только сверху, но и по бокам (в ), вдоль аксона.

Миелинизация нервных волокон олигодендроцитами также значимо зависит от белка нейрегулина 1 . Если он не воздействует на олигодендроциты, то в них запускается программа миелинизации, не учитывающая активность нервной клетки. Если же олигодендроциты получили сигнал от нейрегулина 1, то далее они начнут ориентироваться на работу аксона, и миелинизация будет зависеть от интенсивности выработки глутамата и активации им специфических NMDA-рецепторов на поверхности олигодендроцитов . Нейрегулин 1 - ключевой фактор для запуска процессов миелинизации и в случае шванновских клеток .

Изменчивая обёртка

Миелин постоянно образуется и разрушается в человеческом организме. На синтез и распад миелина могут влиять факторы, связанные с особенностями внешней среды. Например, воспитание. С 1965 по 1989 год Румынией руководил Николае Чаушеску . Он установил жесткий контроль над репродуктивным здоровьем и институтом брака в своей стране: усложнил процедуру развода, запретил аборты и ввел ряд стимулов и льгот для женщин, имевших более пяти детей. Итогом этих мер стало ожидаемое повышение рождаемости. Вместе с рождаемостью увеличилось количество криминальных абортов, не добавивших здоровья румынкам, и возросло количество детей-отказников. Последние воспитывались в детских домах, где с ними не очень-то активно общался персонал. Румынские дети в полной мере ощутили на себе то, что называется социальной депривацией - лишение возможности полноценного общения с другими людьми. Если речь идет о маленьком ребенке, то следствиями социальной депривации станут нарушение формирования эмоциональных привязанностей и расстройство внимания. Когда режим Чаушеску пал, западным ученым предстояло в полной мере оценить результат социальной политики этого диктатора. Румынских детей, имеющих выраженные проблемы со вниманием и установкой социальных контактов, впоследствии стали называть детьми Чаушеску.

Кроме различий при выполнении нейропсихологических тестов, у детей Чаушеску по сравнению с детьми, не находившимися в таких условиях, отличалось даже строение головного мозга . При оценке состояния белого вещества мозга ученые используют показатель фрактальной анизотропии. Он позволяет оценить плотность нервных волокон, диаметр аксонов и их миелинизацию. Чем больше фрактальная анизотропия, тем разнообразнее волокна, которые встречаются в этой области мозга. У детей Чаушеску отмечалось снижение фрактальной анизотропии в пучке белого вещества, соединяющего височную и лобную доли в левом полушарии, то есть связи в этом регионе были недостаточно сложными и разнообразными, с нарушениями миелинизации. Такое состояние связей мешает нормальному проведению сигналов между височной и лобной долями. В височной доле находятся центры эмоционального реагирования (миндалина , гиппокамп), а орбитофронтальная кора лобной доли также связана с эмоциями и принятием решений. Нарушение формирования связей между этими отделами мозга и проблемы в их работе в итоге приводили к тому, что выросшие в детдомах дети испытывали трудности в установлении нормальных отношений с другими людьми.

На миелинизацию также может влиять и состав еды, которую дают ребенку. При белково-энергетической недостаточности питания отмечается снижение образования миелина. Недостаток жирных кислот тоже отрицательно сказывается на синтезе этого ценного вещества, так как оно больше чем на 2/3 состоит из липидов. Дефицит железа, йода и витаминов группы В приводит к снижению образования миелина . В основном эти данные были получены при изучении лабораторных животных, но история, к сожалению, дала людям возможность оценить влияние недостатка еды и на формирующийся мозг ребенка . Голодная зима (голл. hongerwinter ) 1944–1945 гг. в Нидерландах привела к тому, что родилось множество детей, чьи матери плохо питались. Оказалось, что в условиях голодания мозг этих детей формировался с нарушениями. В частности, наблюдалось большое количество нарушений именно в белом веществе, то есть возникали проблемы с формированием миелина. В итоге это приводило к разнообразным психическим расстройствам.

Поврежденная обёртка

Рисунок 5. Нарушение чувствительности по полиневритическому типу. Название «носки - перчатки» связано с тем, что анатомические зоны, соответствующие поражению нервов, похожи на области, покрываемые этими предметами одежды.

Как мне кажется, для человеческого организма вполне подходит следующее правило: если есть орган, значит, к нему должна быть болезнь . В принципе, это правило можно расширить до молекулярных процессов: есть процесс - есть и болезни, связанные с нарушением этого процесса . В случае с миелином это демиелинизирующие заболевания. Их довольно много, но подробнее я расскажу о двух - синдроме Гийена-Барре и рассеянном склерозе. При этих расстройствах повреждение миелина приводит к нарушению адекватного проведения сигнала по нервам, что и обуславливает симптомы болезни.

Синдром Гийена-Барре (СГБ) - это заболевание периферической нервной системы, при котором происходит разрушение миелиновой оболочки, формируемой шванновскими клетками. СГБ является классическим аутоиммунным заболеванием. Как правило, ему предшествует инфекция (часто - вызванная микробом Campylobacter jejuni ). Присутствие различных возбудителей в организме человека запускает аутоиммунное повреждение миелина нервных волокон T- и B-лимфоцитами. Клинически это проявляется мышечной слабостью, нарушением чувствительности по типу «носки - перчатки» (полиневритический тип) (рис. 5). В дальнейшем мышечная слабость может нарастать вплоть до полного паралича конечностей и поражения туловищной мускулатуры. Поражения чувствительной нервной системы также могут быть разнообразны: от снижения способности различать собственные движения (нарушение глубокой чувствительности) до выраженного болевого синдрома. При тяжелых формах СГБ главную опасность представляет потеря способности к самостоятельному дыханию, требующая подключения к аппарату искусственной вентиляции легких (ИВЛ). Для лечения СГБ в настоящее время используют плазмаферез (очистку плазмы от вредных антител) и внутривенные вливания препаратов человеческого иммуноглобулина для нормализации иммунного ответа. В большинстве случаев лечение приводит к стойкому выздоровлению.

Рассеянный склероз (РС) заметно отличается от СГБ. Во-первых , это демиелинизирующее заболевание приводит к поражению центральной нервной системы, то есть затрагивает миелин, синтезируемый олигодендроцитами. Во-вторых , с причинами РС до сих пор много неясного: слишком большое разнообразие генетических и средовых факторов задействовано в патогенезе заболевания. Принципиальный момент в запуске РС - нарушение непроницаемости гематоэнцефалического барьера (ГЭБ) для иммунных клеток. В норме ткань мозга отгорожена от всего остального организма этим надежным фильтром, который не пропускает к ней множество веществ и клеток, в том числе иммунных. ГЭБ появляется уже в эмбриональном периоде развития, изолируя ткань мозга от формирующейся иммунной системы. В это время иммунная система человека «знакомится» со всеми существующими тканями, чтобы в дальнейшем, при взрослой жизни, не нападать на них. Мозг и ряд других органов остаются «не представленными» иммунной системе. При нарушении целостности ГЭБ иммунные клетки получают возможность для атаки незнакомых ей тканей мозга. В-третьих , РС отличается более тяжелыми симптомами, которые требуют других терапевтических подходов. Симптоматика зависит от того, где локализуются повреждения нервной системы (рис. 6 и 7). Это может быть шаткость походки, нарушения чувствительности, различные когнитивные симптомы. Для лечения РС используются высокие дозы глюкокортикоидов и цитостатики, а также препараты интерферона и специфические антитела (натализумаб). По-видимому, в дальнейшем будут развиваться новые методы лечения РС, основанные непосредственно на восстановлении миелиновой оболочки в поврежденных участках мозга. Ученые указывают на возможность трансплантации клеток - предшественниц олигодендроцитов или усиления их роста за счет введения инсулиноподобного фактора роста или тиреоидных гормонов . Однако это еще впереди, а пока неврологам недоступны более «молекулярные» методы лечения.

Обеспечивается олигодендроцитами. Каждый олигодендроглиоцит образует несколько «ножек», каждая из которых оборачивает часть какого-либо аксона. В результате один олигодендроцит связан с несколькими нейронами. Перехваты Ранвье здесь шире, чем на периферии. Согласно исследованию 2011 г. мощную миелиновую изоляцию в мозге получают наиболее активные аксоны, что позволяет им далее работать ещё эффективнее. Важную роль в этом процессе играет сигнализатор глутамат.

в миелинизированные волокна в НС проводят импульс быстрее, чем немиелинизоровнные

Миелиновая оболочка - это не клеточная мембрана. Оболочку образуют шванновские клетки, типа рулета, они создают области с высоким сопротивлением, и ослабляют ток утечки из аксона. Получается, что потенциал как бы перескакивает от перехваток перехвату, от этого и скорость проведения импульса становится выше.

8. Си́напс (греч. σύναψις, от συνάπτειν - обнимать, обхватывать, пожимать руку) - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками , причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

Типичный синапс - аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической , образованной булавовидным расширением окончаниема ксона передающей клетки и постсинаптической , представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае - участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

9. Химический синапс - особый тип межклеточного контакта между нейроном и клеткой-мишенью. Состоит из трёх основных частей: нервного окончания с пресинаптической мембраной , постсинаптической мембраны клетки-мишени и синаптической щели между ними.

электрические - клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм).Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими.

При деполяризации пресинаптической терминали открываются потенциал-чувствительные кальциевые каналы, ионы кальция входят в пресинаптическую терминаль и запускают механизм слияния синаптических пузырьков с мембраной. В результате медиатор выходит в синаптическую щель и присоединяется к белкам-рецепторам постсинаптической мембраны, которые делятся на метаботропные и ионотропные. Первые связаны с G-белком и запускают каскад реакций внутриклеточной передачи сигнала. Вторые связаны с ионными каналами, которые открываются при связывании с ними нейромедиатора, что приводит к изменению мембранного потенциала. Медиатор действует в течение очень короткого времени, после чего разрушается специфическим ферментом. Например, в холинэргических синапсах фермент, разрушающий медиатор в синаптической щели - ацетилхолинэстераза. Одновременно часть медиатора может перемещаться с помощью белков-переносчиков через постсинаптическую мембрану (прямой захват) и в обратном направлении через пресинаптическую мембрану (обратный захват). В ряде случаев медиатор также поглощается соседними клетками нейроглии.


10. Нервно-мышечный синапс (мионевральный синапс) - эффекторное нервное окончание на скелетном мышечном волокне.

Нервный отросток проходя через сарколемму мышечного волокна утрачивает миелиновую оболочку и образует сложный аппарат с плазматической мембраной мышечного волокна, образующийся из выпячиваний аксона и цитолеммы мышечного волокна, создавая глубокие «карманы». Синаптическая мембрана аксона и постсинаптическая мембрана мышечного волокна разделены синаптической щелью. В этой области мышечное волокно не имеет поперечной исчерченности, характерно скопление митохондрий и ядер. Терминали аксонов содержат большое количество митохондрий и синаптических пузырьков с медиатором (ацетилхолином).

1. Пресинаптическое окончание
2. Сарколемма
3. Синаптический пузырек
4. Никотиновый ацетилхолиновый рецептор
5. Митохондрия

11. Нейромедиа́торы (нейротрансмиттеры , посредники ) - биологически активные химические вещества, посредством которых осуществляется передача электрического импульса с нервной клетки через синаптическое пространство между нейронами . Нервный импульс, поступающий в пресинаптическое окончание, вызывает освобождение в синаптическую щель медиатора. Молекулы медиаторов реагируют со специфическими рецепторными белками клеточной мембраны, инициируя цепь биохимических реакций, вызывающих изменение трансмембранного тока ионов, что приводит к деполяризации мембраны и возникновению потенциала действия.

Нейромедиаторы являются, как и гормоны, первичными мессенджерами, но их высвобождение и механизм действия в химических синапсах сильно отличается от такового гормонов. В пресинаптической клетке везикулы, содержащие нейромедиатор, высвобождают его локально в очень маленький объём синаптической щели. Высвобожденный нейромедиатор затем диффундирует через щель и связывается с рецепторами на постсинаптической мембране. Диффузия является медленным процессом, но пересечение такой короткой дистанции, которая разделяет пре- и постсинаптические мембраны (0,1 мкм или меньше), происходит достаточно быстро и позволяет осуществлять быструю передачу сигнала между нейронами или между нейроном и мышцей.

Недостаток какого-либо из нейромедиаторов может вызывать разнообразные нарушения, например, различные виды депрессии. Также считается , что формирование зависимости от наркотиков и табака связано с тем, что при употреблении этих веществ задействуются механизмы производства нейромедиатора серотонина, а также других нейромедиаторов, блокирующие (вытесняющие) аналогичные естественные механизмы.

Классификация нейромедиаторов:

Традиционно нейромедиаторы относят к 3 группам: аминокислоты, пептиды, моноамины (в том числе катехоламины)

Аминокислоты :

§ Глутаминовая кислота (глутамат)

Катехоламины :

§ Адреналин

§ Норадреналин

§ Дофамин

Другие моноамины :

§ Серотонин

§ Гистамин

А также :

§ Ацетилхолин

§ Анандамид

§ Аспартат

§ Вазоактивный интестинальный пептид

§ Окситоцин

§ Триптамин

12. Нейроглия, или просто глия - сложный комплекс вспомогательных клеток нервной ткани, общный функциями и, частично, происхождением (исключение - микроглия).Глиальные клетки составляют специфическое микроокружение для нейронов, обеспечивая условия для генерации и передачи нервных импульсов, обеспечивают тканевый гомеостаз и нормальное функц-е клетки, а также осуществляя часть метаболических процессов самого нейрона. Основные функции Нейроглии:

Создание между кровью и нейронами гемато-энцефалического барьера, необходимого как для защиты нейронов, так и главным образом для регуляции поступления веществ в ЦНС и их выведения в кровь;

Обеспечение реактивных свойств нервной ткани (образование рубцов после травмы, участие в реакциях воспаления, в образовании опухолей)

Фагоцитоз (удаление погибших нейронов)

Изоляция синапсов (контактные участки между нейронами)

Источники онтогенетического развития нейроглии:появилась в процессе развития нервной системы из материала нервной трубки.

13. Макроглия (от макро... и греч. glнa - клей), клетки в мозге, заполняющие пространства между нервными клетками - нейронами - и окружающими их капиллярами. М. - основная ткань нейроглии, часто с ней отождествляемая; в отличие от микроглии, имеет общее с нейронами происхождение из нервной трубки . Более крупные клетки М., образующие астроглию и эпендиму, участвуют в деятельности гемато-энцефалического барьера, в реакции нервной ткани на повреждения и инфекции. Более мелкие, так называемые сателлитные клетки нейронов (олигодендроглия), участвуют в образовании миелиновых оболочек отростков нервных клеток - аксонов, обеспечивают нейроны питательными веществами, особенно в период усиленной активности мозга.

14. Эпе́ндима - тонкая эпителиальная мембрана, выстилающая стенки желудочков мозга и спинномозговой канал. Эпендима состоит из эпендимных клеток или эпендимоцитов, относящихся к одному из четырёх типов нейроглии. В эмбриогенезе эпендима образуется из эктодермы.

Важный показатель созревания нервных структур - миелинизация нервных волокон. Она развивается в центробежном направлении от клетки к периферии. Фило- и онтогенетически более старые системы миелинизи-руются раньше. Так, миелинизация в спинном мозге начинается на 4-м месяце внутриутробного развития, и у новорождённого она практически заканчивается. При этом вначале миелинизируются двигательные волокна, а затем - чувствительные. В разных отделах нервной системы миелинизация происходит неодновременно. Сначала миелинизируются волокна, осуществляющие жизненно важные функции (сосания, глотания, дыхания и т.д.). Черепные нервы миелинизируются более активно в течение первых 3-4 мес жизни. Их миелинизация завершается приблизительно к году жизни, за исключением блуждающего нерва. Аксоны пирамидного пути покрываются миелином в основном к 5-6 мес жизни, окончательно - к 4 годам, что приводит к постепенному увеличению объёма движений и их точности.

Развитие условно-рефлекторной деятельности

Один из основных критериев нормального развития мозга новорождённого - состояние основных безусловных рефлексов, так как на их базе формируются условные рефлексы. Кора головного мозга даже у новорождённого подготовлена для формирования условных рефлексов. Вначале они формируются медленно. На 2-3-й неделе жизни вырабатывается условный вестибулярный рефлекс на положение для кормления грудью и покачивание в люльке. Затем идёт быстрое накопление условных рефлексов, образующихся со всех анализаторов и подкрепляющихся пищевой доминантой. Условный рефлекс на звуковой раздражитель в виде защитного (мигательного) движения век образуется к концу 1-го месяца жизни, а пищевой рефлекс на звуковой раздражитель - на 2-м. В это же время формируется и условный рефлекс на свет.

В целом уже на самых ранних этапах развития созревание нервной системы осуществляется по принципу системогенеза с формированием в первую очередь отделов, обеспечивающих жизненно необходимые реакции, отвечающие за первичную адаптацию ребёнка после рождения (пищевые, дыхательные, выделительные, защитные).

При оценке развития и состояния нервной системы учитывают жалобы, результаты расспроса матери, а в старшем возрасте - и ребёнка. Обращают внимание также на крик, двигательную активность, мышечный тонус, безусловные рефлексы, патологические неврологические знаки, психомоторное развитие.

ОСМОТР

При осмотре новорождённого обращают внимание на стигмы дизэмбриогенеза (малые аномалии развития), окружность и форму головы, состояние черепных швов и родничков, наличие кефалогематом, родовой опухоли, кровоизлияний в склеры глаз. У более старших детей оценивают поведение и реакцию на окружающее (безразличие, сонливость, апатия, страх, возбуждение, эйфория), а также настроение, выражение лица, мимику, жесты и т.д.

КРИК

Начало осмотра нередко сопровождается громким криком. Длительность крика здорового ребёнка адекватна действию раздражителя (голод, тактильные или болевые воздействия, мокрые пелёнки и др.). Вскоре после устранения дискомфорта крик прекращается.

ДВИГАТЕЛЬНАЯ АКТИВНОСТЬ

У здорового новорождённого верхние и нижние конечности согнуты и приведены к туловищу, пальцы рук сжаты в кулачки, стопы находятся в умеренном тыльном сгибании по отношению к голеням под углом 90-100°.

Определённую двигательную реакцию у новорождённого вызывают температурные и болевые раздражители. Так, в ответ на воздействие холода двигательная активность уменьшается, появляется сосудистая кожная реакция в виде мраморности кожных покровов, часто возникают плач, тремор конечностей и подбородка. При перегреве нарастает беспорядочность движений. Для болевых раздражений характерна недифференцированная хаотическая общая и местная реакция с движением в противоположном от раздражителя направлении. Мелкоразмашистый тремор рук и нижней челюсти, возникающий при крике или беспокойстве ребёнка в первые 3 дня жизни, обычно не является патологией.

У детей более старшего возраста координацию движений оценивают как при осмотре (излишняя суетливость, двигательное беспокойство, добавочные движения), так и при проведении координационных проб (пяточно-коленной, пальце-носовой).

МЫШЕЧНЫЙ ТОНУС

Для новорождённых характерен физиологический гипертонус мышц-сгибателей как в проксимальных, так и дистальных отделах. Гипертонус мышц-сгибателей рук сохраняется до 2-2,5 мес, мышц-сгибателей ног - до 3-3,5 мес. Оценить мышечный тонус можно с помощью пробы на тракцию: нужно взять ребёнка за запястья и потянуть на себя. При этом руки у него слегка разгибаются в локтевых суставах, затем разгибание прекращается, и ребёнок всем телом подтягивается к рукам. О мышечном тонусе можно судить и по способности Одерживать тело в горизонтальном положении лицом вниз над поверхностью пеленальника (на руке исследующего). Руки ребёнка при этом слегка согнуты, а ноги вытянуты.

РЕФЛЕКСЫ

У детей первых месяцев жизни исследование начинают с выявления врождённых безусловных рефлексов.

БезусловныЕ рефлексЫ

При исследовании безусловных рефлексов учитывают их наличие или отсутствие, симметричность, время появления и угасания, выраженность, а также соответствие возрасту ребёнка.

Выделяют сегментарные и надсегментарные двигательные автоматизмы.

Сегментарные двигательные автоматизмы регулируются сегментами спинного мозга (спинальные автоматизмы) или стволом мозга (оральные автоматизмы).

- Ладонно-ротовой рефлекс вызывается надавливанием большим пальцем на ладонь ребёнка. Ответная реакция - открывание рта и наклон головы.

- Поисковый рефлекс: при поглаживании кожи в области угла рта (не следует прикасаться к губам) происходят опускание губы, отклонение языка и поворот головы в сторону раздражителя. Рефлекс особенно хорошо выражен перед кормлением.

- Сосательный рефлекс: если вложить в рот ребёнка соску, то он начинает совершать сосательные движения. Рефлекс исчезает к концу 1-го года жизни.

- Хватательный рефлекс: схватывание и прочное удержание пальцев, вложенных в ладонь ребёнка. При этом иногда удаётся приподнять ребёнка над опорой.

- Рефлекс Моро можно вызвать различными приёмами: приподняв ребёнка за руки таким образом, чтобы затылок соприкасался с поверхностью стола, быстро опустить его; ударить по поверхности, на которой лежит ребёнок, с двух сторон от головы на расстоянии 15-20 см. В ответ ребёнок вначале отводит руки в стороны и разжимает пальцы (первая фаза), а затем через несколько секунд возвращает руки в исходное положение (вторая фаза); при этом руки как бы охватывают туловище.

- Защитный рефлекс: если новорождённого положить на живот лицом вниз, голова его поворачивается в сторону.

Рефлексы опоры и автоматической ходьбы: ребёнка берут за подмышечные впадины со стороны спины, поддерживая большими пальцами голову. Приподнятый таким образом ребёнок сгибает ноги в тазобедренных и коленных суставах. Поставленный на опору, он опирается на неё полной стопой, «стоит» на полусогнутых ногах, выпрямив туловище. При лёгком наклоне туловища вперёд ребёнок совершает шаговые движения по поверхности, не сопровождая их движением рук

- Рефлекс ползанья: ребёнка кладут на живот таким образом, чтобы голова и туловище были расположены по одной линии. В таком положении ребёнок на несколько мгновений поднимает голову и совершает движения, имитирующие ползание. Если подставить под подошвы ребёнка ладонь, он начинает активно отталкиваться ногами от препятствия, в «ползанье» включаются руки.

- Рефлекс Галанта: при раздражении кожи спины вблизи и вдоль позвоночника ребёнок изгибает туловище дугой, открытой в сторону раздражителя

- Рефлекс Переса: если лежащему на руке исследователя ребёнку провести пальцем от копчика к шее, слегка надавливая на остистые отростки позвонков, он поднимает таз, голову, сгибает руки и ноги Этот рефлекс вызывает у новорождённого отрицательную эмоциональную реакцию.

Надсегментарные позотонические автоматизмы осуществляются центрами продолговатого и среднего мозга и регулируют состояние мышечного тонуса в зависимости от положения тела и головы.

- Лабиринтные установочные рефлексы вызываются изменением положения головы в пространстве. У ребёнка, лежащего на спине, повышен тонус разгибателей шеи, спины, ног. Если его перевернуть на живот, то увеличивается тонус сгибателей этих частей тела.

- Верхний рефлекс Ландау: если ребёнка 4-6 мес держать свободно в воздухе лицом вниз (на руках, расположенных под его животом), он поднимает голову, устанавливает её по средней линии и приподнимает верхнюю часть туловища.

- Нижний рефлекс Ландау: в положении на животе ребёнок разгибает и поднимает ноги. Этот рефлекс формируется к 5-6 мес.

Челябинская государственная медицинская академия

Кафедра гистологии, цитологии и эмбриологии

Лекция

«Нервная ткань. Нервные волокна и нервные окончания»

2003 г.

План

1. Понятие о нервном волокне

2. Характеристика безмиелиновых нервных волокон.

3. Характеристика миелиновых нервных волокон.

4. Периферический нерв: понятие, строение, оболочки, регенерация.

5. Синапсы: понятие, классификации по локализации, эффекту, эволюции, характеру нейротрансмиттера, строению.

6.Нервные окончания: понятия, разновидности, строение чувствительных и двигательных нервных окончаний.

Список слайдов

1.Тельце Фатер- Пачини 488.

2.Миелиновын нервные волокна 446

3.Поперечный срез периферического нерва 777.

4.Нервные синапсы на поверхности мультиполярной нервной клетки 789.

5.Тельце Фатер- Пачини и тельце Мейснера 784.

6.Тельце Мейснера 491.

7.Тельце Мейснера 786.

8.Свободные нервные окончания в эпителии

9.Свободные нервные окончания в эпидермисе 782.

10.Двигательные нервные окончания в скелетной мышце 785.

11.Синапс (схема) 778.

12.Ультраструктура синапсов 788

13.Миелиновые нервные волокна 780

14.Безмиелиновые нервные волокна 444.

15.Миелинизация нервных волокон 793.

16.Нервный пучок 462.

17.Нервнол-мышечное окончание 487.

18.Инкапсулированные нервные окончания 450.

Нейроны, лежащие в центральной нервной системе и в ганглиях, связаны с периферией при помощи своих отростков: дендритов и аксонов. Выходя на периферию, отростки нервных клеток покрываются оболочками, в результате чего образуются нервные волокна. Каждое нервное волокно содержит, таким образом, отросток нервной клетки (аксон или дендрит)- осевой цилиндр и оболочку, построенную из клеток глии- глиальную оболочку. По строению глиальной оболочки различают миелиновые (мякотные) нервные волокна и безмиелиновые (безмякотные) нервные волокна.

Безмиелиновые (безмякотные) нервные волокна преимущественно встречаются в вегетативной нервной системе. Вырастающие отростки нервных клеток покрываются клетками олигодендроглии, которые принято называть в периферической нервной системе шванновскими клетками или нейролеммоцитами. Эти клетки подвижны и могут даже перекочевывать с одного отростка нервной клетки на другой. Они, распластываясь на поверхности отростка нервной клетки, постепенно скользят по нему. Было установлено, что леммоцит, уплощаясь, постепенно охватывает отросток нервной клетки и смыкается. Место контакта краев клетки называется мезаксоном, т.е. мезаксон представляет собой место соединения двух цитолемм. Иногда шванновская клетка охватывает несколько отростков нервных клеток, в результате образуются нервные волокна кабельного типа. Таким образом, безмиелиновые нервные волокна состоят из осевого цилиндра и глиальной или шванновской непрерывной оболочки. При световой микроскопии безмиелиновые нервные волокна имеют вид тонких тяжей и многочисленных просвечивающихся ядер. Границы шванновских клеток очень тонкие, поэтому они не видны. Рост аксонов происходит поградиенту концентрации специфических химических факторов, вырабатываемых в мишенях (например, фактор роста нервов; ацетилхолин определяет направление роста аксона). Кроме того, возможно, что в пространстве роста аксона распределены молекулярные метки, которые считываются друг за другом растущим отростком, в результате чего он растет в нужном направлении.

Скорость проведения нервного импульса по безмиелиновым нервным волокнам до 5 метров в секунду.

Миелиновые нервные волокна встречаются преимущественно в центральной нервной системе. Первоначально миелиновые волокна образуются точно также как и безмиелиновых волокон. Однако после образования мезаксона развитие безмиелиновых нервных волокон завершается. При образовании миелинового нервного волокна после образования мезаксона клетка начинает вращаться вокруг отростка нервной клетки, в результате чего мезаксон наматывается на отросток, а цитоплазма шванновской клетки оттесняется на периферию. За счет намоток мезаксона образуется дополнительная оболочка нервного волокна, которая получила название миелиновая оболочка. Слои поверхностной мембраны шванновской клетки содержат белки и липоиды, поэтому при многократном наслаивании мезаксона образуется темная миелиновая оболочка, состоящая из холестерина, нейтральных жиров и фосфатидов. Таким образом, миелиновое нервное волокно состоит из осевого цилиндра, окруженного миелиновой и шванновской оболочками. При световой микроскопии на срезах, обработанных осмием, видно, что миелиновое нервное волокно состоит из темной прерывистой миелиновой оболочки и очень тонкой непрерывной шванновской оболочки. Участки, где миелиновая оболочка прерывается, нервное волокно истончается. Эти участки получили название перехватов Ранвье. Таким образом на месте перехвата Ранвье осевой цилиндр покрыт только неврилеммой (шванновской оболочкой). Расстояние между двумя перехватами Ранвье соответствует границам одной шванновской клетки, содержащей одно или два ядра. В области перехвата Ранвье шванновские клетки дают многочисленные пальцевидные выросты, которые беспорядочно переплетаются. Плазматическая мембрана осевого цилиндра в области перехвата Ранвье отличается высокой концентрацией ионных каналов, в особенности натриевых, что обеспечивает генерацию и проведение потенциала действия по длине осевого цилиндра. Миелиновая оболочка неоднородна: в ее толще обнаруживаются насечки Шмидта-Лантермана, которые видны в виде светлых полосок, пересекающих миелиновую оболочку в косом направлении. При электронной микроскопии насечки видны в виде участков, где мембраны имеют неправильный ход или складки. Значение этого явления не установлено. Скорость проведения нервного импульса по миелиновым волокнам достигает 120 метров в секунду, благодаря скачкообразному проведению импульса. Миелиновая оболочка изолирует аксон от индуцирующего влияния со стороны соседних нервных волокон.

Развитие миелиновых волокон в разных участках происходит в разное время. Было показано, что филогенетически более старые системы проводников одеваются миелином раньше. Процесс миелинизации нервных волокон не заканчивается к рождению и продолжается первые годы жизни ребенка. Так, процесс миелинизации черепно-мозговых нервных волокон заканчивается только к 1-1,5 годам, а миелинизация спинальных нервов может растягиваться до 5 лет. Развитие миелиновых оболочек особенно усиливается у ребенка с 8 месяцев жизни в период начала ходьбы. При этом, миелинизация двигательных нервных волокон идет быстрее, чем чувствительных.

Нервные волокна на периферии редко идут одиночно, изолированно. Чаще они лежат пучками, образуя нервы.

Периферический нерв состоит как из миелиновых, так и из безмиелиновых нервных волокон. При этом, те или иные нервные волокна могут преобладать в периферическом нерве. В составе периферического нерва каждое нервное волокно окружено очень тонкой прослойкой нежной соединительной ткани, содержащей кровеносные сосуды. Это эндоневрий. Кровеносные сосуды эндоневрия разветвляются на многочисленные капилляры, которые обеспечивают питание нервных волокон. Отдельные пучки нервных волокон в составе периферического нерва разграничены более выраженными прослойками рыхлой соединительной ткани, которые получили название периневрий. Периневрий с внутренней поверхности выстлан несколькими слоями (от 3 до 10) уплощенных эпителиальных клеток, способных к фагоцитозу. Установлено, что они могут фагоцитировать лепрозные бактерии. По мере истончения нервов число слоев эпителиальных клеток уменьшается, вплоть до одного слоя. В соединительной ткани периневрия содержатся фибробласты, тучные клетки. На обеих поверхностях каждого эпителиального слоя располагается базальная мембрана. Последний эпителиальный слой исчезает вместе со шванновскими клетками при образовании терминалей. Шванновские и эпителиальные клетки периневрия имеют общую ультраструктурную характеристику, но обладают разными антигенными свойствами. Периневрий выполняет барьерную функцию, так как обладает избирательной проницаемостью для различных красителей, коллоидов, протеинов, пероксидазы хрена, электролитов, то есть образует гемато-нейральный барьер, который функционально и структурно соответствует гемато-энцефалическому барьеру центральной нервной системы. Периневрий принимает активное участие в процессах регенерации нервных волокон. Так, установлено, что при повреждении периневрия регенерация нервного волокна не происходит.

С поверхности периферический нерв покрыт эпиневрием, состоящим из коллагеновых и даже эластических волокон. Здесь проходят кровеносные сосуды и залегают отдельные скопления жировых клеток.

Регенерация нервных волокон. Развивающиеся при травме деструктивные и дегенеративные субклеточные процессы, стимулируют одновременно и процессы восстановления.

При повреждении мякотных нервных волокон развивается валлеровская дегенерация, которая наступает уже через 3-7 часов после травмы. Она характеризуется появлением неровности контуров нервного волокна и распада и расслоение миелина на отдельные фрагменты и ее вакуолизация. Миелин распадается до нейтрального жира. Распад миелиновой оболочки происходит до нейтральных жиров. Распад миелина идет параллельно с разрушением (некрозом) осевых цилиндров. Продукты их распада в течение нескольких месяцев резорбируются шванновскими клетками и макрофагами эндоневрия и периневрия (поглощаются, перевариваются и рассасываются). В перикарионе травмированных нейронов наблюдается уменьшение числа канальцев гранулярной эндоплазматической сети (тигролиз). В последующем на месте дегенерировавших участков миелиновых и безмиелиновых нервных волокон остаются лишь тяжи шванновских клеток (бюнгнеровские ленты), которые интенсивно пролиферируют прорастают на встречу друг другу из обоих концов нерва. Одновременно идет разрастание соединительной ткани и кровеносных сосудов. Уже через 3 часа после травмы на концах поврежденных участков (центрального и периферического) образуются утолщения- натеки аксоплазмы, получившие название колбы роста (концевые колбы). Благодаря способности тела нервной клетки продуцировать аксоплазму, от колб роста начинают расти многочисленные безмиелиновые коллатерали, на концах которых формируются колбы, натеки, спирали, намотки, шары. Образовавшиеся коллатерали постепенно продвигаются к перерезанному концу аксона в области травмированной зоны. При этом, часть коллатералей дегенерирует, а остальные продолжают свой рост к периферическому концу нерва. Установлено, что успешная регенерация происходит в том случае, если в периферический конец нерва прорастает достаточное количество аксонов для восстановления нервных связей с рабочими органами. Одновременно происходит интенсивная пролиферация шванновских клеток, что приводит в конечном итоге к образованию мощных скоплений глиальных клеток. Коллатерали прорастают пласт шванновских клеток и покрываются ими, приобретая при этом глиальную оболочку.

Скорость регенерации аксонов периферических нервных волокон происходит у человека 0,1-1,5 мм в сутки (редко до 5 мм в сутки). У детей регенерация идет значительно быстрее. Регенерирующие безмиелиновые нервные волокна через 20-30 дней после травмы покрываются миелиновой оболочкой. Однако обычной толщины она достигает только через 6-8 месяцев после травмы. Степень реиннервации нервного ствола определяется по количеству прорастающих в него нервных волокон. Рост аксонов происходит по градиенту концентрации специфических химических факторов, вырабатываемых в мишенях, например, фактор роста нервов. Большое значение для восстановления аксонов имеют сохранившиеся шванновские клетки, которые маркируют направление роста отростка. Растущий отросток двигается по поверхности этих клеток между плазмолеммой и базальной мембраной. Выделяемые шванновскими клетками нейротрофические факторы, в том числе фактор нервов, поглощаются аксоном и транспортируются в перикарион, где стимулируют синтез белка. Предполагают, что в пространстве роста аксона распределены молекулярные метки. Растущий отросток считывает одну за другой метки и растет в нужном направлении. Если аксон не находит путь роста по шванновским клеткам, то наблюдается хаотичное разрастание его разветвлений.

Основным препятствием для регенерации аксонов поврежденного нерва служит грубый соединительнотканный рубец, образующийся в зоне травмы. В связи с этим, чтобы избежать различного рода осложнений, возникающих в месте травмы, нарушения кровообращения, улучшить регенерацию используются оптимальные методы обработки раны, современные виды шовного материала для соединения концов нерва. Так, предложен полимерный клей, который образовывает вокруг эпиневрия своеобразную муфту, что обусловливает развитие рыхлого соединительнотканного рубца, который в меньшей степени препятствует регенерации. Кроме того, установлено, что твердая мозговая оболочка обладает очень низкой антигенной активностью и быстро рассасывается в тканях, вызывая минимальные воспалительные изменения. В связи с этим, предложено использование твердой мозговой оболочки для изоляции места травмы периферических нервов от окружающих тканей и нитей из нее в качестве шовного материала, что существенно улучшило лечение больных. Кроме того, для ускорения регенерации используются и другие методы. Например, концы поврежденного нерва помещают в трубки, в которые заливают аутогенную сыворотку, благодаря чему снижается инвазия фибробластов. «Метод естественного резерва длины» позволяет без вреда вытянуть поврежденный нерв, так как он располагается зигзагообразно. Применяется аутопластика, то есть пересадка в область травмы отрезка другого нерва. Иногда используют культуру шванновских клеток, которую помещают в область травмы.

Отростки нервных клеток, аксоны или дендриты, заканчиваются либо в тканях, где образуют нервные окончания, либо контактируют с другими клетками, образуя синапсы.

Синапсы представляют собой сложные структуры, формирующиеся в области контакта двух клеток, специализирующиеся на одностороннем проведении нервного импульса.

Понятие синапса было введено на основании физиологических наблюдений Шеррингтоном в 1897 году. Окончательное подтверждение их наличия было осуществлено только в середине 20 столетия с помощью электронного микроскопа. Тем самым была завершена многолетняя дискуссия между сторонниками «нейронной теории» строения нервной системы, согласно которой, нервная клетка считалась основной структурной и функциональной единицей, и сторонниками теории «контуитета», которые провозглашали постулат о непрерывном соединении нейрофибрилл между отростками клеток в единую сеть. Синапсы обладают высокой пластичностью. В головном мозге человека насчитывается 10 химических синапсов.

По характеру контакта различают несколько видов синапсов: аксо-соматические, аксо-дендритические, аксо-аксональные, дендро-дендритические, дендро-соматические (последние три вида синапсов являются тормозными).

По локализации различают центральные синапсы, расположенные в центральной нервной системе, и периферические, лежащие в периферической нервной системе, в том числе в вегетативных ганглиях.

По развитию в онтогенезе различают статические синапсы, расположенные в рефлекторной дуге безусловных рефлексов, и динамические, характерные для рефлекторных дуг условных рефлексов.

По конечному эффекту различают возбуждающие синапсы и тормозные синапсы.

По механизму передачи нервного импульса различают электрические синапсы, химические синапсы и смешанные синапсы. Электрический синапс отличается прежде всего своей симметричностью и тесными контактами обеих мембран. Суженная синаптическая щель в месте электрического контакта перекрыта тонкими канальцами, через которые осуществляется быстрое продвижение ионов между нервными клетками. Таким образом, электрический синапс представляет собой щелевидный контакт между двумя клетками с ионными каналами. Аналогом электрического синапса у человека являются щелевидные контакты в сердечной мышечной ткани. Все синапсы у человека являются практически химическими, так как используют для передачи нервного импульса с одной клетки на другую химическое соединение: нейромедиатор или нейротрансмиттер.

По характеру нейротрансмиттера различают синапсы: холинергические, использующие в качестве нейромедиатора ацетилхолин, адренергические (норадреналин), дофаминергические (дофамин), ГАМК-ергические (ГАМК), пептидергические (пептиды), пуринергические (АТФ). Например, при шизофрении увеличивается число синапсов, использующих для передачи импульса дофамин. В качестве нейротрансмиттеров могут использоваться глутамат, гистамин, серотонин, глицин. В настоящее время принято считать, что каждый нейрон продуцирует более одного нейротрансмиттера.

В области контакта плазмолемма аксона утолщается и называется пресинаптической мембраной. В аксоплазме содержатся многочисленные митохондрии и синаптические пузырьки, содержащие нейротрансмиттер- ацетилхолин (или другой медиатор). Плазмолемма другой клетки в области контакта также утолщается и называется постсинаптической мембраной. Узкое щелевидное пространство между этими мембранами представляет собой синаптическую щель. В пресинаптической мембране имеются многочисленные кальциевые каналы, которые открываются при прохождении волны деполяризации. Постсинаптическая мембрана содержит холинорецепторы, проявляюшие высокую чувствительность к ацетилхолину. При деполяризации пресинаптической мембраны кальциевые каналы открываются и ионы кальция выходят, запуская выход в синаптическую щель ацетилхолина. В каждом синаптическом пузырьке содержится несколько тысяч молекул нейромедиатора, что составляет квант. Синаптические пузырьки могут сливаться с постсинаптической мембраной только при повышении концентрации ионов кальция. В настоящее время синтезирован целый ряд лекарственных препаратов, блокирующих кальциевые каналы, которые широко используются в кардиологии при лечении некоторых видов аритмий. Квант ацетилхолина достигает поверхности постсинаптической мембраны и взаимодействует с холинорецепторами. В результате взаимодействия ацетилхолина с холинорецептором рецепторный белок меняет свою конфигурацию, что приводит к повышению проницаемости постсинаптической мембраны для ионов. Это обусловливает перераспределение ионов калия и натрия по обе стороны мембраны и возникновение волны деполяризации.

Устранение ацетилхолина в дальнейшем происходит за счет ацетилхолинэстеразы, локализованной в синапсе. Ряд химических соединений, в том числе фосфорорганические соединения, токсины бледной поганки ингибируют холинэстеразу, что приводит к высокой концентрации ацетилхолина в синаптической щели, поэтому в этих случаях вводят антидот- атропин, который блокирует холинорецепторы.

Нервные волокна в тканях заканчиваются нервными окончаниями, которые представляют собой сложные структуры на концах дендритов и аксонов в тканях. Все нервные окончания подразделяются на два вида: чувствительные и двигательные.

Чувствительные нервные окончания или рецепторы образованы дендритами нервных клеток. По локализации различают экстерорецепторы, воспринимающие информацию от покровных тканей (например, рецепторы кожи, слизистых оболочек) и интерорецепторы, воспринимающие информацию от внутренних органов (например, рецепторы сосудов). По характеру воспринимающего раздражения различают терморецепторы, хеморецепторы, механорецепторы, барорецепторы, нацирецепторы и др.

По строению рецепторы подразделяются на свободные и несвободные (классификация Лаврентьева). Свободные рецепторы представляют собой структуры в образовании которых участвует только осевой цилиндр, то есть они свободны от клеток глии (если быть точным, то шванновские клетки присутствуют в очень небольшом количестве). При этом ветвления осевого цилиндра лежат свободно среди клеток эпителия. Свободные рецепторы, как правило, воспринимают болевые ощущения.

Несвободные рецепторы образуются ветвлением осевого цилиндра, которые сопровождаются клетками глии, то есть они не свободны от клеток глии. Несвободные рецепторы подразделяются на инкапсулированные и рецепторы с дополнительными структурами.

Инкапсулированные нервные окончания характеризуются наличием сложных оболочек. К инкапсулированным нервным окончаниям относятся пластинчатые тельца (тельца Фатер-Пачини) и осязательные тельца Мейснера. Тельца Фатер-Пачини характерны для соединительно ткани, по характеру воспринимаемого раздражения являются барорецепторами. При образовании этого нервного окончания миелиновое нервное волокно теряет миелиновую оболочку, оставшийся осевой цилиндр разветвляется, его ветвления сопровождаются небольшим количеством глиальных клеток. С поверхности тельце Фатер-Пачини окружено соединительнотканной касулой, состоящей из многочисленных пластинок, наслаивающихся друг на друга. Каждая пластинка состоит из тонких коллагеновых волокон, склееных аморфным веществом, и фибробластов, лежащих между ними.

К инкапсулированным нервным окончаниям относятся также осязательные тельца Мейснера, находящиеся в составе сосочков кожи. Миелиновое нервное волокно, подойдя к сосочку кожи, теряет миелиновую оболочку и обильно разветвляется между многочисленными клетками олигодендроглии. С поверхности тельце покрыто тонкой соединительнотканной капсулой, состоящей в основном из тонких коллагеновых волокон.

К рецепторам с дополнительными структурами относятся диски Меркеля, которые находятся в кожном эпителии. Они представлены клетками Меркеля и контактирующими с ними дендритами нервных клеток. Клетка Меркеля представляет собой видоизмененную эпителиальную клетку(светлая цитоплазма, уплощенное ядро, многочисленные осмиофильные гранулы), лежащую в составе эпителия. Вокруг клетки Меркеля располагается спирально закрученные дендритные веточки. Диски Меркеля обеспечивают высокую тактильную чувствительность.

В скелетной мышечной ткани чувствительные нервные окончания представлены нервно-мышечными веретенами, регистрирующие изменения длины мышечных волокон и скорость их изменений. Веретено состоит из нескольких (до 10-12) тонких и коротких поперечнополосатых мышечных волокон, окруженных тонкой растяжимой капсулой. Это интрафузальные волокна. Волокна, лежащие за пределами капсулы называются экстрафузальными. Актиновые и миозиновые миофибриллы содержатся только на концах интрафузальных волокон, поэтому сокращаться могут только концы интрафузальных мышечных волокон. При этом центральная часть интрафузальных мышечных волокон является несокращающейся. Она является рецепторной. Различают два вида интрафузальных мышечных волокон: волокна с ядерной цепочкой и с ядерной сумкой. Волокон с ядерной сумкой в каждом веретене от 1 до 3. Центральная их часть расширена и содержит много ядер. Волокон с ядерной цепочкой может быть в веретене от 3 до 7. Эти волокна в два раза тоньше и более короткие, а ядра в них расположены цепочкой по всей рецепторной части. К интрафузальным мышечным волокнам подходят афферентные волокна двух типов. Одни из них образуют окончания в виде спирали, оплетающие интрафузальные волокна. Другие образуют гроздьевидные окончания, которые лежат по обе стороны от спиральных окончаний. Когда мышца расслабляется или сокращается происходит изменение длины интрафузальных волокон, что регистрируется рецепторами. Спиральные окончания регистрируют изменение длины мышечного волокна и скорость этого изменения, а гроздьевидные окончания регистрируют только изменение длины. Эфферентная иннервация представлена аксомышечным синапсом на концах мышечного волокна. Вызывая сокращение концевых участков интрафузального мышечного волокна, они обусловливают растяжение его центральной рецепторной части.

Двигательные нервные окончания образованы концевыми отделами аксонов нервных клеток спинного мозга. При световой микроскопии двигательные нервные окончания (эффекторы) имеют вид кустиков или птичьих лапок с пуговчатыми утолщениями на концах. Важно, что двигательные нервные окончания кроме передачи нервного импульса они оказывают трофическое действие, регулируя метаболизм клеток и тканей. При электронной микроскопии эффекторы построены по типу синапса.

Двигательные окончания в скелетных мышцах называются моторными бляшками. Моторная бляшка состоит из из концевого ветвления аксона и подошвы. Миелиновое нервное волокно, подходя к мышечному волокну, теряет миелиновую оболочку и прогибает сарколемму в виде многочисленных пальцевидных выростов. В сарколемме, которая образует впячивания, возникают еще более мелкие углубления. Неврилемма аксона срастается с сарколеммой и возникает конусообразное пространство, заполненное цитоплазмой леммоцитов, здесь же лежат и ядра. В этом пространстве ветвится осевой цилиндр. Пресинаптическая оболочка представлена в двигательной бляшке аксолеммой. Постсинаптической мембраной является сарколемма мышечного волокна. Между этими мембранами формируется щелевидное пространство- синаптическая щель. В нейроплазме аксона концентрируется много митохондрий и мелкие синаптические пузырьки. В саркоплазме мышечного волокна в области бляшки также наблюдается скопление ядер.

Особенности нервных волокон и нервных окончаний в детском организме.

Нервные волокна. В период новорожденности нервные волокна более короткие и более тонкие, чем у взрослого человека. Возрастными особенностями строения периферических нервных волокон является этапный характер их миелинизации. Миелинизация нервных волокон начинается еще во внутриутробном периоде. Первыми миелинизируются волокна филогенетически более древних жизненно важных органов и систем. Однако к рождению ребенка миелинизация не заканчивается. К 9 годам миелинизация нервных волокон в периферических нервах близка к завершению. Миелинизация черепномозговых нервов заканчивается к 1,5 годам, а спинномозговых только к 5 годам. Миелинизация двигательных нервных волокон идет быстрее, чем чувствительных. Миелинизация волокна происходит в центробежном направлении, то есть от клетки к терминалям. Расстояние между перехватами Ранвье у ребенка значительно меньше, чем у взрослого. С возрастом толщина миелиновой оболочки увеличивается. До 3-х лет у ребенка прослойки соединительной ткани более выражены и богаты клеточными элементами.

МИЕЛИНИЗАЦИЯ (греч. myelos костный мозг) - процесс формирования миелиновых оболочек вокруг отростков нервных клеток в период их созревания как в онтогенезе, так и при регенерации.

Миелиновые оболочки играют роль изолятора осевого цилиндра. Скорость проведения по миелинизированным волокнам выше, чем в немиелинизированных волокнах аналогичного диаметра.

Первые признаки М. нервных волокон у человека появляются в спинном мозге в пренатальном онтогенезе на 5-6-м месяце. Затем число миелинизированных волокон медленно увеличивается, при этом М. в различных функциональных системах происходит не одновременно, а в определенной последовательности в соответствии с временем начала функционирования этих систем. К моменту рождения заметное число миелинизированных волокон обнаруживается в спинном мозге и стволе мозга, однако основные проводящие пути миелинизируются в постнатальном онтогенезе, у детей в возрасте 1-2 лет. В частности, пирамидный путь миелинизируется в основном после рождения. Заканчивается М. проводящих путей к 7- 10-летнему возрасту. Наиболее поздно миелинизируются волокна ассоциативных путей переднего мозга; в коре больших полушарий новорожденного встречаются лишь единичные миелинизированные волокна. Завершение М. указывает на функциональную зрелость той или иной системы мозга.

Обычно миелиновыми оболочками окружены аксоны, реже - дендриты (миелиновые оболочки вокруг тел нервных клеток встречаются как исключение). При светооптическом исследовании миелиновые оболочки выявляются как гомогенные трубочки вокруг аксона, при электронно-микроскопическом - как периодически чередующиеся электронно-плотные линии толщиной 2,5-3 нм, отстоящие друг от друга на расстоянии ок. 9,0 нм (рис. 1).

Миелиновые оболочки - упорядоченная система слоев липопротеидов, каждый из к-рых соответствует по строению клеточной мембране.

В периферических нервах миелиновая оболочка образуется мембранами леммоцитов, а в ц. н. с.- мембранами олигодендроглиоцитов. Миелиновая оболочка состоит из отдельных сегментов, к-рые разделены перемычками, так наз. перехватами узлов (перехваты Ранвье). Механизмы образования миелиновой оболочки заключаются в следующем. Миелинизирующийся аксон сначала погружается в продольное углубление на поверхности леммоцита (или олигодендроглиоцита). По мере погружения аксона в аксоплазму леммоцита края бороздки, в к-рой он располагается, сближаются, а затем смыкаются, образуя мезаксон (рис. 2). Полагают, что формирование слоев миелиновой оболочки происходит за счет спирального вращения аксона вокруг своей оси или вращения леммоцита вокруг аксона.

В ц. н. с. основным механизмом образования миелиновой оболочки является увеличение длины мембран при их «скольжении» относительно друг друга. Первые слои расположены сравнительно рыхло и содержат значительное количество цитоплазмы леммоцитов (или олигодендроглиоцитов). По мере формирования миелиновой оболочки количество аксоплазмы леммоцита внутри слоев миелиновой оболочки уменьшается и в конце концов исчезает полностью, в результате чего аксоплазматические поверхности мембран смежных слоев смыкаются и образуется основная электронно-плотная линия миелиновой оболочки. Слившиеся при формировании мезаксона наружные отделы клеточных мембран леммоцита образуют более тонкую и менее выраженную промежуточную линию миелиновой оболочки. После того как сформируется миелиновая оболочка, в ней можно выделить наружный мезаксон, т. е. слившиеся мембраны леммоцита, переходящие в последний слой миелиновой оболочки, и внутренний мезаксон, т. е. слившиеся мембраны леммоцита, непосредственно окружающие аксон и переходящие в первый слой миелиновой оболочки. Дальнейшее развитие или созревание сформированной миелиновой оболочки заключается в увеличении ее толщины и количества слоев миелина.

Библиография: Боровягин В. Л. К вопросу о миелинизации периферической нервной системы амфибий, Докл. АН СССР, т. 133, № 1, с. 214, 1960; Марков Д. А. и Пашковская М. И. Электронномикроскопические исследования при де^ миелинизирующих заболеваниях нервной системы, Минск, 1979; Bunge М. В., Bunge R. Р. a. R i s H. Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord, J. biophys, biochem. Cytol., v. 10, p. 67, 1961; G e r e n B. B. The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos, Exp. Cell. Res., v. 7, p. 558, 1954.

H. H. Боголепов.