Формула распределения максвелла молекул по скоростям. Закон Максвелла о распределении молекул по скоростям. Опыт Штерна. Барометрическая формула. Распределение Больцмана. Опытное определение постоянной Авогадро

§4 Закон Максвелла о распределении по скоростям и энергиям

Закон распределения молекул идеального газа по скоростям, теоретически полученный Максвеллом в 1860 г. определяет, какое число dN молекул однородного (p = const) одноатомного идеального газа из общего числа N его молекул в единице объёма имеет при данной температуре Т скорости, заключенные в интервале от v до v + dv .

Для вывода функции распределения молекул по скоростям f ( v ) равной отношению числа молекул dN , скорости которых лежат в интервале v ÷v + dv к общему числу молекул N и величине интервала dv

Максвелл использовал два предложения:

а) все направления в пространстве равноправны и поэтому любое направление движения частицы, т.е. любое направление скорости одинаково вероятно. Это свойство иногда называют свойством изотропности функции распределения.

б) движение по трем взаимно перпендикулярным осям независимы т.е. х-компоненты скорости не зависит от того каково значения ее компонент или . И тогда вывод f ( v ) делается сначала для одной компоненты , а затем обобщается на все координаты скорости.

Считается также, что газ состоит из очень большого числа N тождественных молекул находящихся в состоянии беспорядочного теплового движения при одинаковой температуре. Силовые поля на газ не действуют.

Функции f ( v ) определяет относительное число молекул dN ( v )/ N скорости которых лежат в интервале от v до v + dv (например: газ имеет N = 10 6 молекул, при этом dN = 100

молекул имеют скорости от v =100 до v + dv =101 м/с (dv = 1 м ) тогда .

Используя методы теории вероятностей, Максвелл нашел функцию f ( v ) - закон распределения молекул идеального газа по скоростям:

f ( v ) зависит от рода газа (от массы молекулы) и от параметра состояния (от температуры Т )

f ( v ) зависит от отношения кинетической энергии молекулы, отвечающей рассматриваемой скорости к величине kT характеризующей среднюю тепловую энергию молекул газа.

При малых v и функция f ( v ) изменяется практически по параболе . П ри возрастании v множитель уменьшается быстрее, чем растет множитель , т.е. имеется max функции f ( v ) . Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется наиболее вероятной скоростью найдем из условия

Следовательно, с ростом температуры наиболее вероятная скорость растёт, но площадь S , ограниченная кривой функции распределения остаётся неизменной, так как из условия нормировки (так как вероятность достоверного события равна 1), поэтому при повышении температуры кривая распределения f ( v ) будет растягиваться и понижаться.

В статистической физике среднее значение какой-либо величины определяется как интеграл от 0 до бесконечности произведения величины на плотность вероятности этой величины (статистический вес)

< X >=

Тогда средняя арифметическая скорость молекул

И интегрируя по частям получили

Скорости, характеризующие состояние газа

§5 Экспериментальная проверка закона распределения Максвелла - опыт Штерна

Вдоль оси внутреннего цилиндра с целью натянута платиновая проволока, покрытая слоем серебра, которая нагревается током. При нагревании серебро испаряется, атомы серебра вылетают через щель и попадают на внутреннюю поверхность второго цилиндра. Если оба цилиндра неподвижны, то все атомы независимо от их скорости попадают в одно и то же место В. При вращении цилиндров с угловой скоростью ω атома серебра попадут в точки В’, B ’’ и так далее. По величине ω, расстоянию? и смещению х = ВВ’ можно вычислить скорость атомов, попавших в точку В’.

Изображение щели получается размытым. Исследуя толщину осаждённого слоя, можно оценить распределение молекул по скоростям, которое соответствует максвелловскому распределению.

§6 Барометрическая формула

Распределение Больцмана

До сих пор рассматривалось поведение идеального газа, не подверженного воздействию внешних силовых полей. Из опыта хорошо известно, что при действии внешних сил равномерное распространение частиц в пространстве может нарушиться. Так под действием силы тяжести молекулы стремятся опуститься на дно сосуда. Интенсивное тепловое движение препятствует осаждению, и молекулы распространяются так, что их концентрация постепенно уменьшается по мере увеличения высоты.

Выведем закон изменения давления с высотой предполагая, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова. Если атмосферное давление на высоте h равно p , то на высоте h + dh оно равно p + dp (при dh > 0, dp < 0, так как p уменьшается с увеличением h ).

Разность давления на высотах h и h + dh мы можем определить как вес молекул воздуха заключённого в объёме с площадью основания равного 1 и высотой dh .

плотность на высоте h , и так как , то = const .

Тогда

Из уравнения Менделеева-Клапейрона.

Тогда

Или

С изменением высоты от h 1 до h 2 давление изменяется от p 1 до p 2

Пропотенцируем данное выражение (

Барометрическая формула, показывает, как меняется давление с высотой

При

Тогда

Т.к.

то

n h ,

n 0 концентрация молекул на высоте h =0.

Т .к

то

потенциальная энергия молекул в поле тяготения

распределение Больцмана во внешнем потенциальном поле. Из него следует, что при T = const плотность газа больше там, где меньше потенциальная энергия молекул.

§7 Опытное определение постоянной Авогадро

Ж. Перрен (французкий ученый) в 1909 г. исследовал поведение броуновских частиц в эмульсии гуммигута (сок деревьев) с размерами осматривались с помощью микроскопа, который имел глубину поля - 1мкм. Перемещая микроскоп в вертикальном направлении можно было исследовать распределение броуновских частиц по высоте.

Применив к ним распределение Больцмана можно записать

n = - где m -масса частицы

m - масса вытесненной жидкости:

Если n 1 и n 2 концентрация частиц на уровнях h 1 и h 2 , а k = R / N A , то

N A =

Значение хорошо согласуется со справочным значением , что подтверждает больцмановское распределение частиц

Молекулы любого газа находятся в вечном хаотическом движении. Скорости молекул могут принимать самые различные значения. Молекулы сталкиваются, в результате столкновений происходит изменение скоростей молекул. В каждый данный момент времени скорость каждой отдельной молекулы является случайной и по величине и по направлению.

Но, если газ предоставить самому себе, то различные скорости теплового движения распределяются между молекулами данной массы газа при данной температуре по вполне определённому закону, т.е. существует распределение молекул по скоростям.

Закон распределения молекул по скоростям был теоретически выведен Максвеллом. Закон Максвелла выражается следующей формулой:

где – число молекул, скорости которых лежат в интервале ; – общее число молекул данной массы газа; – основание натурального логарифма; – заданное значение скорости из интервала ; – наиболее вероятная скорость молекул газа при данной температуре.

Наиболее вероятной скоростью называется скорость, близкой к которой обладает наибольшее число молекул данной массы газа. Значение зависит от температуры газа.

Формула (10.6) даёт число молекул, скорости которых лежат в данном интервале скоростей независимо от направления скоростей.

Если поставить более частный вопрос, а именно чему равно число молекул в газе, составляющие скоростей которых лежат в интервале между и , и , и , то

или , (10.8)

где – кинетическая энергия молекулы газа; – масса молекулы; – постоянная Больцмана; – абсолютная температура газа. Формулы (10.7) и (10.8) – тоже формулы распределения Максвелла . Кривая распределения молекул по скоростям, соответствующая закону распределения (10.6), изображена на рис. 10.1. По оси абсцисс откладываются значения скорости, которые может принимать отдельная молекула газа.

Максимум кривой соответствует наиболее вероятной скорости . Кривая асимметрична относительно , т.к. в газе имеется сравнительно небольшое число молекул с очень большими скоростями.

Рассмотрим какой-нибудь интервал , (рис. 10.1). Если мало, то площадь заштрихованной полоски близка к площади прямоугольника:

т.е. площадь заштрихованной полоски представляет собою число молекул, скорости которых лежат в интервале , . А площадь под всей кривой пропорциональна общему числу молекул данной массы газа.

Найдём, при каком значении кривая будет иметь максимум. Максимум находим по обычным правилам математики, приравнивая к нулю первую производную по :

Так как , то .

Взяв производную, получим, что , т.е. максимум кривой соответствует наиболее вероятной скорости .

Максвеллом были теоретически найдены формулы, по которым можно насчитывать и среднюю арифметическую скорость . Перечислим скорости, которыми можно характеризовать тепловое движение молекул газа.

1. Наиболее вероятная скорость . (10.9)

2. Средняя квадратичная скорость :

3. Средняя арифметическая скорость . (10.11)

Все скорости прямо пропорциональны и обратно пропорциональны , где – масса моля газа.

На рис. 10.1 график I построен для температуры , а график II – для температуры . Видно, что с повышением температуры максимум кривой сдвигается вправо, т.к. с повышением температуры возрастают скорости молекул. Быстрых молекул стало больше, правая ветвь кривой приподнимается, медленных молекул стало меньше, левая ветвь идёт круче. А вся кривая понижается, т.к. площадь под кривой должна оставаться той же самой, потому что общее число молекул газа осталось тем же самым и, конечно, не могло измениться при нагревании газа.

Закон Максвелла является статистическим законом , т.е. законом, справедливым для очень большого числа молекул.

Кроме того, закон Максвелла не учитывает внешнее воздействие на газ, т.е. нет никаких силовых полей, действующих на газ.

10.4. Идеальный газ во внешнем поле.
Барометроическая формула. Распределение Больцмана

Рассмотрим вертикальный столб воздуха у поверхности Земли (рис. 10.2). Если высота столба сравнительно невелика (не превышает нескольких сотен метров), плотность газа и количество молекул в единице объема (концентрация) будут приблизительно одинаковыми. Однако, если высота столба порядка километра и более, равномерность распределения молекул по высоте нарушаетсядействием силы тяжести , которая стремится сконцентрировать молекулы у поверхности Земли. Вследствие этого плотность воздуха и атмосферное давление будут убывать по мере удаления от поверхности Земли.

Определим закон изменения давления с высотой (найдем барометрическую формулу).

Барометрическая формула показывает, как зависит атмосферное давление P от высоты h над поверхностью Земли. Пусть около поверхности Земли на высоте давление . Давление известно. Требуется найти изменение давления с высотой .

При выводе предполагаем, что температура газа остаётся постоянной. Выделим над поверхностью Земли цилиндрический столб газа (воздуха) с сечением . Рассмотрим слой газа бесконечно малой толщины , находящийся на высоте от основания столба.

Разность сил , действующих на верхнее и нижнее основание слоя, равна весу газа, заключённого в данном слое, т.е.

Бесконечно малая масса газа в слое вычисляется по формуле

где – объём слоя газа.

Тогда , где – плотность газа; – ускорение силы тяжести.

Разность давлений на оба основания слоя:

И ещё надо поставить знак «минус»

потому что знак «минус» имеет физический смысл. Он показывает, что давление газа убывает с высотой. Если подняться на высоту , то давление газа уменьшится на величину .

Плотность газа находим из уравнения Менделеева – Клапейрона.

Подставим выражение в (10.12), имеем

Это дифференциальное уравнение с разделяющимися переменными:

Интегрируем:

Получим барометрическую формулу

На рис. 10.3 показаны графики зависимости давления с высотой для двух значений температуры T 1 и T 2 (T 2 > T 1). С изменением температуры газа давление P 0 у поверхности Земли остается неизменным, т.к. оно равно весу расположенного над земной поверхностью вертикального столба газа единичной площади основания и неограниченного по высоте. Вес газа от температуры не зависит.

Из барометрической формулы очень легко получить распределение Больцмана для случая, когда внешним воздействием на газ является сила земного тяготения.

Давление газа на высоте прямо пропорционально числу молекул в единице объёма на этой высоте, , – концентрация молекул на высоте , а , – концентрация молекул газа на высоте .

То или . (10.14)

Формула (10.14) называется распределением Больцмана для молекул в поле силы тяжести.

На рис. 10.4 показаны графики зависимости концентраций молекул с высотой для двух значений температуры T 1 и T 2 (T 2 >T 1) в поле силы тяжести. Концентрация молекул n 0 у поверхности Земли с увеличением температуры уменьшается (n 0 (T 2) < n 0 (T 1)) за счет перераспределения молекул внутри столба газа. Молекулы, обладающие большей кинетической энергией, поднимаются выше.

Если , – потенциальная энергия молекулы на высоте , то

Формула (10.15) справедлива не только для случая, когда молекулы движутся в поле силы тяжести. Эта формула, выражающая распределение Больцмана справедлива для любого силового поля с потенциальной функцией :

Опыт Перрена (1870–1942 гг.).
Определение числа Авогадро

Французский физик Перрен воспользовался распределением Больцмана для экспериментального определения числа Авогадро.

Микроскоп наводился на верхний слой эмульсии (рис. 10.5), делали через микроскоп мгновенную фотографию, подсчитывали число броуновских частиц на фотографии. Далее тубус микроскопа опускали на 0,01 мм, снова фотографировали и подсчитывали число броуновских частиц на фотографии. Оказалось, что на дне сосуда броуновских частиц больше, на поверхности эмульсии меньше, а в целом распределение броуновских частиц по высоте соответствует распределению Больцмана. Так как шарики гуммигута находятся в жидкости (эмульсии), то потенциальная энергия их с учетом выталкивающей силы Архимеда можно записать , где m 0 – масса шарика, m ж – масса объёма жидкости, вытесненной шариком. Тогда распределение Больцмана можно записать .

Если n 1 и n 2 – измеренные концентрации частиц на высотах h 1 и h 2 , то ; , а .

Тогда можно определить и .

Величину

где и – плотности материала шариков и эмульсии.

Определив экспериментально постоянную Больцмана k Перрен получил из зависимости значение числа Авогадро . Точное значение:

Тема 11
РАБОТА, ВНУТРЕННЯЯ ЭНЕРГИЯ И ТЕПЛОТА.
ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ

Термодинамика – это наука, изучающая условия превращения различных видов энергии в тепловую и обратно, а также количественные соотношения, наблюдаемые при этом. Термодинамика охватывает большой круг явлений, наблюдаемых в природе и технике. Особое значение она имеет для теплотехники, т.к. даёт основу для разработки тепловых и холодильных машин. В термодинамике часто пользуются словом тело . В термодинамике телом можно назвать воздух, воду, ртуть, любой газ, т.е. любое вещество, занимающее определённый объём.

Термодинамическая система может включать в себя несколько тел, но может состоять из одного тела, очень часто этим телом является идеальный газ.

Термодинамической системой называется любая совокупность рассматриваемых тел, которые могут обмениваться энергией между собой и с другими телами. Например, термодинамической системой может быть идеальный газ.

Состояние термодинамической системы характеризуется термодинамическими параметрами. Термодинамические параметры – это величины характеризующие состояние системы. К термодинамическим параметрам относятся такие величины, как давление, объём, температура, плотность вещества и т.д. Параметрами состояния идеального газа, например, являются давление P , объём V , температура T . Уравнение, связывающее между собой параметры состояния термодинамической системы, называется уравнением состояния. Например, уравнение Менделеева – Клапейрона: .

Состояние термодинамической системы называется равновесным , если все его параметры имеют определенное значение и не изменяются со временем при неизменных внешних условиях.

Если термодинамическая система выведена из состояния равновесия и предоставлена сама себе, то она возвращается в исходное состояние. Этот процесс называется релаксацией .

В термодинамике изучают закономерности всевозможных переходов системы из одного состояния в другое. Переход системы из одного состояния в другое , который сопровождается изменением хотя бы одного параметра состояния , называется процессом. Уравнение, определяющее изменение параметров системы при переходе из одного состояния в другое, называется уравнением процесса.

Термодинамика изучает только термодинамически равновесные состояния тел и медленные процессы, которые рассматриваются как равновесные состояния, непрерывно следующие друг за другом. Она изучает общие закономерности перехода систем в состояния термодинамического равновесия.

Равновесные процессы – процессы, при которых скорость изменения термодинамических параметров бесконечно мала, т.е. изменение термодинамических параметров происходит за бесконечно большие времена. Это модель , т.к. все реальные процессы – неравновесные.

Равновесный процесс – процесс, который проходит через последовательность равновесных состояний.

Неравновесный процесс – процесс, при котором изменение термодинамических параметров на конечную величину происходит за конечное время.

Неравновесный процесс графически изобразить нельзя.

В термодинамике используется особый метод изучения явлений – термодинамический метод. Термодинамика рассматривает, как протекает процесс.

В основу термодинамики положено два основных закона, являющиеся обобщением громадного фактического материала. Эти законы дали начало всей науке термодинамике и поэтому получили название начал.

11.1. Внутренняя энергия идеального газа.
Число степеней свободы

Числом степеней свободы называется наименьшее число независимых координат, которое необходимо ввести, чтобы определить положение тела в пространстве. – число степеней свободы.

Рассмотрим одноатомный газ . Молекулу такого газа можно считать материальной точкой, положение материальной точки (рис. 11.1) в пространстве определяется тремя координатами.

Молекула может двигаться в трех направлениях (рис. 11.2).

Следовательно, обладает тремя поступательными степенями свободы.

Молекула – материальная точка.

Энергии вращательного движения , т.к. момент инерции материальной точки относительно оси, проходящей через точку равен нулю

Для молекулы одноатомного газа число степеней свободы .

Рассмотрим двухатомный газ . В двухатомной молекуле каждый атом принимается за материальную точку и считается, что атомы жёстко связаны между собой, это гантельная модель двухатомной молекулы. Двухатомная жестко связанная молекула (совокупность двух материальных точек, связанных недеформируемой связью), рис. 11.3.

Положение центра масс молекулы задаётся тремя координатами, (рис. 11.4) это три степени свободы, они определяют поступательное движение молекулы. Но молекула может совершать и вращательные движения вокруг осей и , это ещё две степени свободы, определяющие вращение молекулы . Вращение молекулы вокруг оси невозможно, т.к. материальные точки не могут вращаться вокруг оси, проходящей через эти точки.

Для молекулы двухатомного газа число степеней свободы .

Рассмотрим трёхатомный газ. Модель молекулы – три атома (материальные точки), жёстко связанные между собой (рис. 11.5).

Трёхатомная молекула – жестко связанная молекула.

Для молекулы трёхатомного газа число степеней свободы .

Для многоатомной молекулы число степеней свободы .

Для реальных молекул, не обладающих жёсткими связями между атомами, необходимо учитывать также степени свободы колебательного движения, тогда число степеней свободы реальной молекулы равно

i = i поступат + i вращат. + i колеб. (11.1)

Закон равномерного распределения энергии
по степеням свободы (закон Больцмана)

Закон о равнораспределении энергии по степеням свободы утверждает, если система частиц находится в состоянии термодинамического равновесия, то средняя кинетическая энергия хаотического движения молекул, приходящаяся на 1 степень свободы поступательного и вращательного движения, равна

Следовательно, молекула, имеющая степеней свободы, обладает энергией

– число молей, где – масса моля, и внутренняя энергия газа выражается формулой

Внутренняя энергия идеального газа зависит только от температуры газа. Изменение внутренней энергии идеального газа определяется изменением температуры и не зависит от процесса, при котором это изменение произошло.

Изменение внутренней энергии идеального газа

где – изменение температуры.

Закон равномерного распределения энергии распространяется на колебательное движение атомов в молекуле. На колебательную степень свободы приходится не только кинетическая энергия, но и потенциальная, причём среднее значение кинетической энергии, приходящейся на одну степень равно среднему значению потенциальной энергии, приходящемуся на одну степень свободы и равно

Следовательно, если молекула имеет число степеней свободы
i = i поступат + i вращат + i колеб, то средняя суммарная энергия молекулы: , а внутренняя энергия газа массы :

11.2. Элементарная работа. Работа идеального газа
при изопроцессах

Если внешние силы совершают работу над системой, то работа отрицательная.

Рассмотрим идеальный газ, находящийся под поршнем в цилиндре (рис. 11.6). Газ расширяется, и поршень поднимается на бесконечно малую высоту . Силу , действующую со стороны газа на поршень, находим по формуле

V P (V ) и проходящими через концы отрезка параллельными оси ординат прямыми.

Так как в состоянии равновесия давление во всех частях системы одинаково, то естественно допустить, что в газе отсутствуют какие-либо направленные движения молекул, то есть движения молекул предельно неупорядочены.

В отношении скоростей молекулы это означает:

Скорость молекул и ее проекции являются непрерывными величинами, так как ни одно значение скорости не имеет преимущества перед другими значениями;

При тепловом равновесии в газе все направления скоростей молекул равновероятны. В противном случае это привело бы к образованию направленных макроскопических потоков молекул и возникновению перепадов давления.

Так как скорость и ее проекции являются непрерывными величинами, вводится понятие функции плотности распределения f(v x), f(v y), f(v z) по компонентам скоростей молекул (v x , v y , v z) и по модулю скорости f(v)

Выражения для функций плотности вероятности по компонентам скоростей v x , v y , v z имеют вид

График функции f(v x)изображен на рис. 1.

Функция имеет максимум при v x = 0, симметрична относительно его и экспоненциально стремится к нулю при v x ® ± ¥. Отложим по оси абсцисс элементарные скоростные интервалы dv x около значений v x , равных 0; ± v x ¢; ± v x ¢¢. Произведение f(v x) dv x равно доле молекул, компонента скорости v x которых лежит в интервале около указанных значений. С другой стороны, произведение f(v x) dv x на графике равно заштрихованным площадкам около выбранных скоростей.

Из сопоставления размеров заштрихованных площадей следует:

Относительное большинство молекул имеет проекцию скорости вдоль оси v x , близкую к нулю;

Доли молекул, имеющих одинаковые значения v x , но летящие в противоположных направлениях (разные знаки +v x и -v x), одинаковы;

Число молекул, имеющих большие значения компонент скоростей, мало (мала площадь около ± v x ¢¢).

Аналогичный анализ можно провести и для f(v y), f(v z).

График функции f(v) изображен на рис. 2.

Функция равна 0 при v = 0; стремится к нулю при v ® ¥, при v = v b имеет максимум. Значение скорости v b , при которой функция плотности распределения достигает максимума, называется наиболее вероятной скоростью. Ее значение находится из условия экстремума.

Произведение f(v) dv дает долю молекул, скорости которых лежат в выбранном интервале dv. На графике это произведение равно заштрихованным площадкам. Как видно из графика, максимальная площадка соответствует скорости v b . С увеличением скорости доля молекул, обладающих большими скоростями, уменьшается (малая площадь при v 3). Зная аналитический вид f(v), можно найти

Распределение молекул по скоростям зависит от температуры.

Закон Максвелла распределения молекул газа по скоростям описывает поведение очень большого числа частиц, то есть является статистическим законом. Распределение молекул по скоростям устанавливается посредством их столкновений. При столкновениях изменяются скорости отдельных молекул, но закон распределения по скоростям не изменяется.

Характерными параметрами распределения Максвелла являются наиболее вероятная скорость υ в, соответствующая максимуму кривой распределения, и среднеквадратичная скорость где – среднее значение квадрата скорости.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме Распределение Максвелла по скоростям. Наиболее вероятная среднеквадратичная скорость движения молекулы.:

  1. 57. Молекулярно-кинетический смысл температуры. Энергия и скорость теплового движения молекул.
  2. Механическое движение Относительность движения, Система отсчета, Материальная точка, Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение

Для решения многих задач удобно пользоваться формулой Максвелла в форме, которая получается, если выразить скорости молекул не в обычных единицах, а в относительных, приняв за единицу скорости наивероятнейшую скорость молекул Относительная скорость и, следовательно, равна

Здесь заданная скорость молекул, наивероятнейшая скорость при данной температуре. Как мы только что выяснили,

В формулу Максвелла

дважды входит выражение Заменив в ней это выражение равным ему выражением и обозначив буквой и, можно уравнению Максвелла придать вид

Это уравнение - универсальное. В таком виде функция распределения не зависит ни от рода газа, ни от температуры.

Подобное же уравнение можно составить и для функции распределения молекул по составляющим скорости по осям координат.

Если, например, идет речь о х-компоненте скорости, то, введя и здесь относительную скорость можно представить функцию распределения (12.5) в виде

Для решения различных задач, связанных с распределением молекул по скоростям, удобно пользоваться формулами распределения именно в форме (16.1) и (16.2). На рис. 19 представлена кривая распределения для относительных скоростей.

могут быть заранее вычислены для различных значений и и их и представлены в виде графиков, по которым и можно определять искомые величины. В табл. 1 представлены значения этих функций, вычисленные с достаточной для решения многих задач точностью.

Таблица 1 (см. скан)

Пусть, например, требуется найти долю частиц азота при комнатной температуре (300 К), скорости которых заключены между 275 и 276 м/с.

Прежде всего находим наивероятнейшую скорость:

Относительная скорость и равна:

Из выражения следует, что . В данном случае интервал скорости, равный достаточно мал и можно считать, что По графику, который каждый может построить по данным таблицы 1, находим, что относительной скорости соответствует значение функции

Значит, только 0,17% всех молекул обладают скоростями, лежащими в указанном в задаче интервале скоростей.

Одной из интересных задач, связанных с распределением молекул по скоростям, является определение доли всех молекул, скорости которых превышают заданную. Для решения таких задач также удобно пользоваться формулой Максвелла для относительных скоростей, т. е. формулой

Ясно, что если нужно найти долю молекул, скорости которых превышают некоторое заданное значение а значит и определенное и, то уравнение нужно проинтегрировать в пределах от заданного и до бесконечности, так что

где - это число молекул, относительные скорости которых больше заданного и. Следовательно, решение задачи сводится к вычислению стоящего здесь интеграла. В табл. 2 приведены его значения для различных значений и. Из таблицы видно, что число молекул, чьи скорости превышают наиболее вероятную, т. е. молекул составляет 57,24% всех молекул в газе - более половины.

Лекция 5

В результате многочисленных соударений молекул газа между собой (~10 9 столкновений за 1 секунду) и со стенками сосуда, устанавливается некоторое статистическое распределение молекул по скоростям. При этом все направления векторов скоростей молекул оказываются равновероятными, а модули скоростей и их проекции на координатные оси подчиняются определенным закономерностям.

При столкновениях скорости молекул изменяются случайным образом. Может оказаться, что одна из молекул в ряде столкновений будет получать энергию от других молекул и ее энергия будет значительно больше среднего значения энергии при данной температуре. Скорость такой молекулы будет большая, но, все-таки она будет иметь конечное значение, так как максимально возможная скорость – скорость света - 3·10 8 м/с. Следовательно, скорость молекулы вообще может иметь значения от 0 до некоторой υ max . Можно утверждать, что очень большие скорости по сравнению со средними значениями, встречаются редко, также как и очень малые.

Как показывают теория и опыты распределение молекул по скоростям не случайное, а вполне определенное. Определим сколько молекул, или какая часть молекул обладает скоростями, лежащими в некотором интервале вблизи заданной скорости.

Пусть в данной массе газа содержится N молекул, при этом dN молекул обладают скоростями, заключенными в интервале от υ до υ +. Очевидно, что это число молекул dN пропорционально общему числу молекул N и величине заданного интервала скорости

где a - коэффициент пропорциональности.

Также очевидно, что dN зависит и от величины скорости υ , так как в одинаковых по величине интервалах, но при разных абсолютных значениях скорости число молекул будет различным (пример: сравните число живущих в возрасте 20 – 21 год и 99 – 100 лет). Это значит, что коэффициент a в формуле (1) должен быть функцией скорости.

С учетом этого перепишем (1) в виде

Из (2) получим

Функция f (υ ) называется функцией распределения. Ее физический смысл следует из формулы (3)

Следовательно, f (υ ) равна относительной доле молекул, скорости которых заключены в единичном интервале скоростей вблизи скорости υ . Более точно функция распределения имеет смысл вероятности любой молекуле газа иметь скорость, заключенную в единичном интервале вблизи скорости υ . Поэтому ее называют плотностью вероятности .

Проинтегрировав (2) по всем значениям скоростей от 0 до получим

Из (5) следует, что

Уравнение (6) называется условием нормировки функции. Оно определяет вероятность того, что молекула имеет одно из значений скорости от 0 до . Скорость молекулы имеет какое-нибудь значение: это событие достоверное и его вероятность равна единице.



Функция f (υ ) была найдена Максвеллом в 1859 году. Она была названа распределением Максвелла :

где A – коэффициент, который не зависит от скорости, m – масса молекулы, T – температура газа. Используя условие нормировки (6) можно определить коэффициент A :

Взяв этот интеграл, получим A :

С учетом коэффициента А функция распределения Максвелла имеет вид:

При возрастании υ множитель в (8) изменяется быстрее, чем растет υ 2 . Поэтому функция распределения (8) начинается в начале координат, достигает максимума при некотором значении скорости, затем уменьшается, асимптотически приближаясь к нулю (рис.1).

Рис.1. Максвелловское распределение молекул

по скоростям. T 2 > T 1

Используя кривую распределения Максвелла можно графически найти относительное число молекул, скорости которых лежат в заданном интервале скоростей от υ до (рис.1, площадь заштрихованной полоски).

Очевидно, что вся площадь, находящаяся под кривой дает общее число молекул N . Из уравнения (2) с учетом (8) найдем число молекул, скорости которых лежат в интервале от υ до

Из (8) также видно, что конкретный вид функции распределения зависит от рода газа (масса молекулы m ) и от температуры и не зависит от давления и объема газа.

Если изолированную систему вывести из состояния равновесия и предоставить самой себе, то через некоторый промежуток времени она вернется в состояние равновесия. Этот промежуток времени называется временем релаксации . Для различных систем он различный. Если газ находится в равновесном состоянии, то распределение молекул по скоростям не изменяется с течением времени. Скорости отдельных молекул беспрерывно изменяются, однако число молекул dN , скорости которых лежат в интервале от υ до все время остается постоянным.

Максвелловское распределение молекул по скоростям всегда устанавливается, когда система приходит в состояние равновесия. Движение молекул газа хаотичное. Точное определение хаотичности тепловых движений следующее: движение молекул полностью хаотично, если скорости молекул распределены по Максвеллу . Отсюда следует, что температура определяется средней кинетической энергией именно хаотичных движений . Как бы ни велика была бы скорость сильного ветра, она не сделает его «горячим». Ветер даже самый сильный, может быть и холодным и теплым, потому что температура газа определяется не направленной скоростью ветра, а скоростью хаотического движения молекул.

Из графика функции распределения (рис.1) видно, что число молекул, скорости которых лежат в одинаковых интервалах dυ , но вблизи различных скоростей υ , больше в том случае если скорость υ приближается к скорости, которая соответствует максимуму функции f (υ ). Эта скорость υ н называется наивероятнейшей (наиболее вероятной).

Продифференцируем (8) и приравняем производную к нулю:

то последнее равенство выполняется когда:

Уравнение (10) выполняется при:

Первые два корня соответствуют минимальным значениям функции. Тогда скорость, которая соответствует максимуму функции распределения, найдем из условия:

Из последнего уравнения:

где R – универсальная газовая постоянная, μ – молярная масса.

С учетом (11) из (8) можно получить максимальное значение функции распределения

Из (11) и (12) следует, что при повышении T или при уменьшении m максимум кривой f (υ ) сдвигается вправо и становится меньше, однако площадь под кривой остается постоянной (рис.1).

Для решения многих задач удобно пользоваться распределением Максвелла в приведенном виде. Введем относительную скорость:

где υ – данная скорость, υ н – наивероятнейшая скорость. С учетом этого уравнение (9) принимает вид:

(13) – универсальное уравнение. В таком виде функция распределения не зависит ни от рода газа, ни от температуры.

Кривая f (υ ) ассиметрична. Из графика (рис.1) видно, что большая часть молекул имеет скорости большие, чем υ н . Асимметрия кривой означает, что средняя арифметическая скорость молекул не равна υ н . Средняя арифметическая скорость равна сумме скоростей всех молекул, деленная на их число:

Учтем, что согласно (2)

Подставив в (14) значение f (υ ) из (8) получим среднюю арифметическую скорость:

Средний квадрат скорости молекул получим, вычислив отношение суммы квадратов скоростей всех молекул к их числу:

После подстановки f (υ ) из (8) получим:

Из последнего выражения найдем среднюю квадратичную скорость:

Сопоставляя (11), (15) и (16) можно сделать вывод, что, и одинаково зависят от температуры и отличаются только численными значениями: (рис.2).

Рис.2. Распределение Максвелла по абсолютным значениям скоростей

Распределение Максвелла справедливо для газов находящихся в состоянии равновесия, рассматриваемое число молекул должно быть достаточно большим. Для малого числа молекул могут наблюдаться значительные отклонения от распределения Максвелла (флуктуации).

Первое опытное определение скоростей молекул провел Штерн в 1920 году. Прибор Штерна состоял из двух цилиндров разных радиусов, закрепленных на одной оси. Воздух из цилиндров был откачен до глубокого вакуума. Вдоль оси натягивалась платиновая нить, покрытая тонким слоем серебра. При пропускании по нити электрического тока она нагревалась до высокой температуры (~1200 о С), что приводило к испарению атомов серебра.

В стенке внутреннего цилиндра была сделана узкая продольная щель, через которую проходили движущиеся атомы серебра. Осаждаясь на внутренней поверхности внешнего цилиндра, они образовывали хорошо наблюдаемую тонкую полоску прямо напротив прорези.

Цилиндры начинали вращать с постоянной угловой скоростью ω. Теперь атомы, прошедшие сквозь прорезь, оседали уже не прямо напротив щели, а смещались на некоторое расстояние, так как за время их полета внешний цилиндр успевал повернуться на некоторый угол. При вращении цилиндров с постоянной скоростью, положение полоски, образованной атомами на внешнем цилиндре, смещалось на некоторое расстояние l .

В точке 1 оседают частицы, когда установка неподвижна, при вращении установки частицы оседают в точке 2.

Полученные значения скоростей подтвердили теорию Максвелла. Однако о характере распределения молекул по скоростям этот метод давал приблизительные сведения.

Более точно распределение Максвелла было проверено опытами Ламмерта, Истэрмана, Элдриджа и Коста . Эти опыты достаточно точно подтвердили теорию Максвелла.

Прямые измерения скорости атомов ртути в пучке были выполнены в 1929 году Ламмертом . Упрощенная схема этого эксперимента показана на рис. 3.

Рис.3. Схема опыта Ламмерта
1 - быстро вращающиеся диски, 2 - узкие щели, 3 - печь, 4 - коллиматор, 5 - траектория молекул, 6 – детектор

Два диска 1, насаженные на общую ось, имели радиальные прорези 2, сдвинутые друг относительно друга на угол φ . Напротив щелей находилась печь 3, в которой нагревался до высокой температуры легкоплавкий металл. Разогретые атомы металла, в данном случае ртути, вылетали из печи и с помощью коллиматора 4 направлялись в необходимом направлении. Наличие двух щелей в коллиматоре обеспечивало движение частиц между дисками по прямолинейной траектории 5. Далее атомы, прошедшие прорези в дисках, регистрировались с помощью детектора 6. Вся описанная установка помещалась в глубокий вакуум.

При вращении дисков с постоянной угловой скоростью ω, через их прорези беспрепятственно проходили только атомы, имевшие некоторую скорость υ . Для атомов, проходящих обе щели должно выполняться равенство:

где Δt 1 - время пролета молекул между дисками, Δt 2 - время поворота дисков на угол φ . Тогда:

Изменяя угловую скорость вращения дисков можно было выделять из пучка молекулы, имеющие определенную скорость υ , и по регистрируемой детектором интенсивности судить об относительном содержании их в пучке.

Таким способом удалось экспериментально проверить Максвелловский закон распределения молекул по скоростям.