Электрическая проводимость металла. Электрическая проводимость. Определение, единицы измерения

Электронная проводимость металлов

В начале XX века была создана классическая электронная теория проводимости металлов (П. Друде, 1900 г., Х.Лоренц, 1904 г.), которая дала простое и наглядное объяснение большинства электрических и тепловых свойств металлов. Рассмотрим некоторые положения этой теории.

Свободные электроны

Металлический проводник состоит из:

1) положительно заряженных ионов, колеблющихся около положения равновесия, и

2) свободных электронов, способных перемещаться по всему объему проводника.

Таким образом, электрические свойства металлов обусловлены наличием в них свободных электронов с концентрацией порядка 1028 м–3, что примерно соответствует концентрации атомов. Эти электроны называются электронами проводимости. Они образуются путем отрыва от атомов металлов их валентных электронов. Такие электроны не принадлежат какому-то определенному атому и способны перемещаться по всему объему тела. В металле в отсутствие электрического поля электроны проводимости хаотически движутся и сталкиваются, чаще всего с ионами кристаллической решетки (рис. 1). Совокупность этих электронов можно приближенно рассматривать как некий электронный газ, подчиняющийся законам идеального газа. Средняя скорость теплового движения электронов при комнатной температуре составляет примерно 105 м/с.

Рисунок 1

Электрический ток в металлах

Ионы кристаллической решетки металла не принимают участие в создании тока. Их перемещение при прохождении тока означало бы перенос вещества вдоль проводника, что не наблюдается. Например, в опытах Э. Рикке (1901 г.) масса и химический состав проводника не изменялся при прохождении тока в течении года.

Экспериментальное доказательство того, что ток в металлах создается свободными электронами, было дано в опытах Л.И. Мандельштама и Н. Д. Папалекси (1912 г., результаты не были опубликованы), а также Т. Стюарта и Р. Толмена (1916 г.). Они обнаружили, что при резкой остановке быстро вращающейся катушки в проводнике катушки возникает электрический ток, создаваемый отрицательно заряженными частицами - электронами.

Следовательно, электрический ток в металлах - это направленное движением свободных электронов.

Так как электрический ток в металлах образуют свободные электроны, то проводимость металлических проводников называется электронной проводимостью.

Электрический ток в металлах возникает под действием внешнего электрического поля. На электроны проводимости, находящиеся в этом поле, действует электрическая сила, сообщающая им ускорение, направленное в сторону, противоположную вектору напряженности поля. В результате электроны приобретают некоторую добавочную скорость (ее называют дрейфовой). Эта скорость возрастает до тех пор, пока электрон не столкнется с атомом кристаллической решетки металла. При таких столкновениях электроны теряют свою избыточную кинетическую энергию, передавая ее ионам. Затем электроны снова разгоняются электрическим полем, снова тормозятся ионами и т.д.Средняя скорость дрейфа электронов очень мала, около 10–4 м/с.

Скорость распространения тока и скорость дрейфа не одно и то же. Скорость распространения тока равна скорости распространения электрического поля в пространстве, т.е. 3⋅108 м/с.

При столкновении с ионами электроны проводимости передают часть кинетической энергии ионам, что приводит к увеличению энергии движения ионов кристаллической решетки, а, следовательно, и к нагреванию проводника.

Сопротивление металлов

Сопротивление металлов объясняется столкновениями электронов проводимости с ионами кристаллической решетки. При этом, очевидно, чем чаще происходят такие столкновения, т. е. чем меньше среднее время свободного пробега электрона между столкновениями τ, тем больше удельное сопротивление металла.

В свою очередь, время τ зависит от расстояния между ионами решетки, амплитуды их колебаний, характера взаимодействия электронов с ионами и скорости теплового движения электронов. С ростом температуры металла амплитуда колебаний ионов и скорость теплового движения электронов увеличиваются. Возрастает и число дефектов кристаллической решетки. Все это приводит к тому, что при увеличении температуры металла столкновения электронов с ионами будут происходить чаще, т.е. время τ уменьшается, а удельное сопротивление металла увеличивается.

Опыт Мандельштама и Папалекси по выяснению движения электрона

Если электрон обладает массой, то его масса, или способность двигаться по инерции, должна проявляться повсюду, а не только в электрическом поле. Русские ученые Л. И. Мандельштам (1879-1949; основатель школы радиофизиков) и Н. Д. Папалекси (1880 - 1947; крупнейший советский физик, академик, председатель Всесоюзного научного совета по радиофизике и радиотехнике при АН СССР) в 1913 году поставили оригинальный опыт. Взяли катушку с проводом и стали крутить ее в разные стороны.

Раскрутят, к примеру, по часовой стрелке, потом резко остановят и - назад.

Рассуждали они примерно так: если электроны и вправду обладают массой, то, когда катушка внезапно останавливается, электроны еще некоторое время должны двигаться по инерции. Движение электронов по проводу - электрический ток. Как задумали, так и получилось. Подсоединили к концам провода телефон и услышали звук. Раз в телефоне слышен звук, следовательно, через него ток протекает.

Опыт Мандельштама и Папалекси в 1916 году повторили американские ученые Толмен и Стюарт. Они тоже крутили катушку, но вместо телефона к ее концам подсоединили прибор для измерения заряда. Им удалось не только доказать существование у электрона массы, но и измерить ее. Данные Толмена и Стюарта потом много раз проверялись и уточнялись другими учеными, и теперь вы знаете, что масса электрона равна 9,109 Ю-31 килограмма.

При постановке этих опытов исходили из следующей мысли. Если в металле есть свободные заряды, обладающие массой, то они должны подчиняться закону инерции, Быстро движущийся, например, слева направо проводник представляет собой совокупность движущихся в этом направлении атомов металла, которые увлекают вместе с собой и свободные заряды. Когда такой проводник внезапно останавливается, то останавливаются входящие в его состав атомы; свободные же заряды по инерции должны продолжать движение слева направо, пока различные помехи (соударения с остановившимися атомами) не остановят их. Происходящее явление подобно тому, что наблюдается при внезапной остановке трамвая, когда «свободные», не прикрепленные к вагону предметы и люди по инерции некоторое время продолжают двигаться вперед.

Таким образом, краткое время после остановки проводника свободные заряды в нем должны двигаться в одну сторону. Но движение зарядов в определенную сторону есть электрический ток. Следовательно, если наши рассуждения справедливы, то после внезапной остановки проводника надо ожидать появления в нем кратковременного тока. Направление этого тока позволит судить о знаке. Заряда. Если же в этом направлении будут двигаться отрицательные заряды, то должен наблюдаться ток, имеющий направление справа налево и наоборот. Возникающий ток зависит от зарядов и способности их носителей более или менее долго сохранять по инерции свое движение, несмотря на помехи, т. е. от их массы. Таким образом, этот опыт не только позволяет проверить предположение о существовании в металле свободных зарядов, но и определить сами заряды, их знак и массу их носителей (точнее, отношение заряда к массе elm).

В практическом осуществлении опыта оказалось более удобным использовать не поступательное, а вращательное движение проводника. Схема такого опыта приведена на рис.2.

Рисунок 2

На катушке, в которую вделаны две изолированные друг от друга полуоси 00, укреплена проволочная спираль 1. Концы спирали припаяны к обеим половинам оси и при помощи скользящих контактов 2 («щеток») присоединены к чувствительному гальванометру 3. Катушка приводилась в быстрое вращение и затем внезапно тормозилась. Опыт действительно обнаружил, что при этом в гальванометре возникал электрический ток. Направление этого тока показало, что по инерции движутся отрицательные заряды. Измерив заряд, переносимый этим кратковременным током, можно было найти отношение свободного заряда к массе его носителя. Отношение это оказалось равным e/m=l,8 1011 Кл/кг, что хорошо совпадает со значением такого отношения для электронов, определенным другими способами.

Электронная проводимость металлов была впервые экспериментально доказана немецким физиком Э.Рикке в 1901 г. Через три плотно прижатых друг к другу отполированных цилиндра - медный, алюминиевый и снова медный - длительное время (в течение года) пропускали электрический ток. Общий заряд, прошедший за это время, был равен 3.5·10 6 Кл. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то массы цилиндров должны были бы заметно измениться, если бы носителями заряда были ионы. Результаты опытов показали, что масса каждого из цилиндров осталась неизменной. В соприкасающихся поверхностях были обнаружены лишь незначительные следы взаимного проникновения металлов, которые не превышали результатов обычной диффузии атомов в твердых телах. Следовательно, свободными носителями заряда в металлах являются не ионы, а такие частицы, которые одинаковы и в меди, и в алюминии. Такими частицами могли быть только электроны.

Прямое и убедительное доказательство справедливости этого предположения было получено в опытах, поставленных в 1913 г. Л. И. Мандельштамом и Н. Д. Папалекси и в 1916 г. Т. Стюартом и Р. Толменом.

На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис. 1). К концам дисков с помощью скользящих контактов присоединяют гальванометр.

Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы будут некоторое время двигаться вдоль проводника по инерции, и, следовательно, в катушке возникнет электрический ток. Ток будет существовать короткое время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц прекращается.

Направление тока говорит о том, что он создается движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т.е. \(~\Delta q = \frac{q_0}{m}\). Поэтому, измеряя заряд, проходящий через гальванометр за все время существования тока в цепи, удалось определить отношение \(~\frac{q_0}{m}\). Оно оказалось равным 1,8·10 11 Кл/кг. Эта величина совпадает с отношением заряда электрона к его массе, найденным ранее из других опытов.

Таким образом, электрический ток в металлах создается движением отрицательно заряженных частиц электронов. Согласно классической электронной теории проводимости металлов (П. Друде, 1900 г., Х.Лоренц, 1904 г.), металлический проводник можно рассматривать как физическую систему совокупности двух подсистем:

  1. свободных электронов с концентрацией ~ 10 28 м -3 и
  2. положительно заряженных ионов, колеблющихся около положения равновесия.

Появление свободных электронов в кристалле можно объяснить следующим образом.

При объединении атомов в металлический кристалл слабее всего связанные с ядром атома внешние электроны отрываются от атомов (рис. 2). Поэтому в узлах кристаллической решетки металла располагаются положительные ионы, а в пространстве между ними движутся электроны, не связанные с ядрами своих атомов. Эти электроны называются свободными или электронами проводимости . Они совершают хаотическое движение, подобное движению молекул газа. Поэтому совокупность свободных электронов в металлах называют электронным газом .

Если к проводнику приложено внешнее электрическое поле, то на беспорядочное хаотическое движение свободных электронов накладывается направленное движение под действием сил электрического поля, что и порождает электрический ток. Скорость движения самих электронов в проводнике - несколько долей миллиметра в секунду, однако возникающее в проводнике электрическое поле распространяется по всей длине проводника со скоростью, близкой к скорости света в вакууме (3·10 8 м/с).

Так как электрический ток в металлах образуют свободные электроны, то проводимость металлических проводников называется электронной проводимостью .

Электроны под влиянием постоянной силы, действующей со стороны электрического поля, приобретают определенную скорость упорядоченного движения (ее называют дрейфовой). Эта скорость не увеличивается в дальнейшем со временем, так как при столкновении с ионами кристаллической решетки электроны передают кинетическую энергию, приобретенную в электрическом поле, кристаллической решетке. В первом приближении можно считать, что на длине свободного пробега λ (это расстояние, которое электрон проходит между двумя последовательными столкновениями с ионами) электрон движется с ускорением \(~a = \frac{eE}{m}\) и его дрейфовая скорость линейно возрастает со временем\[~\upsilon = at = \frac{eEt}{m}\]. В момент столкновения электрон передает кинетическую энергию кристаллической решетке. Потом он опять ускоряется, и процесс повторяется. В результате средняя скорость упорядоченного движения электронов пропорциональна напряженности электрического поля в проводнике \(~\mathcal h \upsilon \mathcal i \sim E\) и, следовательно, разности потенциалов на концах проводника, так как \(~E = \frac Ul\), где l - длина проводника.

Известно, что сила тока в проводнике пропорциональна скорости упорядоченного движения частиц\[~I = en \mathcal h \upsilon \mathcal i S\], а значит, согласно предыдущему, сила тока пропорциональна разности потенциалов на концах проводника: I ~ U . В этом состоит качественное объяснение закона Ома на основе классической электронной теории проводимости металлов.

Однако в рамках этой теории возникли трудности. Из теории следовало, что удельное сопротивление должно быть пропорционально корню квадратному из температуры (\(~\rho \sim \sqrt T\)), между тем, согласно опыту, ρ ~ Т . Кроме того, теплоемкость металлов, согласно этой теории, должна быть значительно больше теплоемкости одноатомных кристаллов. В действительности теплоемкость металлов мало отличается от теплоемкости неметаллических кристаллов. Эти трудности были преодолены только в квантовой теории.

В 1911 г. голландский физик Г. Камерлинг-Оннес, изучая изменение электрического сопротивления ртути при низких температурах, обнаружил, что при температуре около 4 К (т.е. при -269 °С) удельное сопротивление скачком уменьшается (рис. 1) практически до нуля. Это явление обращения электрического сопротивления в нуль Г. Камерлинг-Оннес назвал сверхпроводимостью.

В дальнейшем было выяснено, что более 25 химических элементов - металлов при очень низких температурах становятся сверхпроводниками. У каждого из них своя критическая температура перехода в состояние с нулевым сопротивлением. Самое низкое значение ее у вольфрама - 0,012 К, самое высокое у ниобия - 9 К.

Сверхпроводимость наблюдается не только у чистых металлов, но и у многих химических соединений и сплавов. При этом сами элементы, входящие в состав сверхпроводящего соединения, могут и не являться сверхпроводниками. Например, NiBi , Au 2 Bi , PdTe , PtSb и другие.

Вещества в сверхпроводящем состоянии обладают необычными свойствами:

  1. электрический ток в сверхпроводнике может существовать длительное время без источника тока;
  2. внутри вещества в сверхпроводящем состоянии нельзя создать магнитное поле:
  3. магнитное поле разрушает состояние сверхпроводимости. Сверхпроводимость - явление, объясняемое с точки зрения квантовой теории. Достаточно сложное его описание выходит за рамки школьного курса физики.

Широкому применению сверхпроводимости до недавнего времени препятствовали трудности, связанные с необходимостью охлаждения до сверхнизких температур, для чего использовался жидкий гелий. Тем не менее, несмотря на сложность оборудования, дефицитность и дороговизну гелия, с 60-х годов XX века создаются сверхпроводящие магниты без тепловых потерь в их обмотках, что сделало практически возможным получение сильных магнитных полей в сравнительно больших объемах. Именно такие магниты требуются для создания установок управляемого термоядерного синтеза с магнитным удержанием плазмы, для мощных ускорителей заряженных частиц. Сверхпроводники используются в различных измерительных приборах, прежде всего в приборах для измерения очень слабых магнитных полей с высочайшей точностью.

В настоящее время в линиях электропередачи на преодоление сопротивления проводов уходит 10 - 15 % энергии. Сверхпроводящие линии или хотя бы вводы в крупные города принесут громадную экономию. Другая область применения сверхпроводимости - транспорт.

На основе сверхпроводящих пленок создан ряд быстродействующих логических и запоминающих элементов для счетно-решающих устройств. При космических исследованиях перспективно использование сверхпроводящих соленоидов для радиационной защиты космонавтов, стыковки кораблей, их торможения и ориентации, для плазменных ракетных двигателей.

В настоящее время созданы керамические материалы, обладающие сверхпроводимостью при более высокой температуре - свыше 100 К, то есть при температуре выше температуры кипения азота. Возможность охлаждать сверхпроводники жидким азотом, который имеет на порядок более высокую теплоту парообразования, существенно упрощает и удешевляет все криогенное оборудование, обещает огромный экономический эффект.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 279-282.

Наиболее полно и точно явление электрической проводимости металлов описывает квантовая теория твердых тел. Однако для выяснения наиболее общих вопросов можно ограничиться и рассмотрением на основе классической электронной теории. Согласно этой теории совокупность электронов в кристалле можно с известным приближением уподобить идеальному газу, считая движение электронов подчиняющимся законам классической механики. При этом взаимодействие электронов между собой не рассматривается вообще, а взаимодействие электронов с ионами кристаллической решетки сводится к обычным упругим столкновениям.

Металлы содержат огромное число свободных электронов, перемещающихся в межузельном пространстве кристалла. В 1 см 3 насчитывается около 10 23 атомов. Следовательно, при валентности металла Z концентрация n свободных электронов, называемых еще электронами проводимости, равна . Все они находятся в беспорядочном хаотическом тепловом движении, перемещаясь в пространстве кристалла с колоссальной скоростью, среднее значение которой около 10 8 см/с. В силу хаотичности теплового движения число электронов, двигающихся в каком-либо направлении, в среднем всегда равно числу электронов, двигающихся во встречном направлении, благодаря чему в отсутствие внешнего электрического поля заряд, переносимый электронами через любое сечение кристалла, равен нулю. Под действием электрического поля каждый электрон приобретает дополнительную скорость, благодаря чему весь коллектив электронов в металле начинает перемещаться в направлении, противоположном направлению напряженности приложенного поля. Появление направленного движения электронов и определяет возникновение в проводнике электрического тока.

На каждый электрон электрическое поле напряженностью Е действует с силой F = eE. Под действием этой силы электрон приобретает ускорение


где e - заряд электрона, а m - его масса.

Согласно законам классической механики в свободном пространстве скорость электронов возрастала бы неограниченно; то же наблюдалось бы при их движении в строго периодическом поле (например, в идеальном кристалле с покоящимися в узлах атомами).

В действительности же благодаря нарушениям периодичности в потенциальном поле решетки направленное перемещение электронов в кристалле оказывается совсем незначительным. Нарушения эти в первую очередь связаны с тепловыми колебаниями атомов (в случае металлов - атомных остатков) в узлах кристаллической решетки (при этом амплитуда колебаний тем больше, чем выше температура кристалла). Кроме того, в кристалле всегда имеются различные дефекты, обусловленные наличием атомов примесей, пустых мест в узлах, атомов в междоузлиях, дислокаций. Влияют также границы блоков кристаллов, трещины, полости и т. д.

В этих условиях электроны все время испытывают столкновения и растрачивают приобретенную в электрическом поле энергию. Поэтому в действительности скорость электронов под действием силы внешнего поля увеличивается только на участке между двумя столкновениями. Средняя длина этого участка называется длиной свободного пробега электрона и обозначается через λ.

Итак, ускоряясь на длине свободного пробега, электрон приобретает дополнительную скорость направленного движения

где τ - время свободного пробега, или среднее время между двумя последовательными соударениями электрона с дефектами. Зная длину свободного пробега λ, можно время свободного пробега τ вычислить по формуле


где υ 0 - скорость хаотического теплового движения электрона. Длина свободного пробега электрона λ обычно очень мала и не превышает 10 -5 см. Поэтому малыми оказываются и время свободного пробега τ, и сама добавка скорости Δυ. Так как то

Принимая, что при столкновении с дефектом электрон практически полностью теряет скорость направленного движения, можно среднюю скорость направленного движения, называемую скоростью дрейфа, выразить так:

Коэффициент пропорциональности


между средней скоростью дрейфа и напряженностью поля Е называется подвижностью электронов.

Название этой величины точно отражает ее физический смысл: подвижность - это скорость дрейфа, которую приобретают электроны в электрическом поле единичной напряженности. Более строгий расчет, учитывающий тот факт, что и при хаотическом тепловом движении электроны перемещаются не с постоянной скоростью υ 0 , а имеют различные скорости, приводит к вдвое большему значению для подвижности электронов:


Соответственно и для скорости дрейфа более точным является выражение


Найдем теперь выражение для плотности тока в металлах. Так как под действием внешнего электрического поля электроны приобретают дополнительную скорость дрейфа то за единицу времени через любую площадку, перпендикулярную напряженности поля, пройдут все электроны, отстоящие от этой площадки на расстоянии, не превосходящем Через площадку площадью S за то же время пройдут все электроны, заключенные в объеме параллелепипеда длиной (рис. 15). Если концентрация свободных электронов в металле n, то число их в объеме этого параллелепипеда будет равно . Плотность тока, определяемая зарядом, перенесенным этими электронами через единичную площадь, выразится так.

Классическая теория электропроводности металлов зародилась в начале ХХ века. ЕЕ основоположником стал немецкий физик Карл Рикке. Он опытным путем установил, что прохождение заряда через металл не сопряжено с переносом атомов проводника, в отличие от жидких электролитов. Однако это открытие не объяснило, что именно является носителем электрических импульсов в структуре металла.

Ответить на это вопрос позволили опыты ученых Стюарта и Толмена, проведенные в 1916 году. Им удалось установить, что за перенос электричества в металлах отвечают мельчайшие заряженные частицы - электроны. Это открытие легло в основу классической электронной теории электропроводности металлов. С этого момента началась новая эпоха исследований металлических проводников. Благодаря полученным результатам мы сегодня имеем возможность пользоваться бытовыми приборами, производственным оборудованием, станками и многими другими устройствами.

Как отличается электропроводность разных металлов?

Электронная теория электропроводности металлов получила развитие в исследованиях Паулю Друде. Он сумел открыть такое свойство как сопротивление, которое наблюдается при прохождении электрического тока через проводник. В дальнейшем это позволит классифицировать разные вещества по уровню проводимости. Из полученных результатов легко понять, какой металл подойдет для изготовления того или иного кабеля. Это очень важный момент, так как неправильно подобранный материал может стать причиной возгорания в результате перегрева от прохождения тока избыточного напряжения.

Наибольшей электропроводностью обладает металл серебро. При температуре +20 градусов по Цельсию она составляет 63,3*104 сантиметров-1. Но изготавливать проводку из серебра очень дорого, так как это довольно редкий металл, который используется в основном для производства ювелирных и декоративных украшений или инвестиционных монет.

Металл, обладающий самой высокой электропроводностью среди всех элементов неблагородной группы - медь. Ее показатель составляет 57*104 сантиметров-1 при температуре +20 градусов по Цельсию. Медь является одним из наиболее распространенных проводников, которые используются в бытовых и производственных целях. Она хорошо выдерживает постоянные электрические нагрузки, отличается долговечностью и надежностью. Высокая температура плавления позволяет без проблем работать долгое время в нагретом состоянии.

По распространенности с медью может конкурировать только алюминий, который занимает четвертое место по электропроводности после золота. Он используется в сетях с невысоким напряжением, так как имеет почти вдвое меньшую температуру плавления, чем медь, и не способен выдерживать предельные нагрузки. С дальнейшим распределением мест можно ознакомиться, взглянув на таблицу электропроводности металлов.

Стоит отметить, что любой сплав обладает гораздо меньшей проводимостью, чем чистое вещество. Это связано со слиянием структурной сетки и как следствие нарушением нормального функционирования электронов. Например, при производстве медного провода используется материал с содержанием примесей не более 0,1%, а для некоторых видов кабеля этот показатель еще строже - не более 0,05%. Все приведенные показатели являются удельной электропроводностью металлов, которая рассчитывается как отношение между плотностью тока и величиной электрического поля в проводнике.

Классическая теория электропроводности металлов

Основные положения теории электропроводности металлов содержат шесть пунктов. Первый: высокий уровень электропроводности связан с наличием большого числа свободных электронов. Второй: электрический ток возникает путем внешнего воздействия на металл, при котором электроны из беспорядочного движения переходят в упорядоченное.

Третий: сила тока, проходящего через металлический проводник, рассчитывается по закону Ома. Четвертый: различное число элементарных частиц в кристаллической решетке приводит к неодинаковому сопротивлению металлов. Пятый: электрический ток в цепи возникает мгновенно после начала воздействия на электроны. Шестой: с увеличением внутренней температуры металла растет и уровень его сопротивления.

Природа электропроводности металлов объясняется вторым пунктом положений. В спокойном состоянии все свободные электроны хаотическим образом вращаются вокруг ядра. В этот момент металл не способен самостоятельно воспроизводить электрические заряды. Но стоит лишь подключить внешний источник воздействия, как электроны мгновенно выстраиваются в структурированной последовательности и становятся носителями электрического тока. С повышением температуры электропроводность металлов снижается.

Это связано с тем, что слабеют молекулярные связи в кристаллической решетке, элементарные частицы начинают вращаться в еще более хаотичном порядке, поэтому построение электронов в цепь усложняется. Поэтому необходимо принимать меры по недопущению перегрева проводников, так как это негативно сказывается на их эксплуатационных свойствах. Механизм электропроводности металлов невозможно изменить ввиду действующих законов физики. Но можно нивелировать негативные внешние и внутренние воздействия, которые мешают нормальному протеканию процесса.

Металлы с высокой электопроводностью

Электропроводность щелочных металлов находится на высоком уровне, так как их электроны слабо привязаны к ядру и легко выстраиваются в нужной последовательности. Но эта группа отличается невысокими температурами плавления и огромной химической активностью, что в большинстве случаев не позволяет использовать их для изготовления проводов.

Металлы с высокой электропроводностью в открытом виде очень опасны для человека. Прикосновение к оголенному проводу приведет к получению электрического ожога и воздействию мощного разряда на все внутренние органы. Зачастую это влечет мгновенную смерть. Поэтому для безопасности людей используются специальные изоляционные материалы.

В зависимости от сферы применения они могут быть твердыми, жидкими и газообразными. Но все типы предназначены для одной функции - изоляции электрического тока внутри цепи, чтобы он не мог оказывать воздействие на внешний мир. Электропроводность металлов используется практически во всех сферах современной жизни человека, поэтому обеспечение безопасности является первоочередной задачей.

Электронная теория проводимости металлов была впервые создана в 1900 г. немецким физиком П.Друде и впоследствии разработана нидерландским физиком Х.Лоренцем. Основным ее положением является то, что носителями тока в метал­лах служат свободные электроны.

Это подтверждалось рядом классических опытов.

В опыте К.Рикке (1901 г.) электрический ток в течение года пропускался че­рез три последовательно соединенных металлических цилиндра (Cu, Al, Cu) с от­шлифованными торцами одинакового радиуса. Общий заряд, прошедший через ци­линдры, равнялся 3.5?10 6 Кл. Проведенное после этого взвешивание показало, что вес цилиндров не изменился, также не было обнаружено проникновения одного металла в другой. Следовательно, перенос заряда осуществлялся не ионами, а общими для всех металлов частицами - электронами.

Для подтверждения этого положения необходимо было определить знак и ве­личину удельного заряда q/m (заряда единицы массы) носителей тока. Идея опытов и их качественное воплощение принадлежит российским физикам Л.Мандельштаму и Н.Папалески (1913 г.). Если движущийся поступательно проводник резко остановить, то, подклю­ченный к нему гальванометр зафиксирует кратковременный ток. Это объясняется тем, что носители тока не связаны жестко с кристаллической решеткой и при тор­можении продолжают двигаться по инерции. По направлению тока гальванометра было определено, что знак заряда носителя тока - отрицательный. Согласно численному расчету, удельный заряд носителя тока оказался приблизительно равным удельному заряду электрона. К таким же результатам привели опыты Ч.Стюарта и Т.Толмена (1916 г.), в которых быстрые крутильные колебания катушки, соединенной с чувстви­тельным гальванометром, создавали переменный электрический ток. Таким образом, было доказано, что носителями электрического тока в метал­лах являются свободные электроны.

Свободные электроны - это валентные электроны атомов металла, наиболее слабо связанные с ядрами атомов. Они легко отрываются, переходят от одного атома к другому и являются как бы “обобществленными”. Атомы, оставшиеся без нескольких электроонов ‑ положительные ионы, колеблются около некоторых точек равновесия, называемых узлами кристаллической решетки, и мешают свободному движению электронов.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 3.1. Опытные доказательства электронной проводимости металлов.:

  1. Становление опытной науки в новоевропейской культуре. Формирование идеалов математизированного и опытного знания: оксфордская школа, Р. Бэкон, Оккам
  2. 3.2 Полукристаллические и аморфные металлы и сплавы. Особенности металлов в тонкопленочном состоянии
  3. 44)Виды инвестиций в драгоценные металлы в качестве резерв­ных активов и производные инструменты на их основе. Бан­ковские операции с драгоценными металлами
  4. Вопрос 29. Электронный документооборот. Электронная цифровая подпись.
  5. 5. Внедрение электронной системы государственных закупок на основе технологий электронно-цифровой подписи.
  6. 1.Порядок упаковки драг металлов и монет из драг металлов.
  7. 41 Электронные таблицы (ЭТ) (электронный процессор) в школьном курсе информатики. Методика обучения в этой среде.
  8. 50. Доказательства, проверяемые в предварительном слушании, на их допусти-мость в судебный процесс доказывания. Порядок рассмотрения вопроса о допустимости доказательств; основания к исключению доказательств.
  9. Билет №23 Вопрос 1. Средства доказывания (виды доказательств) в арбитражном процессе. Особенности исследования доказательств. Значение заявления о фальсификации доказательства.
  10. Кулик Татьяна Юрьевна. Особенности правового регулирования договоров, заключаемых в электронной форме [Электронный ресурс] : дис. ... канд. юрид. наук: 12.00.03. - Москва: РГБ, 2007, 2007