Уравнение h2s. Реакции с солями - окислителями. Качественная реакция на сульфид-анион

FeS + 2HCl = FeCl 2 + H 2 S

    Взаимодействие сульфида алюминия с холодной водой

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S

    Прямой синтез из элементов происходит при пропускании водорода над расплавленной серой:

H 2 + S = H 2 S.

    Нагревание смеси парафина с серой.

1.9. Сероводородная кислота и её соли

Сероводородной кислоте присущи все свойства слабых кислот. Она реагирует с металлами, оксидами металлов, основаниями.

Как двухосновная, кислота образует два типа солей – сульфиды и гидросульфиды . Гидросульфиды хорошо растворимы в воде, сульфиды щелочных и щелочно-земельных металлов также, сульфиды тяжелых металлов практически нерастворимы.

Сульфиды щелочных и щелочноземельных металлов не окрашены, остальные имеют характерную окраску, например, сульфиды меди (II), никеля и свинца – черные, кадмия, индия, олова – желтые, сурьмы – оранжевый.

Ионные сульфиды щелочных металлов M 2 S имеют структуру типа флюорита, где каждый атом серы окружен кубом из 8 атомов металла и каждый атом металла – тетраэдром из 4 атомов серы. Сульфиды типа MS характерны для щелочноземельных металлов и имеют структуру типа хлорида натрия, где каждый атом металла и серы окружен октаэдром из атомов другого сорта. При усилении ковалентного характера связи металл – сера реализуются структуры с меньшими координационными числами.

Сульфиды цветных металлов встречаются в природе как минералы и руды, служат сырьем для получения металлов.

Получение сульфидов

    Прямое взаимодействие простых веществ при нагревании в инертной атмосфере

    Восстановление твердых солей оксокислот

BaSO 4 + 4C = BaS + 4CO (при 1000°С)

SrSO 3 + 2NH 3 = SrS + N 2 + 3H 2 O (при 800°С)

CaCO 3 + H 2 S + H 2 = CaS + CO + 2H 2 O (при 900°С)

    Малорастворимые сульфиды металлов осаждают из их растворов действием сероводорода или сульфида аммония

Mn(NO 3) 2 + H 2 S = MnS↓ + 2HNO 3

Pb(NO 3) 2 + (NH 4) 2 S = PbS↓ + 2NH 4 NO 3

Химические свойства сульфидов

    Растворимые сульфиды в воде сильно гидролизованны, имеют щелочную среду:

Na 2 S + H 2 O = NaHS + NaOH;

S 2- + H 2 O = HS - + OH - .

    Окисляются кислородом воздуха, в зависимости от условий возможно образование оксидов, сульфатов и металлов:

2CuS + 3O 2 = 2CuO + 2SO 2 ;

CaS + 2O 2 = CaSO 4 ;

Ag 2 S + O 2 = 2Ag + SO 2 .

    Сульфиды, особенно растворимые в воде, являются сильными восстановителями:

2KMnO 4 + 3K 2 S + 4H 2 O = 3S + 2MnO 2 + 8KOH.

1.10. Токсичность сероводорода

На воздухе сероводород воспламеняется около 300 °С. Взрывоопасны его смеси с воздухом, содержащие от 4 до 45% Н 2 S. Ядовитость сероводорода часто недооценивают и работы с ним ведут без соблюдения достаточных мер предосторожности. Между тем уже 0,1 % Н 2 S в воздухе быстро вызывает тяжелое отравление. При вдыхании сероводорода в значительных концентрациях может мгновенно наступить обморочное состояние или даже смерть от паралича дыхания (если пострадавший не был своевременно вынесен из отравленной атмосферы). Первым симптомом острого отравления служит потеря обоняния. В дальнейшем появляются головная боль, головокружение и тошнота. Иногда через некоторое время наступают внезапные обмороки. Противоядием служит, прежде всего, чистый воздух. Тяжело отравленным сероводородом дают вдыхать кислород. Иногда приходится применять искусственное дыхание. Хроническое отравление малыми количествами Н 2 S обусловливает общее ухудшение самочувствия, исхудание, появление головных болей и т.д. Предельно допустимой концентрацией Н 2 S в воздухе производственных помещений считается 0,01 мг/л.

ОПРЕДЕЛЕНИЕ

Сероводород представляет собой бесцветный газ с характерным запахом гниющего белка.

Он немного тяжелее воздуха, сжижается при температуре -60,3 o С и затвердевает при -85,6 o С. На воздухе сероводород горит голубоватым пламенем, образуя диоксид серы и воду:

2H 2 S + 3O 2 = 2H 2 O + 2SO 2 .

Если внести в пламя сероводорода какой-нибудь холодный предмет, например фарфоровую чашку, то температура пламени значительно понижается и сероводород окисляется только до свободной серы, оседающей на чашке в виде желтого налета:

2H 2 S + O 2 = 2H 2 O + 2S.

Сероводород легко воспламеняется; смесь его с воздухом взрывает. Сероводород очень ядовит. Длительное вздыхание воздуха, содержащего этот газ даже в небольших количествах, вызывает тяжелые отравления.

При 20 o С один объем воды растворяет 2,5 объема сероводорода. Раствор сероводорода в воде называется сероводородной водой. При стоянии на воздухе, особенно на свету, сероводородная воды скоро становится мутной от выделяющейся серы. Это происходит в результате окисления сероводорода кислородом воздуха.

Получение сероводорода

При высокой температуре сера взаимодействует с водородом, образуя газ сероводород.

Практически сероводород обычно получают действием разбавленных кислот на сернистые металлы, например на сульфид железа:

FeS + 2HCl = FeCl 2 + H 2 S.

Более чистый сероводород можно получитьпри гидролизе CaS, BaS или A1 2 S 3 . Чистейший газполучается прямой реакцией водорода и серы при 600 °С.

Химические свойства сероводорода

Раствор сероводорода в воде обладает свойствами кислота. Сероводород - слабая двухосновная кислота. Она диссоциирует ступенчато и в основном по первой ступени:

H 2 S↔H + + HS — (K 1 = 6×10 -8).

Диссоциация по второй ступени

HS — ↔H + + S 2- (K 2 = 10 -14)

протекает в ничтожно малой степени.

Сероводород - сильный восстановитель. При действии сильных окислителей он окисляется до диоксида серы или до серной кислоты; глубина окисления зависит от условий: температуры, рН раствора, концентрации окислителя. Например, реакция с хлором обычно протекает до образования серной кислоты:

H 2 S + 4Cl 2 + 4H 2 O = H 2 SO 4 + 8HCl.

Средние соли сероводорода называют сульфидами.

Применение сероводорода

Применение сероводорода довольно ограничено, что, в первую очередь связано с его высокой токсичностью. Он нашел применение в лабораторной практике в качестве осадителя тяжелых металлов. Сероводород служит сырьем для получения серной кислоты, серы в элементарном виде и сульфидов

Примеры решения задач

ПРИМЕР 1

Задание Определите во сколько раз тяжелее воздуха сероводород H 2 S.
Решение Отношение массы данного газа к массе другого газа, взятого в том же объеме, при той же температуре и том же давлении, называется относительной плотностью первого газа по второму. Данная величина показывает, во сколько раз первый газ тяжелее или легче второго газа.

Относительную молекулярную массу воздуха принимают равной 29 (с учетом содержания в воздухе азота, кислорода и других газов). Следует отметить, что понятие «относительная молекулярная масса воздуха» употребляется условно, так как воздух - это смесь газов.

D air (H 2 S) = M r (H 2 S) / M r (air);

D air (H 2 S) = 34 / 29 = 1,17.

M r (H 2 S) = 2 ×A r (H) + A r (S) = 2 × 1 + 32 = 2 + 32 = 34.

Ответ Сероводород H 2 S тяжелее воздуха в 1,17 раз.

ПРИМЕР 2

Задание Найдите плотность по водороду смеси газов, в которой объемная доля кислорода составляет 20%, водорода - 40%, остальное - сероводород H 2 S.
Решение Объемные доли газов будут совпадать с молярными, т.е. с долями количеств веществ, это следствие из закона Авогадро. Найдем условную молекулярную массу смеси:

M r conditional (mixture) = φ (O 2) ×M r (O 2) + φ (H 2) ×M r (H 2) + φ (H 2 S) ×M r (H 2 S);

H 2 S– бесцветный газ с запахом тухлых яиц, плотностьH 2 Sв 1,19 раза выше плотности воздуха, поэтому он скапливается на пониженных участках (устьевые шахты и амбары для хранения БР).

H 2 Sобразует взрывоопасную смесь с воздухом в концентрации от 4,3 до 45% (метан в концентрации от 5 до 15%). Температура воспламененияH 2 S500 O F(260 O C), метана – 1000 O F(538 O C).H 2 Sгорит синим пламенем, при этом выделяется другой токсичный газ –SO 2 .H 2 Sхорошо растворяется в пресной воде, образуя слабую сероводородную кислоту.

Опасные свойства h2s

Наиболее опасное свойство H 2 S– это токсичность (таблица).

Кроме того, H 2 Sможет вызывать сильную коррозию. Признаками такой коррозии являются точечная коррозия и растрескивание под действием напряжений, ведущие к эрозии и разрушению труб.

Обнаружение и определение содержания h2s

Наличие H 2 Sв воздухе определяют с помощью электронных датчиков непрерывного контроля высокой чувствительности (регистрируютH 2 Sпри массовой доле 0,0001% и менее). При этом решающее значение имеет правильное размещение датчиков.

Отбор и анализ проб БР начинают за 50 м до вскрытия H 2 S-содержающего пласта.

Растворяясь в воде, H 2 Sдиссоциирует в два этапа с образованием гидросульфид- и сульфид-ионов:

I: H 2 S -> H + + HS - (pH = 4÷11)

II: HS - -> H + + S -- (pH > 11)

Так как pH> 11 в БР почти не бывает, то относительно «безобидные» сульфиды практически отсутствуют, а водорастворимые гидросульфиды могут снова превратиться вH 2 S:

HS - + H + ↔ H 2 S

Для обнаружения H 2 Sв БР используют «свинцовую» бумагу, т.е. полоски фильтровальной бумаги, пропитанныеPb(CH 3 COO) 2:

Pb(CH 3 COO) 2 + H 2 S -> PbS + 2CH 3 COOH

при этом бумага темнеет. Но этот метод позволяет только фиксировать наличие H 2 Sи сульфидов. Наиболее удобен газоанализатор Гаррэта, позволяющий определить весь объемH 2 Sи сульфидов, а также оценить эффективность поглотителяH 2 S. Если в фильтрате не обнаружено водорастворимых сульфидов, значитH 2 Sполностью удален из БР.

Влияние h2s на свойства бр и металл

Основные признаки поступления H 2 Sв БР:

    понижение pH;

    увеличение вязкости до нетекучести и фильтрации (коагуляция);

    сближение значений СНС за 1 и 10 мин;

    высокая адгезия глинистой корки, сальникообразование, приводящее к прихвату;

    почернение бурильных труб, которое легко удаляется ветошью, смоченной дизтопливом.

Как уже отмечалось, H 2 Sобладает высокой коррозионной активностью. Особенно опасно водородное «охрупчивание» металла. При «охрупчивании» образующийся в результате диссоциации сероводорода в воде атомарный водород диффундирует внутрь металла, резко изменяя его свойства. Повреждения металла при этом не имеют никаких внешних признаков и происходят не сразу. Существует так называемый инкубационный период, достигающий в зависимости от прочности стали и массовой долиH 2 Sдо 10000 часов. Затем внезапно наступает разрушение металла, при этом слом – пиловидный.

Нейтрализация h2s в буровом растворе

Химические реагенты, применяемые для нейтрализации (удаления) всех сульфидов, содержащихся в растворенном виде (H 2 S, ионыHS - иS --) называются «поглотителями сероводорода).

Идеальный поглотитель H 2 Sдолжен отвечать следующим требованиям:

    реакция должна быть полной, кратковременной и прогнозируемой; продукты реакции всегда должны оставаться инертными для БР;

    быть эффективным для различных химических и физических параметров БР;

    избыточное количество поглотителя не должно отрицательно влиять на свойства БР;

    сам поглотитель и продукты его реакции не должны оказывать коррозирующего действия;

    быть не токсичным.

Ни один из существующих поглотителей не может считаться идеальным. Но ряд химических реагентов могут применяться в качестве эффективных поглотителей H 2 S. Большинство из них обеспечивают удаление сульфидов из БР в результате образования нерастворимого осадка (водонерастворимого сульфида).

    Молекулярная масса: 34,076
    Температура плавления (при 760 мм рт. ст.), °С: -82,9
    Температура кипения (при 760 мм рт. ст.), °C: -60,33
    Температура воспламенения, °С: 260
    Предельная объемная концентрация воспламенения, %: 4,3
    Плотность при 760 мм рт. ст. и 0 °С, кг/м3: 1,5392
    Плотность жидкого газа при 760 мм рт. ст., кг/м3: 950
    Теплоёмкость газа при 760 мм рт. ст. и 0 °С, ккал/(кг °С):
    при постоянном давлении: 0,254
    при постоянном объеме: 0,192
    Теплота сгорания при 760 мм рт. ст. и 15 °С, ккал/кг: 4156

Важнейшие соединения серы

Соединения серы со степенью окисления -2

Сероводород H 2 S.
Сероводород H 2 S встречается в природе в водах некоторых минеральных источников, в вулканических газах, в попутных газах месторождения нефти. Бесцветный газ с неприятным запахом тухлых яиц, t пл = -86 °С, t кип = -60 °С. Ядовит. В твердом состоянии существует в трех различных модификациях. Мало растворим в воде, водный раствор H 2 S - это слабая кислота. К 1 = 0,87 10-7, К 2 = 10-14. Сильный восстановитель. Получают в промышленности как побочный продукт при очистке нефти, природного и коксового газа. В лаборатории часто получают в аппарате Киппа при взаимодействии FeS c HC l . Применяют в производстве H 2 SO 4 , S; для получения сульфидов, сераорганических соединений; в аналитической химии для осаждения сульфидов; для приготовления лечебных, сероводородных ванн. Раздражает слизистые оболочки и дыхательные органы.

Соединения серы со степенью окисления +1

Оксид серы (I) S 2 O.
Оксид серы (I) S 2 O это желтый газ, который может несколько часов сохраняться при комнатной температуре (в чистом и сухом сосуде) лишь под давлением не выше 40 мм. рт. ст. Молекула SO 2 полярна. Сильное охлаждение переводит закись серы в оранжево-красное твердое вещество. Молекулярным кислородом при обычной температуре не окисляется, а водой легко разлагается. Более или менее легко реагирует с большинством металлов. Получают при взаимодействии SO 2 с серой.

Хлористая сера S 2 Cl 2 .
Хлористая сера S 2 Cl 2 это бесцветная жидкость, t пл = -77 °С, t кип = 138 °С. Получают в больших количествах прямым действием сухого хлора на избыток серы. Применяют для получения двухлористой серы.

Соединения серы со степенью окисления +2

Серноватистая (тиосерная) кислота H 2 S 2 O 3 .
Сильная кислота (по силе близка к серной кислоте). При комнатной температуре неустойчива и разлагается на H 2 O, SO 2 и S. Молярная электропроводность при бесконечном разведении при 25 °С равна 874,4 Cм см 2 /моль.

Двухлористая сера SCl 2 .
Жидкость красного цвета, t пл = -78 °С, t кип = 60 °С. Молекула SCl 2 имеет форму равнобедренного треугольника. Получается при взаимодействии хлористой серы с хлором. В обычных условиях медленно разлагается на хлористую серу и хлор.

Соединения серы со степенью окисления +3

Дитионистая кислота H 2 S 2 O 4 .
Неустойчива и в свободном состоянии не получена.

Соединения серы со степенью окисления +4

Сернистая кислота H 2 SO 3 .
Двухосновная кислота средней силы. Неустойчива. В свободном состоянии не выделена. Молярная электропроводность при бесконечном разведении при 25 °С равна 843,6 Cм см 2 /моль.

Хлористый тионил SOCl 2 .
Бесцветная жидкость с резким запахом, t пл = -100 °С, t кип = 76 °С. Является плохим растворителем типичных солей, но хорошим для многих менее полярных веществ. Взаимодействует с водой. Применяется для изготовления красителей, фармацевтических препаратов. Им удобно пользоваться для получения безводных хлоридов металлов из их кристаллогидратов.

Соединения серы со степенью окисления +6

Оксид серы (VI) SO 3 .
Известен в трех модификациях: a, b, g. При конденсации паров SO 3 образуется бесцветные, прозрачные как лед кристаллы (t пл = 62 °С), это g-форма, которая при хранении переходит в b-форму, похожую на асбест (t пл = 32 °С). a-форма (t пл = 17 °С, t кип = 44,8 °С) образуется при особых условиях. Из этих трех форм наиболее высоким давлением пара обладает g-форма. Полученный серный ангидрид может быть твердым или частично жидким. Жадно соединяясь с водой, дымит на воздухе. В воде он растворяется с образованием серной кислоты. Образует соединения с водой, аммиаком или его органическими производными. Получают окислением сернистого газа.

Серная кислота H 2 SO 4 .
Безводная серная кислота - бесцветная маслянистая жидкость, без запаха, t пл = 10 °С, t кип = 296 °С. Концентрированная серная кислота вызывает ожоги кожи. Серная кислота может быть различной чистоты и концентрации. Плотность увеличивается с концентрацией и достигает максимального значения при концентрации 98,3%, при дальнейшем повышении концентрации плотность кислоты снижается. Растворение в воде сопровождается выделением большого количества тепла и уменьшением объема. При давлении 760 мм рт. ст. все водные растворы кипят при температуре выше 100 °С, точка кипения повышается с увеличением концентрации. Мало летуча. Концентрированная серная кислота действует почти на все металлы без выделения водорода. Молярная электропроводность при бесконечном разведении при 25 °С равна 859,6 Cм см 2 /моль. Для промышленного получения применяются два способа: нитрозный и контактный. Основным исходным продуктом в обоих случаях является сернистый газ. Является важнейшим химическим продуктом. Применяется почти во всех отраслях химической промышленности и в целом ряде других отраслей народного хозяйства.

Хлористый сульфурил SO 2 Cl 2 .
Представляет собой бесцветную жидкость с резким запахом, t пл = -54 °С, t кип = 69 °С. Холодная вода действует на него медленно, но горячей он быстро разлагается с образованием серной и соляной кислот.

В этой статье мы рассмотрим получение сероводорода из серы. Подробнее разберем физические и химические свойства данного вещества.

Строение

Для того чтобы проанализировать основное получение сероводорода, необходимо выяснить особенности его строения. В составе данного вещества содержатся один атом серы и два водорода. Они являются неметаллами, поэтому между элементами образуются В сероводороде угловое строение. Между серой и водородом образуется угол в 92 градуса, что чуть меньше, чем в воде.

Физические свойства

Запах сероводорода, напоминающий тухлые яйца, знаком всем. При нормальных условиях данное вещество находится в газообразном состоянии. Оно не имеет цвета, плохо растворимо в воде, ядовито. В среднем при 20 градусах по Цельсию в воде будет растворяться 2,4 объема сероводорода. У сероводородной воды выявлены незначительные диссоциация вещества протекает ступенчато. Ядовитый сероводород опасен даже в незначительных дозах. Содержание в воздухе около 0,1 процента сероводорода приводит к параличу дыхательного центра с потерей сознания. Например, легендарный естествоиспытатель Плиний Старший погиб в 79 веке до нашей эры именно от сероводорода, который образовывался при извержении Везувия.

Причина отравляющего действия сероводорода в его химическом взаимодействии с гемоглобином крови. Железо, содержащееся в этом белке, образует сульфид с сероводородом.

Предельно допустимой концентрацией в воздухе сероводорода считается 0,01 мг/л. В качестве противоядия используется вдыхание чистого кислорода либо воздуха, в составе которого есть незначительное количество хлора.

Работа с сероводородом предполагает соблюдение определенных правил безопасности. Все эксперименты, касающиеся данного газообразного вещества, осуществляются в герметичных приборах и вытяжных шкафах.

Способы получения сероводорода

Каково получение сероводорода в лаборатории? Самым распространенным вариантом является взаимодействие водорода с серой. Данная химическая реакция относится к соединению, проводится в вытяжном шкафу.

Кроме того, получение сероводорода возможно и при обмене между твердым сульфидом железа (2) и раствором серной либо соляной кислоты. Чтобы получить такой результат, в пробирку достаточно взять несколько кусков сульфида, не превышающих по размеру горошину. Далее в пробирку (до половины объема) добавляют раствор кислоты, закрывают газоотводной трубкой. Прибор помещают под вытяжку, пробирку нагревают. Химическое взаимодействие сопровождается выделением пузырьков газа. Такое получение сероводорода позволяет создавать количество вещества, достаточное для рассмотрения его химических свойств.

Какие еще бывают способы? В лаборатории допускается получение сероводорода путем взаимодействия металлического железа (под вытяжкой) с кристаллической серой, с последующим взаимодействием сульфида с серной кислотой.

Химические свойства

Сероводород взаимодействует с кислородом воздуха, горит он голубоватым цветом. В случае полного сгорания продуктами реакции являются (4) и вода. Учитывая, что печной газ является кислотным оксидом, в растворе он образует слабую окрашивающую синюю в красный цвет.

В случае недостаточного количества сероводорода образуется кристаллическая сера. Данный процесс считается промышленным способом получения из сероводорода чистой серы.

У данного химического вещества выявлены и отличные восстановительные способности. Они проявляются, к примеру, при взаимодействии с солями, галогенами. Для того чтобы провести в лабораторных условиях подобную реакцию, в пробирки с хлором и бромом наливают раствор сероводорода, наблюдают обесцвечивание. В качестве продукта реакции наблюдают образование кристаллической серы.

При химической реакции сероводорода с водой происходит образование катиона гидроксония Н3О+.

Сероводород способен образовывать два вида соединений: сульфиды (средние соли) и гидросульфиды

У щелочных и щелочноземельных металлов сульфиды являются бесцветными соединениями. У тяжелых металлов (меди, никеля, свинца) они имеют черный цвет. Сульфид марганца обладает розовым цветом. Многие соли не растворяются в воде.

Качественной реакцией на сульфиды считают взаимодействие с раствором сульфата меди (2). Продуктом подобного взаимодействия будет выпадение черного осадка сульфида меди (2).

Заключение

В природе это вещество находится в минеральных источниках, вулканических газах. Данное соединение является продуктом гниения животных и растительных организмов, его отличает характерный запах сероводорода. Природные сульфиды обнаружены в составе редких металлов, в металлургии из них получают соответствующие элементы. Важно помнить и о том, что сероводород является сильным отравляющим веществом.