Сложение пар сил в технической механике. Основные свойства пары. Свойства момента силы

Пара сил - совокупность двух параллельных друг другу сил равных по величине и направленных в противоположные стороны. Пара сил не может быть более упрощена (заменена одной силой) и представляет собой новую силовую характеристику механического взаимодействия.

Теорема о моменте пары сил. Момент пары сил не зависит от выбора центра привидения и равен произведению любой из сил пары на плечо пары, взятый со знаком «+» при вращении пары против часовой стрелки или со знаком «-» при вращении по часовой.

Плечо пары сил - длина перпендикуляра опущенного из любой точки линии действия одной силы к линии действия другой силы этой пары.

Теорема об эквивалентности пар сил в плоскости. Пары сил, лежащие в одной плоскости, эквивалентны, если их моменты численно равны и одинаковы по знаку.

Следствие. Пару сил, не изменяя ее действие на твердое тело, можно переносить в любое место в плоскости ее действия, поворачивать ее плечо на любой угол, а также изменять это плече и модули сил, не изменяя величины ее момента и направления вращения. Следовательно, основной характеристикой пары сил является ее момент.

Теорема об эквивалентности пар сил в пространстве. Пары сил в пространстве эквивалентны, если их моменты геометрически равны.

Следствие. Не изменяя действия пары сил на твердое тело, пару сил можно переносить в любую плоскость, параллельную плоскости ее действия, а также изменять ее силы и плечо, сохраняя неизменным модуль и направление ее момента. Вектор момента пары сил можно переносить в любую точку, т.е. момент пары сил является свободным вектором. Вектор момента пары сил определяет все три ее элемента: положение плоскости действия пары, направление вращения и числовое значение момента.

Теорема о сложении пар сил на плоскости. Систему пар сил можно заменить парой сил, момент которой равен алгебраической сумме моментов исходных пар. Кинематическое состояние тела не изменяется.

Условие равновесия системы пар сил:

Статические инварианты и динамические винты

Инварианты системы сил - величины, не зависящие от выбора центра приведения. Первый векторный инвариант - главный вектор системы сил .

Главный момент не является инвариантом т.к. зависит от центра привидения. Однако существует величина, связанная с главным вектором и не зависящая от центра приведения. Однако существует величина, связанная с главным вектором и не зависящая от центра привидения:

1)

3) .

Второй скалярный инвариант - скалярное произведение главного вектора на вектор главного момента.

.

Главный минимальный момент также инвариантная величина:

.

Динамический винт - совокупность действующих на тело силы F и пары сил с моментом М , лежащей в плоскости перпендикулярной силе F. К динамическому винту приводится в наиболее общем случае произвольная система сил, действующих на тело. Дальнейшее упрощение динамического винта не возможно, т.е. его нельзя заменить одной силой и одной парой сил. Можно лишь сложив F с одной из сил пары привести его к двум скрещивающимся силам.

ПРАКТИЧЕСКАЯ РАБОТА № 2

Тема: Определение реакций опор.

Цель: Определить реакции опор двухопорной балки.

Оснащение: методические указания; алгоритм; карточки индивидуальных заданий.

Ход работы:

1) Ознакомиться с краткими теоретическими сведениями.

2) Ответить на контрольные вопросы.

3) Выполнить индивидуальное задание.

4) Оформить отчёт.

Краткие теоретические сведения

Пара сил. Момент пары сил

Парой сил называется система из двух параллельных сил равных по величине, противоположных по направлению и не лежащих на одной прямой (рисунок 1).

Рисунок 1 – Пара сил

Плоскость, в которой расположены силы, называют плоскостью пары.

Кратчайшее расстояние между линиями действия сил называется плечом пары.

Момент пары сил по абсолютному значению равен произведению одной из сил на ее плечо.

М = F·a = F"·a.

Эффект действия пары сил полностью определяется ее моментом. Поэтому момент пары сил можно показывать дугообразной стрелкой, указывающей направление вращения (рисунок 2).

Рисунок 2 – Определение знака момента пары сил

Эквивалентность пар. Сложение и равновесие пар сил на плоскости

Две пары сил считаются эквивалентными в том случае, если после замены одной пары другой парой механическое состояние тела не изменяется, т. е. не изменяется движение тела или не нарушается его равновесие.

Эффект действия пары сил на твердое тело не зависит от ее положения в плоскости. Таким образом, пару сил можно переносить в плоскости ее действия в любое положение.

Рассмотрим еще одно свойство пары сил, которое является основой для сложения нар.

Не нарушая состояния тела, можно как угодно изменять модули сил и плечо пары, только бы момент пары оставался неизменным.

Рисунок 3 – Эквивалентные пары сил

Если, изменив значения сил и плечо новой пары, мы сохраним равенство их моментов М 1 = М 2 или F1·а = F2·b, то состояние тела от такой замены не нарушится.

Подобно силам, пары можно складывать. Пара, заменяющая собой действие данных пар, называется результирующей.



Две пары можно заменить одной парой, момент которой равен алгебраической сумме моментов исходных пар.

Это применимо к любому количеству пар, лежащих в одной плоскости. Поэтому при произвольном числе слагаемых пар, лежащих в одной плоскости или параллельных плоскостях, момент результирующей пары определится по формуле:

М Σ = М 1 + М 2 + … + М n = Σ М i ,

где моменты пар, вращающие по часовой стрелке принимаются положительными, а против часовой стрелки - отрицательными.

Условие равновесия системы пар, лежащих в одной плоскости: для равновесия системы пар необходимо и достаточно, чтобы момент результирующей пары равнялся нулю или чтобы алгебраическая сумма моментов пар равнялась нулю.

Просмотр: эта статья прочитана 24574 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Обзор

Какое-либо кинематическое состояние тел, имеющих точку или ось вращения, можно описать моментом силы, характеризующим вращательный эффект действия силы.

Момент силы относительно центра - это векторное произведение радиус - вектора точки приложения силы на вектор силы.

Плечо силы - кратчайшее расстояние от центра до линии действия силы (перпендикуляр из центра на линию действия силы).

Вектор направляется по правилу векторного произведения: момент силы относительно центра (точки) как вектор направлен перпендикулярно плоскости, в которой расположены сила и центр так, чтобы с его конца было видно, что сила пытается вращать тело вокруг центра против хода часовой стрелки.

Единицей измерения момента силы есть 1

Момент силы относительно центра в плоскости - алгебраическая величина, которая равняется произведению модуля силы на плечо относительно того же центра с учетом знака.

Знак момента силы зависит от направления, в котором сила пытается вращать вокруг центра:

  • против хода часовой стрелки -„−” (отрицательный)
  • по часовой стрелке -„+” (положительный);

Свойства момента силы относительно центра (точки ).

  1. Модуль момента силы относительно точки равняется удвоенной площади треугольнику построенного на векторах.
  2. Момент силы относительно точки не изменяется при перенесении силы вдоль ее линии действия, поскольку неизменным остается плечо силы.
  3. Момент силы относительно центра (точки) равняется нулю, если:
  • сила равняется нулю F = 0;
  • плечо силы h = 0, т.е. линия действия силы проходит через центр.

Теорема Вариньона (о моменте равнодействующей).

Момент равнодействующей плоской системы сходящихся сил относительно какого-либо центра равняется алгебраической сумме моментов составляющих сил системы относительно того же центра.


Теория пар сил

Сложение двух параллельных сил, направленных в одну сторону.

Равнодействующая системы двух параллельных сил направленных в одну сторону равняется по модулю сумме модулей составляющих сил, параллельна им и направлена в том же направлении.

Линия действия равнодействующей проходит между точками приложения составляющих на расстояниях от этих точек, обратно пропорциональных к силам

Сложение двух параллельных сил, направленных в разные стороны (случай сил разных по модулю)

Равнодействующая двух параллельных, неравных по модулю, противоположно направленных сил параллельна им и направлена в направлении большей силы и по модулю равняется разности составляющих сил.

Линия действия равнодействующей проходит за пределами отрезка (со стороны большей силы), соединяющего точки их приложения, и отстоит от них на расстояния, обратно пропорциональные силам.

Пара сил - система двух параллельных, равных по модулю и противоположных по направлению сил, приложенных к абсолютно твердому телу.

Плечо пары сил - расстояние между линиями действия сил пары, т.е. длина перпендикуляра, проведенного из произвольной точки линии действия одной из сил пары на линию действия второй силы.

Плоскость действия пары сил - это плоскость, в которой расположены линии действий сил пары.
Действие пары сил сводится к вращательному движению, которое определяется моментом пары.

Моментом пары называется вектор с такими признаками:

  • он перпендикулярен плоскости пары;
  • направлен в ту сторону, откуда вращение, которое осуществляет пара, видно против часовой стрелки;
  • его модуль равняется произведению модуля одной из сил пары на плечо пары с учетом знака

Знак момента пары сил:

  • „+” - вращение против часовой стрелки
  • „-„ - вращение по часовой стрелке

Момент пары сил равняется произведению модуля одной из сил пары на плечо пары.

Момент пары - свободный вектор - для него ни точка приложения, ни линия действия не обозначены, они могут быть произвольными.

Свойство момента пары сил: момент пары равняется моменту одной из сил относительно точки приложения второй силы.

Теоремы о паре сил

Теорема 1. Пара сил не имеет равнодействующей, т.е. пару сил нельзя заменить одной силой.

Теорема 2. Пара сил не является системой уравновешенных сил.

Следствие : пара сил, действующая на абсолютно твердое тело, старается вращать его.

Теорема 3. Сумма моментов сил пары относительно произвольного центра (точки) в пространстве является величиной неизменной и представляет собой вектор-момент этой пары.

Теорема 4. Сумма моментов сил, которые составляют пару, относительно произвольного центра в плоскости действия пары не зависит от центра и равняется произведению силы на плечо пары с учетом знака, т.е. самому моменту пары.

Теорема 5 - об эквивалентности пар. Пары сил, моменты которых равны численно и по знаку, являются эквивалентными. Т.е. пару сил можно заменить или уравновесить только другой эквивалентной парой сил.

Теорема 6 - об уравновешенности пары сил. Пара сил составляет уравновешенную систему сил тогда и только тогда, когда момент пары равняется нулю.

Теорема 7 - о возможностях перемещения пары сил в плоскости ее действия. Пара сил, полученная перемещениям пары в любое место в плоскости ее действия, эквивалентна предоставленной паре.

Теорема 8 - о добавлении пар сил в плоскости. Момент пары, эквивалентной предоставленной системе пар в плоскости, равняется алгебраической сумме моментов составляющих пар. Т.е. для сложения пар сил необходимо сложить их моменты.

Условия равновесия системы пар сил.

Пары сил в плоскости уравновешиваются в том случае, если алгебраическая сумма их моментов равняется нулю.

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении

Пусть к твердому телу приложены одновременно несколько пар сил с моментами , действующих в различных плоскостях. Можно ли эту систему пар привести к более простому виду? Оказывается, что можно, и ответ подсказывается следующей теоремой о сложении двух пар.

Теорема. Две пары сил, действующие в разных плоскостях, эквивалентны одной паре сил с моментом, равным геометрической сумме моментов заданных пар.

Пусть пары заданы своими моментами и (рис. 36,а). Построим две плоскости, перпендикулярные этим векторам (плоскости действия пар) и, выбрав некоторый отрезок АВ на линии пересечения плоскостей за плечо, общее для обеих пар, построим соответствующие пары: (рис. 36, б).

В соответствии с определением момента пары можем написать

В точках А и В имеем сходящиеся силы. Применяя правило параллелограмма сил (аксиома 3), будем иметь:

Заданные пары оказываются эквивалентными двум силам , также образующим пару. Тем самым первая часть теоремы доказана. Вторая часть теоремы доказывается прямым вычислением момента результирующей пары:

Если число пар то, попарно складывая их в соответствии с этой теоремой, можно любое число пар привести к одной паре. В результате приходим к следующему выводу: совокупность (систему) пар сил, приложенных к абсолютно твердому телу, можно привести к одной паре с моментом, равным геометрической сумме моментов всех заданных пар.

Математически это можно записать следующим образом:

На рис. 37 дается геометрическая иллюстрация полученного вывода.

Для равновесия пар сил требуется, чтобы момент результирующей пары был равен нулю, что приводит к равенству

Это условие можно выразить в геометрической и аналитической форме. Геометрическое условие равновесия пар сил: чтобы система пар сил находилась в равновесии, необходимо и достаточно, чтобы векторный многоугольник, построенный из моментов всех пар, был замкнутым.

Аналитическое условие равновесия пар сил: чтобы система пар сил находилась в равновесии, необходимо и достаточно, чтобы алгебраические суммы проекций векторов-моментов всех пар на произвольно выбранные координатные оси Oxyz были равны нулю:

Если все пары лежат в одной плоскости, то есть образуют плоскую систему пар, получается лишь одно аналитическое условие равновесия-сумма алгебраических моментов пар равна нулю.

Вопросы для самопроверки

1. В чем состоит правило силового многоугольника? Для чего служит силовой многоугольник?

2. Как найти равнодействующую сходящихся сил аналитическим способом?

3. В чем состоит геометрическое условие равновесия сходящихся сил? Как формулируется это же условие аналитически?

4. Сформулируйте теорему о трех силах.

5. Какие задачи статики называются статически определенными и какие - статически неопределенными? Приведите пример статически неопределенной задачи.

6. Что называется парой сил?

7. Что называется моментом (вектором-моментом) пары сил? Каковы направление, модуль и точка приложения момента?

8. Что называется алгебраическим моментом пары?

9. Сформулируйте правило сложения пар, произвольным образом расположенных в пространстве.

10. В чем заключаются векторное, геометрическое и аналитическое условия равновесия системы пар сил?


Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

Забайкальский государственный университет

Кафедра теоретической механики

Р Е Ф Е Р А Т

По теме: «Эквивалентность пар сил в пространстве и на плоскости, их сложение и условие равновесия»

Студент: Садилов И.А.

Группа: СУС-13-2

Преподаватель: Геллер Ю.А.

г.Чита, 2014 г.

    Что такое пара сил…………………………………………………3

    Теорема о сумме моментов пары сил…………………………….3

    Теорема об эквивалентности пар сил……………………………4

    Теорема о переносе пары сил в параллельную плоскость…….5

    Теорема о сложении пар сил…………………………………….8

    Условия равновесия пар сил……………………………………..8

    Выводы…………………………………………………………….9

    Список используемой литературы………………………………10

ПАРА СИЛ

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абсолютно твердое тело.

Плоскостью действия пары сил называется плоскость в которой расположены эти силы.

Плечом пары сил d называется кратчайшее расстояние между линиями действия сил пары.

Моментом пары сил называется вектор , модуль которого равен произведению модуля одной из сил пары на ее плечо и который направлен перпендикулярно плоскости действия сил пары в ту сторону, откуда пара видна стремящейся повернуть тело против хода часовой стрелки.

Теорема о сумме моментов пары сил. Сумма моментов сил, входящих в состав пары, относительно любой точки не зависит от выбора этой точки и равна моменту этой пары сил.

Доказательство: Выберем произвольно точку О. Проведем из нее в точки А и В радиус-векторы (Смотри Рис. 4.2).

,

Ч то и требовалось доказать.

Две пары сил называются эквивалентными , если их действие на твердое тело одинаково при прочих равных условиях.

Теорема об эквивалентности пар сил. Пару сил, действующую на твердое тело, можно заменить другой парой сил, расположенной в той же плоскости действия и имеющий одинаковый с первой парой момент.


.

Перенесем силу в точку , а силу в точку . Проведем через точки
две любые параллельные прямые, пересекающие линии действия сил пары. Соединим точки
отрезком прямой и разложим силы в точке и в точке по правилу параллелограмма.

Так как
, то

и

Поэтому
эквивалентна системе
, а эта система эквивалентна системе
, так как
эквивалентна нулю.

Таким образом мы заданную пару сил
заменили другой парой сил
. Докажем, что моменты у этих пар сил одинаковы.

Момент исходной пары сил

, а момент пары сил
численно равен площади параллелограмма
. Но площади этих параллелограммов равны, так как площадь треугольника
равна площади треугольника
.

Что и требовалось доказать.

Теорема о переносе пары сил в параллельную плоскость . Действие пары сил на твердое тело не изменится от переноса этой пары в параллельную плоскость.

Доказательство: Пусть на твердое тело действует пара сил
в плоскости . Из точек приложения сил А и В опустим перпендикуляры на плоскость
и в точках их пересечения с плоскостью
приложим две системы сил
и
, каждая из которых эквивалентна нулю.




Сложим две равные и параллельные силы и
. Их равнодействующая
в точке О.

Сложим две равные и параллельные силы и
. Их равнодействующая
параллель-на этим силам, равна их сумме и приложена посредине отрезка
в точке О.

Так как
, то система сил
эквивалентна нулю и ее можно отбросить.

Таким образом пара сил
эквивалентна паре сил
, но лежит в другой, параллельной плоскости. Что и требовалось доказать.

Следствие: Момент пары сил, действующий на твердое тело, есть свободный вектор.

Две пары сил, действующих на одно и то же твердое тело, эквивалентны, если они имеют одинаковые по модулю и направлению моменты.

Теорема о сложении пар сил. Две пары сил, действующих на одно и то же твердое тело, и лежащие в пересекающихся плоскостях, можно заменить одной эквивалентной парой сил, момент которой равен сумме моментов заданных пар сил.

Доказательство: Пусть имеются две пары сил, расположенные в пересекающихся плоскостях. Пара сил
в плоскости характеризуется моментом
, а пара сил
в плоскости
характеризуется моментом
.

Расположим пары сил так, чтобы плечо пар было общим и располагалось на линии пересечения плоскостей. Складываем силы, приложенные в точке А и в точке В,

. Получаем пару сил
.

Что и требовалось доказать.

Условия равновесия пар сил

Если на твердое тело действует несколько пар сил, как угодно расположенных в пространстве, то последовательно применяя правило параллелограмма к каждым двум моментам пар сил, можно любое количество пар сил заменить одной эквивалентной парой сил, момент которой равен сумме моментов заданных пар сил.

Теорема. Для равновесия пар сил, приложенных к твердому телу, необходимо и достаточно, чтобы момент эквивалентной пары сил равнялся нулю.

Теорема. Для равновесия пар сил, приложенных к твердому телу, необходимо и достаточно, чтобы алгебраическая сумма проекций моментов пар сил на каждую из трех координатных осей была равна нулю.



Условия равновесия системы сил

Векторная форма

Для равновесия произвольной системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы главный вектор системы сил был равен нулю и главный момент системы сил относительно любого центра приведения также был равен нулю.


Алгебраическая форма.

Для равновесия произвольной системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы три суммы проекций всех сил на оси декартовых координат были равны нулю и три суммы моментов всех сил относительно трех осей координат также были равны нулю.





Условия равновесия пространственной системы

параллельных сил

На тело действует система параллельных сил. Расположим ось Oz параллельно силам.

Уравнения


Для равновесия пространственной системы параллельных сил, действующих на твердое тело, необходимо и достаточно, чтобы сумма проекций этих сил была равна нулю и суммы моментов этих сил относительно двух координатных осей, перпендикулярным силам, также были равны нулю.



- проекция силы на ось Oz.

Выводы:

    Пару сил как жесткую фигуру можно как угодно поворачивать и переносить в ее плоскости действия.

    У пары сил можно изменять плечо и силы, сохраняя при этом момент пары и плоскость действия.

3.момент пары является свободным вектором и полностью определяет действие пары на абсолютно твердое тело. Для деформируемых тел теория пар неприменима.

ЛИТЕРАТУРА:

1. Кирсанов М.Н Теоретическая механика. Учебник для самоподготовки.

2.Тарг С.М Курс по Теоретической Механике.