Что такое плотность распределения вероятностей. Теория вероятностей введение. Генеральная совокупность и случайная величина

Определение . Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

Для непрерывной случайной величины вводится понятие функции распределения.

Определение. Функцией распределения вероятностей случайной величины Х называют функцию F(х), определяющую для каждого значения x вероятность того, что случайная величина Х примет значение меньшее x, то есть:

F(х) = P(X < x)

Часто вместо термина «функция распределения» используют термин «интегральная функция распределения».

Свойства функции распределения:

1. Значения функции распределения принадлежат отрезку:

0 ≤ F(х) ≤ 1.

2. Функция распределения есть неубывающая функция, то есть:

если x > x ,

то F(x ) ≥ F(x ).

3. Вероятность того, что случайная величина примет значение, заключенное в интервале :

вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала [a ; b ], равна определённому интегралу от её плотности вероятности в пределах от a до b :

.

При этом общая формула функции F (x ) распределения вероятностей непрерывной случайной величины, которой можно пользоваться, если известна функция плотности f (x ) :

.

График плотности вероятности непрерывной случайной величины называется её кривой распределения (рис. ниже).

Площадь фигуры (на рисунке заштрихована), ограниченной кривой, прямыми, проведёнными из точек a и b перпендикулярно оси абсцисс, и осью Ох , графически отображает вероятность того, что значение непрерывной случайной величины Х находится в пределах от a до b .

Свойства функции плотности вероятности непрерывной случайной величины

1. Вероятность того, что случайная величина примет какое-либо значение из интервала (и площадь фигуры, которую ограничивают график функции f (x ) и ось Ох ) равна единице:

2. Функция плотности вероятности не может принимать отрицательные значения:

а за пределами существования распределения её значение равно нулю

Плотность распределения f (x ), как и функция распределения F (x ), является одной из форм закона распределения, но в отличие от функции распределения, она не универсальна: плотность распределения существует только для непрерывных случайных величин.

Упомянем о двух важнейших в практике видах распределения непрерывной случайной величины.

Если функция плотности распределения f (x ) непрерывной случайной величины в некотором конечном интервале [a ; b ] принимает постоянное значение C , а за пределами интервала принимает значение, равное нулю, то такое распределение называется равномерным .

Если график функции плотности распределения симметричен относительно центра, средние значения сосредоточены вблизи центра, а при отдалении от центра собираются более отличающиеся от средних (график функции напоминает разрез колокола), то такое распределение называется нормальным .

Пример 1. Известна функция распределения вероятностей непрерывной случайной величины:

Найти функцию f (x ) плотности вероятности непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 4 до 8: .

Решение. Функцию плотности вероятности получаем, находя производную функции распределения вероятностей:

График функции F (x ) - парабола:

График функции f (x ) - прямая:

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 4 до 8:

Пример 2. Функция плотности вероятности непрерывной случайной величины дана в виде:

Вычислить коэффициент C . Найти функцию F (x ) распределения вероятностей непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 0 до 5: .

Решение. Коэффициент C найдём, пользуясь свойством 1 функции плотности вероятности:

Таким образом, функция плотности вероятности непрерывной случайной величины:

Интегрируя, найдём функцию F (x ) распределения вероятностей. Если x < 0 , то F (x ) = 0 . Если 0 < x < 10 , то

.

x > 10 , то F (x ) = 1 .

Таким образом, полная запись функции распределения вероятностей:

График функции f (x ) :

График функции F (x ) :

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 0 до 5:

Пример 3. Плотность вероятности непрерывной случайной величины X задана равенством , при этом . Найти коэффициент А , вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[, функцию распределения непрерывной случайной величины X .

Решение. По условию приходим к равенству

Следовательно, , откуда . Итак,

.

Теперь находим вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[:

Теперь получим функцию распределения данной случайной величины:

Пример 4. Найти плотность вероятности непрерывной случайной величины X , которая принимает только неотрицательные значения, а её функция распределения .

Непрерывные случайные величины характеризуются тем, что их значения могут сколь угодно мало отличаться друг от друга.

Вероятность события X < х (где X – значение , а х – произвольно задаваемое значение), рассматриваемая как функция от х , называется функцией распределения вероятностей :

F (x ) = Р (Х <х ).

Производная от функции распределения вероятностей называется функцией плотности распределения вероятностей или плотностью вероятности :

f (x ) = F" (x ).

Функция распределения вероятностей выражается через плотность вероятности в виде интеграла:

х 1 , х 2) равна приращению функции распределения вероятностей на этом интервале:

P (x 1 <X <x 2) = F (x 2) – F (x 1). (4)

3.1. Случайная величина X задана функцией распределения вероятностей:

Найти плотность вероятности f (x ) и вероятность попадания случайной величины X в интервалы (1; 2,5), (2,5; 3,5).

Решение . Плотность вероятности находим по формуле f (x ) = F" (x ):

Вероятности попадания случайной величины X в интервалы вычисляем по формуле (3.1):

Р (1 < X < 2,5) = F (2,5) – F (1) = 0,5 2 – 0 = 0,25;

Р (2,5 < X < 3,5) = F (3,5) – F (2,5) = 1 – 0,25= 0,75.

3.2. Плотность вероятности непрерывной случайной величины X:

Найти функцию распределения F (х ) и построить ее график.

Решение.

если ,

Если х > 2.

График функции представлен на рис. 3.1.

Рис. 3.1

3.3. Плотность вероятности непрерывной случайной величины X задана в виде

Найти параметр С.

Решение . На основании равенства

Математическое ожидание и дисперсия. Мода и медиана

Средним значением или математическим ожиданием непрерывной случайной величины X

М (Х ) = М х = ,

где f (x ) – плотность вероятности.

Дисперсией непрерывной случайной величины X называется значение интеграла

D (X ) = D x = .

Для определения дисперсии может быть также использована формула

D x = .

Модой М 0 (Х X называется такое значение этой величины, плотность вероятности которого максимальна.

Медианой Мe (Х ) непрерывной случайной величины X называется такое ее значение, при котором выполняется равенство

Р (Х < Me ) = Р (Х > Me ).

3.4. Случайная величина X f (x ) = х /2 в интервале (0; 2), вне этого интервала f (x ) = 0. Найти математическое ожидание величины X .

Решение . На основании формулы

3.5. Случайная величина X задана плотностью вероятности f (x ) = x /8 в интервале (0; 4). Вне этого интервала f (x ) = 0. Найти математическое ожидание.



3.6. Случайная величина X задана плотностью вероятности f (x ) = при . Найти математическое ожидание.

3.7. Случайная величина X задана плотностью вероятности f (x ) = С (х 2 + 2х ) в интервале (0; 1). Вне этого интервала f (x ) = 0. Найти параметр С .

Решение . Так как

Откуда С = .

Равномерное распределение

Непрерывная случайная величина называется равномерно распределенной на отрезке [а , b ], если ее плотность вероятности имеет вид:

Математическое ожидание и дисперсия равномерно распределенной случайной величины определяются выражениями

3.8. Случайная величина X распределена равномерно на отрезке . Найти функцию распределения F (x ), математическое ожидание, дисперсию и среднее квадратичное отклонение величины.

Решение . Плотность вероятности для величины X имеет вид:

Следовательно, функция распределения, вычисляемая по формуле:

,

запишется следующим образом:

Математическое ожидание будет равно М х = (1 + 6)/2 = 3,5. Находим дисперсию и среднее квадратичное отклонение:

D x = (6 – 1) 2 /12 = 25/12, .

Нормальное распределение

Случайная величина X распределена по нормальному закону, если ее функция плотности распределения вероятностей имеет вид:

где М х – математическое ожидание;

– среднее квадратичное отклонение.

Вероятность попадания случайной величины в интервал (а , b ) находится по формуле

Р (а < X < b ) = Ф – Ф = Ф(z 2) – Ф(z 1), (5)

где Ф(z ) = – функция Лапласа.

Значения функции Лапласа для различных значений z приведены в Приложении 2.

3.9. Математическое ожидание нормально распределенной случайной величины X равно М х = 5, дисперсия равна D x = 9. Написать выражение для плотности вероятности.

3.10. Математическое ожидание и среднее квадратичное отклонение нормально распределенной случайной величины X соответственно равны 12 и 2. Найти вероятность того, что случайная величина примет значение, заключенное в интервале (14; 16).



Решение . Используем формулу (21.2), учитывая, что М х = 12, = 2:

Р (14 < X < 16) = Ф((16 – 12)/2) – Ф(14 – 12)/2) = Ф(2) – Ф(1).

По таблице значений функции Лапласа находим Ф(1) = 0,3413, Ф(2) = 0,4772. После подстановки получаем значение искомой вероятности:

Р (14 <Х < 16) = 0,1359.

3.11. Имеется случайная величина X , распределенная по нормальному закону, математическое ожидание которой равно 20, среднее квадратичное отклонение равно 3. Найти симметричный относительно математического ожидания интервал, в который с вероятностью р = 0,9972 попадет случайная величина.

Решение . Так как Р (х 1 < Х < х 2) = р = 2Ф((х 2 – М х )/ ), то Ф(z ) = р /2 = 0,4986. По таблице функции Лапласа находим значение z , соответствующее полученному значению функции Ф(z ) = 0,4986: z = 2,98. Учитывая то, что z = (х 2 – М х )/ , определяем = х 2 – М х = z = 3 · 2,98 = 8,94. Искомый интервал будет иметь вид (11,06; 28,94).

Учтем, что f (x ) = F" (x ). Тогда получим:

Подставим в выражение для математического ожидания

.

Интегрируя по частям, получаем М х = 1/ , или М х = 1/0,1.

Для определения дисперсии проинтегрируем по частям первое слагаемое. В результате получим:

.

Учтем найденное выражение для М х . Откуда

.

В данном случае М х = 10, D x = 100.

СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН

Задание 1 . Плотность распределения непрерывной случайной величины Х имеет вид:
Найти:
а) параметр A ;
б) функцию распределения F(x) ;
в) вероятность попадания случайной величины X в интервал ;
г) математическое ожидание MX и дисперсию DX .
Построить график функций f(x) и F(x) .

Задание 2 . Найти дисперсию случайной величины X , заданной интегральной функцией.

Задание 3 . Найти математическое ожидание случайной величины Х заданной функцией распределения.

Задание 4 . Плотность вероятности некоторой случайной величины задана следующим образом: f(x) = A/x 4 (x = 1; +∞)
Найти коэффициент A , функцию распределения F(x) , математическое ожидание и дисперсию, а также вероятность того, что случайная величина примет значение в интервале . Построить графики f(x) и F(x) .

Задача . Функция распределения некоторой непрерывной случайной величины задана следующим образом:

Определить параметры a и b , найти выражение для плотности вероятности f(x) , математическое ожидание и дисперсию, а также вероятность того, что случайная величина примет значение в интервале . Построить графики f(x) и F(x).

Найдем функцию плотности распределения, как производную от функции распределения.
F′=f(x)=a
Зная, что найдем параметр a:

или 3a=1, откуда a = 1/3
Параметр b найдем из следующих свойств:
F(4) = a*4 + b = 1
1/3*4 + b = 1 откуда b = -1/3
Следовательно, функция распределения имеет вид: F(x) = (x-1)/3

Математическое ожидание .


Дисперсия .

1 / 9 4 3 - (1 / 9 1 3) - (5 / 2) 2 = 3 / 4
Найдем вероятность того, что случайная величина примет значение в интервале
P(2 < x< 3) = F(3) – F(2) = (1/3*3 - 1/3) - (1/3*2 - 1/3) = 1/3

Пример №1 . Задана плотность распределения вероятностей f(x) непрерывной случайной величины X . Требуется:

  1. Определить коэффициент A .
  2. найти функцию распределения F(x) .
  3. схематично построить графики F(x) и f(x) .
  4. найти математическое ожидание и дисперсию X .
  5. найти вероятность того, что X примет значение из интервала (2;3).
f(x) = A*sqrt(x), 1 ≤ x ≤ 4.
Решение :

Случайная величина Х задана плотностью распределения f(x):


Найдем параметр A из условия:



или
14/3*A-1 = 0
Откуда,
A = 3 / 14


Функцию распределения можно найти по формуле.