Стоячая электромагнитная волна. Электромагнитные волны

Стоячие волны – это волны, которые образуются при наложении двух бегущих волн с одинаковыми частотами и амплитудами, которые распространяются навстречу друг другу. В данной работе рассматриваются стоячие электромагнитные волны, которые образовались при наложении бегущей волны (которую описывает уравнение (1)) и отраженной волны, уравнение которой отличается противоположной начальной фазой (знаком перед х ):

Здесь множитель
показывает, что колебания в стоячей волне происходят с той же частотой, что и колебания встречных волн. Множитель
, который не зависит от времени, выражает амплитуду результирующих волн, точнее – амплитуда стоячих волн как величина положительная равняется абсолютному значению этого множителя:

амплитуда достигает максимального значения

амплитуда будет минимальной (нулевой):

и узлов

т.е. расстояние между двумя соседними пучностями равняется половине длины волны (такое же расстояние будет между двумя соседними узлами). Расстояние от узла до ближайшей пучности равняется

.

1.3. Особенности возникновения стоячих электромагнитных волн в двухпроводной линии

Наилучшим образом можно исследовать стоячие электромагнитные волны, используя двух проводящую линию (линию Лехера). Она представляет собой два параллельных провода, соединенных на концах проводникомАВ , рис. 6. Электромагнитные колебания возбуждаются в начальном витке этой линии, расположенному рядом с контуром генератора ультравысокой частоты (УВЧ). Вследствие явления электромагнитной индукции в этом витке и во всей линии возникают вынужденные электромагнитные колебания с частотой, которую задает генератор. Электромагнитное поле в основном сосредоточено между проводами, а в самих проводах возникают токи проводимости (движутся электроны). Участок провода АВ играет роль зеркала, которое отражает волны, которые к нему дошли. Таким образом, в области, которая ограничена проводами, и на самых проводах накладываются бегущая и отраженная электромагнитные волны. Но для того, чтобы в двухпроводной линии возникли стоячие электромагнитные волны, необходимо, чтобы частота генератора была близкой к одной из собственных частот линии. Тогда амплитуды тока и напряжения в линии резко возрастают – наблюдается резонанс. Частоты собственных колебаний линии определяются из условия, чтобы на длине линии укладывалось целое число длин полуволн:

Согласно этому условию на концах линии будут узлы токов проводимости І (заряды там двигаться не будут), а посреди линии (для
) будет пучность тока. Это означает, что в разных участках проводника сила тока проводимости І будет разной! Но согласно теории Максвелла полный ток, то есть сумма тока проводимости (связанного с движением электронов) и тока смещения (связанного со сменным электрическим полем) во всех сечениях проводника будет одинаковой. Поэтому в тех точках, где будут находиться узлы (минимумы) тока проводимости І , значение тока смещения (следовательно, и напряженности электрического поля Е и электрического напряжения U ) будут максимальными. На рис. 7 показаны распределения токов и напряжения вдоль линии, для случаев, когда на длине линии укладывается одна, две и три полуволны.

Для того чтобы исследовать распределение токов или напряжений вдоль двухпроводной линии, на ней устанавливают подвижный мостик, который представляет собой отрезок проводника, который замыкает провода линии. В мостик последовательно включаются лампочка накаливания, которая регистрирует ток в мостике, или неоновая лампочка, которая регистрирует напряжение. При перемещении мостика вдоль линии, лампочка накаливания будет ярче всего гореть в местах пучностей тока, а неоновая лампочка дает максимальное свечение в пучностях напряжения. Поскольку расстояние между соседними пучностями
равняется половине длины волны, то измеряя расстояние между двумя соседними точками, где лампочка светится максимально ярко, можно найти длину волны:

.

1. Волны вдоль проводов . Любой участок двухпроводной линии обладает некоторой ёмкостью и индуктивностью. Поэтому любой участок такой линии обладает свойствами колебательного контура, а вся линия в целом может рассматриваться как система связанных колебательных контуров (рис.161).

Системы, подобные двухпроводной линии, называются распределёнными .

Пусть в какой-то точке бесконечной двухпроводной линии действует переменная гармоническая ЭДС. В результате по линии протекает переменный ток. Если скорость изменения ЭДС достаточно велика, то токи проводимости в проводах будут замыкаться токами смещения между ними (рис.162).

Но согласно первому уравнению Максвелла (Ф.19.3) эти токи смещения, то есть изменяющееся эл. поле E , вызывают появление магнитного поля B . Так как электрическое поле распространяется в проводнике с некоторой скоростью, то в рамках грубой наглядности можно сказать, что увеличивающаяся ЭДС на зажимах a и b вызывает появление первого токового кольца 1, а это токовое кольцо, согласно второму уравнению Максвелла (Ф.19.4) создаёт магнитное кольцо А . Это магнитное кольцо А создаёт, в свою очередь, новое вихревое кольцо электрического поля 2, а то – новое магнитное кольцо Б , и так далее. Каждый раз при создании нового кольца происходит уничтожение предыдущего. В результате вдоль проводов бежит импульс электромагнитной волны, несущий информацию о величине и направлении той ЭДС, которая была на зажимах а b в момент начала движения импульса.

Изменение электрического и магнитного полей в каждой точке пространства в любой момент времени совпадают по фазе между собой. Векторы E и B нормальны друг к другу и изменяются по гармоническому закону (рис.163).

, (22.1)

. (22.1)

Здесь v – фазовая скорость волны. Векторы E , B и v образуют правовращательную тройку векторов.

При малых частотах ω перенос электрического поля происходит, в основном, с помощью токов проводимости по проводам. Если же ω велика, то роль токов проводимости снижается, а перенос электрического поля происходит за счёт токов смещения. Электрические явления в этом случае в значительной степени определяются электромагнитными волнами.

При достаточно больших ω провода можно вообще убрать, электрическое поле будет распространяться в диэлектрической среде в виде электромагнитных волн.

2. Скин – эффект . (skin по англ. – кожа). Состоит в том, что быстропеременные токи текут по поверхности проводника, быстро уменьшаясь с глубиной.

Если по проводнику течёт постоянный ток, то его плотность во всех точках сечения проводника примерно одинакова.

На каждый заряд действует сила Лоренца, стремящаяся сместить его к центру провода (рис.164). При обычных токах в металлических проводниках эта сила невелика и не оказывает заметного влияния на плотность тока. И лишь при сильных разрядах в плазме эта сила приводит к сжатию плазменного шнура (пинч-эффект ).

Если ток в проводе переменный, то он генерирует переменное магнитное поле, а оно, в свою очередь, генерирует переменное вихревое электрическое поле. Рассмотрим механизм скин-эффекта при нарастании и убывании тока.

а . Ток нарастает . Нарастающая индукция магнитного поля B вызывает появление вихревого электрического поля E , которое у поверхности проводника направлено по току, а на оси проводника – противоположно току. В результате у поверхности ток усиливается, а центре – ослабляется (рис.165).

б . Ток убывает . В этом случае ослабевающая индукция B вызывает электрическое поле E , направленное противоположно первому случаю, то есть на оси – по току, а на поверхности – против тока (рис.166).

В обоих случаях вихревое эл. поле на оси проводника препятствует, а на поверхности – способствует изменениям тока. Поэтому на оси проводника переменный ток слабее, на поверхности – сильнее.


Амплитуды векторов E и B затухают с глубиной по экспоненциальному закону:

E = E 0 exp (-αx ), В = В 0 exp (-αx ). (22.3)

Здесь E 0 и В 0 – амплитудные векторы на поверхности проводника, x – глубина, отсчитываемая с поверхности, α – коэффициент затухания, , где ν – частота тока, g – удельная электропроводность проводника.

Чем больше частота тока ν , магнитная проницаемость проводника μ и его электропроводность g , тем больше затухание. С увеличением частоты ν толщина поверхностного слоя, по которому проходит ток, уменьшается. В результате сопротивление проводника возрастает. Поэтому с ростом ν роль токов проводимости уменьшается, а токов смещения – увеличивается.

Величина, обратная коэффициенту затухания, 1çα = δ есть глубина уменьшения амплитуды в е раз. При ν = 50 Гц для меди δ = 0,74 мм. Отсюда понятно, что линии многоканальной связи, работающей на ТВЧ, могут использовать не дешёвые стальные провода, а дорогие медные. Увеличение числа каналов линии связи требует увеличения частоты тока, а это приводит к недопустимо большому затуханию и в медных проводах. Практический путь к повышению пропускной способности линий связи состоит в замене металлических проводов оптическими световодами, позволяющими использовать для передачи информации электромагнитные волны сверхвысокой частоты.

3. Стоячие волны . Если проводящая линия ограничена в пространстве, то на её концах происходит отражение электромагнитных волн. При сложении отражённых и прямых волн возникают стоячие электромагнитные волны, в которых изменение величин Е и В уже не совпадает по фазе, поскольку при отражении одна из величин Е или В – обязательно меняет знак. В стоячей электромагнитной волне узлы электрического поля совпадают с пучностями магнитного поля, и наоборот (рис.167).

Условие существования стоячих волн: , (22.4)

где l – длина линии, λ – длина электромагнитной волны, k = 1,2,3,… - натуральное число.

Если измерить λ , то, зная частоту генератора ν , из условия υ = λν можно найти экспериментально скорость распространения электромагнитных волн.

4. Опыты Герца . В 1888-89 годах Генрих Герц выполнил серию экспериментов, в которых убедительно доказал справедливость электромагнитной теории Максвелла. Генератор электромагнитных колебаний был искровой колебательный контур.

Опыты Герца по созданию электромагнитных колебаний с помощью вибраторов и по приёму этих колебаний на расстоянии в пределах лабораторной комнаты с помощью резонаторов показали, что от вибратора распространяется ЭМ-волна, способная отражаться от металлической поверхности и возбуждающая в приёмной антенне–резонаторе – токи той же частоты, что и колебания в вибраторе (рис.168).

Герц показал, что электромагнитная волна поляризуется и интерферирует, а проходя через границы раздела разных диэлектрических сред преломляется в соответствии с законами оптики.

Все открытые явления полностью укладывались в рамки теории Максвелла и тем самым подтвердили её.


5. Скорость распространения электромагнитных волн находится из системы уравнений Максвелла. Впервые эту работу выполнил Максвелл, получивший для скорости v ЭМ-волны выражение: . Закон Максвелла (22.5)

Здесь - скорость света (ЭМ-волны) в вакууме.

Поскольку ε > 1, а μ даже для наиболее сильных диамагнетиков очень мало отличается от единицы, то в целом произведение ε μ > 1. Это значит, что скорость распространения ЭМ-волн в веществе всегда меньше скорости в вакууме v < c и зависит практически лишь от диэлектрических свойств среды.

Величину называют показателем преломления среды . В оптике закон Максвелла обычно записывают в виде: . У всех сред n > 1, в вакууме n = 1. (22.6)

Электромагнитные волны представляют собой полевую форму материи, так называемое поле излучения. Поле излучения в отличие от других форм материи не может находиться в состоянии покоя. Оно всегда движения, причём скорость его в пустоте не зависит от выбора системы отсчёта и может принимать лишь одно значение c » 3·10 8 м/с.

6. Дисперсия волн . Материальные параметры ε и μ являются константами лишь в случае статических полей или в случае, когда поле изменяется очень медленно. Если же поле изменяется быстро, так что время его изменения сравнимо с временем релаксации τ электрического молекулярного диполя (или элементарного магнитного диполя), то параметры ε и μ сложным образом зависит от частоты колебаний поля ν . В результате и скорость распространения электромагнитных волн в веществе зависит от частоты n .

Явление зависимости скорости распространения волны от частоты (или длины волны), называется дисперсией .

Если источник излучает электромагнитные волны разных частот, то эти волны распространяются в веществе с разными скоростями. При прохождении границы раздела сред с разными ε (величина μ практически не влияет), электромагнитные волны в зависимости от скорости v , а, следовательно, в зависимости от частоты ν преломляются на разные углы. В результате плоско-параллельный пучок, состоящий из смеси волн разных частот, диспергирует, то есть расщепляется в веер лучей (рис.169).

Наиболее заметно дисперсия проявляется в электромагнитных волнах высоких частот, включая диапазон частот видимого света. Поэтому законы взаимодействия электромагнитных волн с веществом изучаются, как правило, в оптике. Скорость распространения волн в радиодиапазоне может быть установлена экспериментально путём измерения расстояний между узлами или пучностями стоячих волн известной частоты на вибраторах.

7. Перенос энергии и импульса в ЭМ-волне . Электромагнитные волны, как и любой волновой процесс, переносят в пространстве энергию.

В случае упругих волн эта энергия слагается из потенциальной энергии деформации среды и кинетической энергии движения её частиц. Энергия же электромагнитных волн слагается в любой момент времени из энергии взаимосвязанных электрического и магнитного полей.

Энергия, переносимая электромагнитными волнами, как и в механике, определяется вектором плотности потока энергии S , то есть количеством энергии, которое переносится волновым процессом через единичную площадку σ , ориентированную перпендикулярно вектору скорости движения волнового фронта v в данный момент времени (рис.170), . (22.7)

Здесь w 0 – плотность энергии ЭМ-поля. Так как

, то . (22.8)

Вектор S можно представить через характеристики ЭМ-поля E и B . Как и в колебательном контуре средние энергии электрического и магнитного полей в ЭМ-волне одинаковы. Но поскольку оба поля Е и В изменяются в одной фазе, то одинаковы и мгновенные значения плотности энергии, то есть εε 0 E 2 = B 2 çμμ 0 . Если с учётом этого обстоятельства преобразовать выражение (22.8) (см., например, , §240, с.529), то для вектора S получается выражение: . Вектор Пойнтинга 1883, (22.9)

Электромагнитное поле обладает не только энергией, но массой и импульсом. Из формулы Эйнштейна W = mc 2 = w 0 V , где V – объём, получаем пространственную плотность распределения массы поля: Þ . (22.10)

Импульс единичного объёма электромагнитной волны есть . (22.11)

8. Поток энергии ЭМ-поля в проводнике . Найдём поток электромагнитной энергии, втекающий в единичный объём длинного цилиндрического провода, по которому протекает электрический ток i .

Вектор Пойнтинга на поверхности цилиндрического провода направлен по радиусу (рис.171). Поэтому его поток через основание цилиндра равен нулю, а через боковую поверхность есть . (22.10)

Из закона Ома j = gE Þ E = jçg , где j – плотность тока в проводнике, g – удельная электропроводность проводника. Индукция магнитного поля на поверхности длинного цилиндрического провода есть (формула 13.8) (22.11)

Ток, текущий по проводу, I = j ×pR 2 . Объём провода V = pR 2 l . Отсюда

Поток энергии в единичный объём проводника (22.13)

оказался в точности равен тепловой энергии, выделяющейся в единичном объёме проводника в соответствии с законом Джоуля-Ленца.

Итак, энергия,идущая на нагрев проводника, поступает в него через боковую поверхность в виде энергии электромагнитного поля из окружающего проводник пространства , а не вдоль оси провода, как это кажется на первый взгляд. В это пространство она поступает из тех участков цепи, где действует ЭДС источников тока.

9. Излучение элементарного диполя . Заряд, движущийся в проводнике с постоянной скоростью, создаёт постоянное магнитное поле B . Это поле имеет постоянное во времени значение во всех точках пространства. Вдоль прямой, по которой движется заряд, магнитное поле равно нулю. (См. магнитное поле элемента тока, §12, п.6).


Для того, чтобы заряд излучал, он должен двигаться ускоренно . Это ускоренное движение можно реализовать с помощью элементарного диполя . В отличие от рассмотренного в п.3 макродиполя, длина которого l соизмерима с длиной волны l и связана с ней соотношением l = kl / 2, где k = 1,2,3,…, длина элементарного диоля много меньше длины излучаемой им волны, l << l .

Примером элементарного диполя являются два металлических шара, заряжаемые от какого-либо генератора электрических колебаний (рис.172). Если генератор создаёт гармоническую ЭДС, то заряд на шарах изменяется также по гармоническому закону, q = q 0 sinwt , (22.14)

и между шарами протекает переменный ток

. (22.15)

Этот переменный ток представляет собой ускоренное движение зарядов вдоль оси ОY , поэтому в пространстве вокруг оси OY излучается электромагнитная волна.

Если расстояние r от диполя много больше длины l , то волновые поверхности приобретают форму сферы, сечение которой вдоль оси диполя показано на рис.173. Замкнутые кривые здесь представляют собой силовые линии вихревого электрического поля Е . Расстояние между соответственными точками таких замкнутых фигур вдоль по радиусу равно l /2.

Важнейшим примером элементарных диполей являются электроны внутри атомов. Круговое движение электронов можно разложить на два взаимно перпендикулярные линейные гармонические колебания, каждый из которых представляет элементарный диполь.

Глава 5. Электрические явления в атмосфере

Линия без потерь

Рассмотрим линию, в которой отсутствуют распределенные активные сопротивление и проводимость, т.е. R 0 = 0, и G 0 = 0. Такую линию называют идеальной или линией без потерь .

Строго говоря, линий без потерь не существует, однако их рассмотрение представляет большой интерес. В ряде случаев при высокой частоте величины R 0 и G 0 оказываются очень малыми по сравнению с реактивными погонным сопротивлением ωL 0 и проводимостью ωС 0 и ими можно пренебречь, что значительно упрощает использование ранее полученных результатов и в то же время обеспечивает достаточную точность решения практических задач, связанных с распределением напряжения и тока.

Для линии без потерь выражения для постоянной распространения и волнового сопротивления упрощаются и принимают вид:

т.е. постоянная распространения становится мнимой, а волновое сопротивление – вещественным. В соответствии с принятыми для этого случая обозначениями

Величины β и ρ являются вторичными параметрами линии без потерь. Для определения напряжения и тока в линии перепишем уравнения линии

. Если , то

В режиме короткого замыкания (U 2 = 0)

(30.3)

Исследуем характер изменения входного сопротивления при изменении расстояния х от конца линии до текущей точки.

В интервале значений βх от 0 до π/2 tgβx положителен и изменяется от 0 до ∞, поэтому Z вх.хх имеет емкостной характер (-j ) и по модулю изменяется от ∞ до 0, а Z вх.к.з. имеет индуктивный характер и изменяется от 0 до ∞ (рис. 30.1).

В интервале βх от π/2 до π tgβx изменяется от - ∞ до 0, поэтому Z вх.хх изменяется от 0 до ∞, имея индуктивный характер, а Z вх.к.з . от - ∞ до 0 и носит емкостной характер.

Таким образом, изменяя длину отрезка линии без потерь, можно создавать (имитировать) различные по величине индуктивные и емкостные сопротивления. Практически это свойство используют при высокой частоте в различных радиотехнических устройствах.

Например, отрезок короткозамкнутой на конце линии без потерь длиной в четверть длины волны имеет входное сопротивление равное бесконечности. Это позволяет применять этот отрезок при подвеске проводов в качестве изолятора (так называемый четвертьволновый изолятор).

Стоячие электромагнитные волны

Стоячие электромагнитные волны возникают в линиях без потерь при холостом ходе и коротком замыкании и чисто реактивных нагрузках. Стоячая электромагнитная волна представляет собой электромагнитную волну, полученную в результате наложения движущихся навстречу друг другу падающей и отраженной волн одинаковой интенсивности.


Стоячие волны напряжения и тока всегда сдвинуты по отношению друг к другу в пространстве и во времени.

Напряжение и ток в любой точке линии без потерь (считая х от конца линии)

. При холостом ходе (I 2 = 0)

. (30.4)

При коротком замыкании (U 2 = 0)

(30.5)

Перейдем от комплексов к мгновенным значениям, тогда при холостом ходе

, а при коротком замыкании

.

При возникновении стоячих волн электромагнитная энергия от начала к концу линии не передается. Однако на каждом отрезке длины линии, равном четверти длины волны, запасена некоторая электромагнитная энергия. Эта энергия периодически переходит из одного вида (энергии электрического поля) в другой (энергию магнитного поля). Причем, в моменты, когда ток равен нулю, напряжение максимально и, наоборот, в результате чего средняя за период мощность равна нулю.

Если энергия расходуется в приемнике (или линии), должны существовать бегущие волны напряжения и тока, обеспечивающие процесс передачи энергии вдоль линии.

Наиболее простой случай – плоскую электромагнитную волну – можно реализовать, используя двухпроводную линию W , к одному концу которой подключен генератор высокой частоты, индуктивно связанный с ней (рис.1).

Такая система носит название линии Лехера (по имени австрийского физика Э.Лехера, исследовавшего распространение в ней электромагнитных волн).

Расстояние между проводами линии должно быть весьма мало по сравнению с длиной волны, чтобы избежать заметного излучения электромагнитных волн в пространство. Длина же линии должна быть большой.

Если длина линии бесконечно велика, то в ней возникает бегущая плоская волна, причем основные процессы, происходят в пространстве, окружающем провода. Сами же провода линии играют вспомогательную роль, задавая определенное направление распространения волны. Электрический и магнитный векторы электромагнитного поля перпендикулярны проводам, вдоль которых волна распространяется (поперечная волна ), и их колебания совпадают по фазе:

где Е 0 , Н 0 – амплитуды колебаний напряженности электрического и магнитного поля соответственно; х – координата, отсчитываемая от начала линии в направлении распространения волны; ω = 2πf циклическая (круговая) частота ; k =ω/V= 2π/λ –волновое число , V – скорость распространения волны, f – частота колебаний, λ – длина волны.

При этом вектор напряженности электрического поля колеблется в плоскости, проходящей через провода линии, а вектор напряженности магнитного поля - перпендикулярно ей (рис.2).


Рисунок 2 Распределение электрического и магнитного полей в бегущей

электромагнитной волне

Если же линия имеет ограниченную длину, то на ее концах должны выполняться определенные граничные условия. Если концы обоих проводов свободны, то на этих концах должна обращаться в нуль напряженность магнитного поля Н (и сила электрического тока I ); если же линия закорочена, то есть на конце линии провода замкнуты перемычкой с пренебрежимо малым сопротивлением, то на этом конце должна быть равна нулю напряженность электрического поля Е (и напряжение между проводами U ).

Достигнув конца линии, волна отражается и бежит в обратном направлении. При наложении бегущей и отраженной волн в линии возникает стоячая волна , описываемая уравнением:

В стоячей волне в каждой точке совершаются колебания с амплитудой 2А coskx . Точки, в которых coskx = 0, и амплитуда колебаний в стоячей волне обращается в нуль, называются узлами . Точки, в которых coskx = ± 1, и амплитуда колебаний достигает максимального значения, называются пучностями . Узлы как бы разделяют пространство на автономные области, в которых совершаются независимые гармонические колебания. Передачи энергии от одной области к другой не происходит, поэтому волна и называется стоячей.

В стоячей электромагнитной волне можно выделить две стоячие волны – электрическую и магнитную:

Колебания электрического поля сдвинуты относительно колебаний магнитного поля по фазе на π/2, кроме того, пучности электрического поля совпадают с узлами магнитного поля, а узлы – с пучностями (рис.3).


Рисунок 3. Распределение электрического и магнитного полей в стоячей

электромагнитной волне

В ограниченной двухпроводной линии амплитуда стоячей волны будет максимальной, если частота генератора совпадает с одной из собственных частот линии. Это явление называется резонансом. Собственные частоты определяются соотношением:

где V – скорость распространения электромагнитной волны, а λ n - длина волны, зависящая от длины линии и условий на ее концах (рис.4). Как видно из рис.4, для линии, разомкнутой на обоих концах, длина линии должна быть равна или кратна половине длины волны (рис. 4а) (λ n = 2l /n ). Для линии, замкнутой на одном конце и разомкнутой на другом, на длине линии должно укладываться нечетное число четвертей длины волны (рис. 4б):

то есть λ n = 4l /(2n +1).


Рисунок 4 Распределение напряжения U и силы тока I для двух первых

собственных колебаний в двухпроводной линии:

а) разомкнутой на обоих концах;

б) замкнутой на одном конце

Еще до экспериментального исследования свойств электромагнитных волн Максвелл, исходя из построенной им теории электромагнитного поля, вычислил скорость их распространения. В вакууме она равна

где ε 0 = 8,85·10 -12 Ф/м – электрическая постоянная, μ 0 = 4π·10 -7 Гн/м – магнитная постоянная. Таким образом, теория Максвелла предсказала, что скорость распространения электромагнитных волн должна равняться скорости света, а факт совпадения скоростей явился одним из первых указаний на то, что свет имеет электромагнитную природу.

Исследуя стоячие волны в двухпроводной линии, можно определить скорость распространения электромагнитных волн экспериментально. Действительно, измерив длину стоячей волны и частоту генератора, можно найти скорость волны по формуле:

Для электромагнитных волн в воздухе V должно быть примерно равна скорости света в вакууме с .

Описание установки и метода

Устройство двухпроводной линии показано на рис.5 . Она состоит из двух туго натянутых параллельных проводов, подвешенных через изоляторы 1 к неподвижным опорам 2, которыми являются противоположные стены лаборатории. Вдоль линии перемещается металлическая перемычка М , замыкающая провода линии накоротко. К началу линии подводится напряжение от генератора G через петлю индуктивной связи ПС1 . Под действием этого напряжения в короткозамкнутой линии устанавливается стоячая электромагнитная волна. Распределение действующих значений тока I и напряжения U вдоль линии при резонансе показано в верхней части рис.5. На замкнутом конце линии всегда имеет место пучность тока и узел напряжения. Расстояние между двумя соседними пучностями равно λ/2.


Рисунок 5 Линия Лехера и распределение тока и напряжения вдоль линии

Перемещая перемычку вдоль линии, мы меняем ее длину l. При длине линии, соответствующей формуле (6), будет иметь место резонансная настройка. Задача измерения длины волны сводится к определению расстояния между положениями перемычки М при резонансных настройках.

Положение перемычки М , соответствующее настройке линии в резонанс можно определять по наибольшей яркости свечения лампочки HL , включенной в перемычку. Яркость свечения лампочки определяется силой тока I к на конце линии (в перемычке). При перемещении перемычки сила тока I к изменяется в соответствии с графиком, приведенным на рис.6.


Рисунок 6 Зависимость силы тока в перемычке от ее положения

При резонансе ток в перемычке резко возрастает; его амплитуда ограничивается сопротивлением перемычки и потерями в линии. Включение в перемычку лампочки HL увеличивает активное сопротивление перемычки. Это приводит к появлению в линии, наряду со стоячими, бегущих волн, что уменьшает резкость изменения тока вблизи максимумов и повышает погрешность измерений. С ламповыми генераторами погрешность измерений достигает 5 – 10 %.

Лучшие результаты достигаются при использовании стрелочного индикатора, состоящего из высокочастотного диода VD , фильтрующего конденсатора С и магнитоэлектрического измерителя напряжения И (см. рис. 5). Для регулировки чувствительности индикатора последовательно с измерительным прибором И включают переменный резистор R . Петлю связи индикатора ПС2 с генератором неподвижно закрепляют в начале линии. Резонанс характеризуется резким возрастанием амплитуды напряжения, что и фиксируется индикатором.

Порядок выполнения работы

1. Включить генератор G и дать ему прогреться в течение 5 – 10 мин.

2. Вращением барабана B установить перемычку М на первый от начала линии максимум. Настройка на резонанс оценивается по максимуму отклонения стрелки индикатора И . Лампочка HL перемычки при этом должна гореть наиболее ярко.

3. Совместить указатель нуля, расположенный позади барабана, с нулевым делением барабана.

4. Перемещая перемычку вдоль линии и отсчитывая число оборотов барабана, измерить расстояние L от первого до последнего на линии максимума (один оборот барабана соответствует перемещению перемычки на 1 м). Записать значение L в таблицу 1. Определить количество m полуволн, укладывающихся между первым и последним максимумом.

Например, между первым и пятым максимумами укладывается четыре полуволны (m = 4).

5. Повторить измерения по п.п. 2 – 4 еще четыре раза.

Таблица 1 Экспериментальные результаты

№ п/п L , м m

Похожая информация.


Стоячей называется волна, возникающая при наложении (суперпозиции) двух встречных плоских волн одинаковой амплитуды и поляризации. Стоячие волны возникают, например, при наложении двух бегущих волн, одна из которых отразилась от границы раздела двух сред.

Найдем уравнение стоячей волны. Для этого предположим, что плоская бегущая волна = сДх, t) с амплитудой А и частотой со, распространяющаяся в положительном направлении оси х, складывается со встречной волной?, 2 = О той же амплитуды и частоты. Уравнения этих волн запишем в тригонометрической форме следующим образом:

где Cj и %2 смещения точек среды, вызванные волнами, распространяющимися в положительном и отрицательном направлениях оси Ох соответственно. Согласно принципу суперпозиции волн в произвольной точке среды с координатой х в момент времени 1 смещение с, составит % + или % = A cos(co/ - кх) + + A cos(co t + кх).

Используя известное из тригонометрии соотношение , получим:

В этом выражении имеются два тригонометрических члена. Первый (cos(Atjc)) - это функция только координаты и может рассматриваться как амплитуда стоячей волны, изменяющаяся от точки к точке, т.е.

Так как амплитуда колебаний - величина существенно положительная, в последнем выражении поставлен знак модуля. Второй множитель в (2.183) - (cos(k>0) зависит только от времени и описывает гармоническое колебательное движение точки с фиксированной координатой х. Таким образом, все точки среды совершают гармонические колебания с различными (зависящими от координаты) амплитудами. Как видно из формулы (2.184), амплитуда стоячей волны в зависимости от координаты х изменяется от нуля до 2А. Точки, в которых амплитуды колебаний максимальны (24), называются пучностями стоячей волны. Точки, в которых амплитуды колебаний равны нулю, называются узлами стоячей волны (рис 2.25).

Найдем координаты узлов стоячей волны. Для этого запишем очевидное равенство |24cos(&x)| = 0, отсюда cos кх = 0. Для того чтобы последнее равенство имело место, необходимо выполнение условия

, где п = 0, 1, 2,.... Заменив к его выражением через длину волны, получим Отсюда находим координаты

Рис. 2.25. Стоячие волны «мгновенные фотографии» в разные моменты времени I, отстоящие на четверть периода Т колебаний:

Светлые кружки

изображают частицы среды, колеблющиеся в поперечной стоячей волне. Разной длины стрелки - направление и величину (длина стрелки) их скорости

Соответственно можно определить и координаты пучностей стоячей волны. Для этого следует принять 12A cos (foe) I = 24. Откуда следует, что координаты точек, колеблющихся с максимальной амплитудой, должны удовлетворить условию Заменив к

на , получим выражение для координат пучностей:

Расстояния между соседними узлами или соседними пучностями (они одинаковы) называют длиной стоячей волны. Как видно из выражений (2.185) и (2.186), это расстояние равно , т.е.

Пучности и узлы сдвинуты по оси х друг относительно друга на четверть длины волны.

На рисунке 2.25, а за х = 0 выбрана точка пучности при п = 0 (2.186). За t = 0 принят момент, когда колебания всех точек среды проходят через точку равновесия, где смещения всех точек % в стоячей волне равны нулю, график волны - прямая линия. Однако в этот момент каждая точка (кроме точек, расположенных в узлах, где смещение и скорость всегда равны нулю) обладает определенной скоростью, показанной на рисунке стрелками разной длины и пунктирной огибающей. При t - Т/4 (рис. 2.25, б) смещения достигнут максимума, волна изображается непрерывной синусоидой, но скорость каждой точки среды станет равной нулю. Момент времени t= Т/ 2 (рис. 2.25, в) снова соответствует прохождению равновесия, но скорости всех точек направлены в противоположную сторону. И так далее (рис. 2.25, гид, где повторяется случай, показанный на рис. 2.25, а).

Рис. 2.26. Отражение волны от границы раздела разных сред: а - более плотной;

6 - менее плотной

Сравним бегущую и стоячую волны. В плоской бегущей волне колебания всех точек среды, имеющих разные координаты х, происходят с одинаковой амплитудой, но фазы колебаний различны и повторяются через Ах = X или At - Т. В стоячей волне все точки (от узла до узла) совершают колебания в одной фазе, но амплитуды их колебаний различны. Точки среды, разделенные узлом, совершают колебания в противофазе. Таким образом, стоячие волны энергию вдоль направления х не переносят.

В качестве модели стоячей волны можно рассмотреть поперечные колебания мягкого жгута, закрепленного с одного конца. Моделью плотной границы на этом конце жгута (рис. 2.26, а справа) является фиксация узла стоячей волны. Моделью подвижной (менее плотной) границы является тонкий невесомый шнурок, соединяющий конец жгута с закреплением (рис. 2.26, б также справа). Анализ условий отражения волны в этих двух случаях показывает, что при отражении от более плотной среды (см. рис. 2.26, а) волна «теряет» половину длины волны, т.е. при таком отражении происходит изменение фазы колебаний на л. Отражение от менее плотной среды не сопровождается изменением фазы, поэтому у границ раздела двух сред (на рис. 2.26, б в месте соединения жгута со шнурком) всегда будет пучность.