Значение хи квадрат. Критерий согласия Пирсона χ2 (Хи-квадрат). Приближение ХИ2-распределения нормальным распределением

В этой статье речь будет идти о исследовании зависимости между признаками, или как больше нравится - случайными величинами, переменными. В частности, мы разберем как ввести меру зависимости между признаками, используя критерий Хи-квадрат и сравним её с коэффициентом корреляции.

Для чего это может понадобиться? К примеру, для того, чтобы понять какие признаки сильнее зависимы от целевой переменной при построении кредитного скоринга - определении вероятности дефолта клиента. Или, как в моем случае, понять какие показатели нобходимо использовать для программирования торгового робота.

Отдельно отмечу, что для анализа данных я использую язык c#. Возможно это все уже реализовано на R или Python, но использование c# для меня позволяет детально разобраться в теме, более того это мой любимый язык программирования.

Начнем с совсем простого примера, создадим в экселе четыре колонки, используя генератор случайных чисел:
X =СЛУЧМЕЖДУ(-100;100)
Y =X *10+20
Z =X *X
T =СЛУЧМЕЖДУ(-100;100)

Как видно, переменная Y линейно зависима от X ; переменная Z квадратично зависима от X ; переменные X и Т независимы. Такой выбор я сделал специально, потому что нашу меру зависимости мы будем сравнивать с коэффициентом корреляции . Как известно, между двумя случайными величинами он равен по модулю 1 если между ними самый «жесткий» вид зависимости - линейный. Между двумя независимыми случайными величинами корреляция нулевая, но из равенства коэффициента корреляции нулю не следует независимость . Далее мы это увидим на примере переменных X и Z .

Сохраняем файл как data.csv и начинаем первые прикиди. Для начала рассчитаем коэффициент корреляции между величинами. Код в статью я вставлять не стал, он есть на моем github . Получаем корреляцию по всевозможным парам:

Видно, что у линейно зависимых X и Y коэффициент корреляции равен 1. А вот у X и Z он равен 0.01, хотя зависимость мы задали явную Z =X *X . Ясно, что нам нужна мера, которая «чувствует» зависимость лучше. Но прежде, чем переходить к критерию Хи-квадрат, давайте рассмотрим что такое матрица сопряженности.

Чтобы построить матрицу сопряженности мы разобьём диапазон значений переменных на интервалы (или категорируем). Есть много способов такого разбиения, при этом какого-то универсального не существует. Некоторые из них разбивают на интервалы так, чтобы в них попадало одинаковое количество переменных, другие разбивают на равные по длине интервалы. Мне лично по духу комбинировать эти подходы. Я решил воспользоваться таким способом: из переменной я вычитаю оценку мат. ожидания, потом полученное делю на оценку стандартного отклонения. Иными словами я центрирую и нормирую случайную величину. Полученное значение умножается на коэффициент (в этом примере он равен 1), после чего все округляется до целого. На выходе получается переменная типа int, являющаяся идентификатором класса.

Итак, возьмем наши признаки X и Z , категорируем описанным выше способом, после чего посчитаем количество и вероятности появления каждого класса и вероятности появления пар признаков:

Это матрица по количеству. Здесь в строках - количества появлений классов переменной X , в столбцах - количества появлений классов переменной Z , в клетках - количества появлений пар классов одновременно. К примеру, класс 0 встретился 865 раз для переменной X , 823 раза для переменной Z и ни разу не было пары (0,0). Перейдем к вероятностям, поделив все значения на 3000 (общее число наблюдений):

Получили матрицу сопряженности, полученную после категорирования признаков. Теперь пора задуматься над критерием. По определению, случайные величины независимы, если независимы сигма-алгебры , порожденные этими случайными величинами. Независимость сигма-алгебр подразумевает попарную независимость событий из них. Два события называются независимыми, если вероятность их совместного появления равна произведению вероятностей этих событий: Pij = Pi*Pj . Именно этой формулой мы будем пользоваться для построения критерия.

Нулевая гипотеза : категорированные признаки X и Z независимы. Эквивалентная ей: распределение матрицы сопряженности задается исключительно вероятностями появления классов переменных (вероятности строк и столбцов). Или так: ячейки матрицы находятся произведением соответствующих вероятностей строк и столбцов. Эту формулировку нулевой гипотезы мы будем использовать для построения решающего правила: существенное расхождение между Pij и Pi*Pj будет являться основанием для отклонения нулевой гипотезы.

Пусть - вероятность появления класса 0 у переменной X . Всего у нас n классов у X и m классов у Z . Получается, чтобы задать распределение матрицы нам нужно знать эти n и m вероятностей. Но на самом деле если мы знаем n-1 вероятность для X , то последняя находится вычитанием из 1 суммы других. Таким образом для нахождения распределения матрицы сопряженности нам надо знать l=(n-1)+(m-1) значений. Или мы имеем l -мерное параметрическое пространство, вектор из которого задает нам наше искомое распределение. Статистика Хи-квадрат будет иметь следующий вид:

и, согласно теореме Фишера, иметь распределение Хи-квадрат с n*m-l-1=(n-1)(m-1) степенями свободы.

Зададимся уровнем значимости 0.95 (или вероятность ошибки первого рода равна 0.05). Найдем квантиль распределения Хи квадрат для данного уровня значимости и степеней свободы из примера (n-1)(m-1)=4*3=12 : 21.02606982. Сама статистика Хи-квадрат для переменных X и Z равна 4088.006631. Видно, что гипотеза о независимости не принимается. Удобно рассматривать отношение статистики Хи-квадрат к пороговому значению - в данном случае оно равно Chi2Coeff=194.4256186 . Если это отношение меньше 1, то гипотеза о независимости принимается, если больше, то нет. Найдем это отношение для всех пар признаков:

Здесь Factor1 и Factor2 - имена признаков
src_cnt1 и src_cnt2 - количество уникальных значений исходных признаков
mod_cnt1 и mod_cnt2 - количество уникальных значений признаков после категорирования
chi2 - статистика Хи-квадрат
chi2max - пороговое значение статистики Хи-квадрат для уровня значимости 0.95
chi2Coeff - отношение статистики Хи-квадрат к пороговому значению
corr - коэффициент корреляции

Видно, что независимы (chi2coeff<1) получились следующие пары признаков - (X,T ), (Y,T ) и (Z,T ), что логично, так как переменная T генерируется случайно. Переменные X и Z зависимы, но менее, чем линейно зависимые X и Y , что тоже логично.

Код утилиты, рассчитывающей данные показатели я выложил на github, там же файл data.csv. Утилита принимает на вход csv-файл и высчитывает зависимости между всеми парами колонок: PtProject.Dependency.exe data.csv

Хи-квадрат Пирсона - это наиболее простой критерий проверки значимости связи между двумя категоризованными переменными. Критерий Пирсона основывается на том, что в двувходовой таблице ожидаемые частоты при гипотезе "между переменными нет зависимости" можно вычислить непосредственно. Представьте, что 20 мужчин и 20 женщин опрошены относительно выбора газированной воды (марка A или марка B ). Если между предпочтением и полом нет связи, то естественно ожидать равного выбора марки A и марки B для каждого пола.

Значение статистики хи-квадрат и ее уровень значимости зависит от общего числа наблюдений и количества ячеек в таблице. В соответствии с принципами, обсуждаемыми в разделе , относительно малые отклонения наблюдаемых частот от ожидаемых будет доказывать значимость, если число наблюдений велико.

Имеется только одно существенное ограничение использования критерия хи-квадрат (кроме очевидного предположения о случайном выборе наблюдений), которое состоит в том, что ожидаемые частоты не должны быть очень малы. Это связано с тем, что критерий хи-квадрат по своей природе проверяет вероятности в каждой ячейке; и если ожидаемые частоты в ячейках, становятся, маленькими, например, меньше 5, то эти вероятности нельзя оценить с достаточной точностью с помощью имеющихся частот. Дальнейшие обсуждения см. в работах Everitt (1977), Hays (1988) или Kendall and Stuart (1979).

Критерий хи-квадрат (метод максимального правдоподобия). Максимум правдоподобия хи-квадрат предназначен для проверки той же самой гипотезы относительно связей в таблицах сопряженности, что и критерий хи-квадрат Пирсона. Однако его вычисление основано на методе максимального правдоподобия. На практике статистика МП хи-квадрат очень близка по величине к обычной статистике Пирсона хи-квадрат . Подробнее об этой статистике можно прочитать в работах Bishop, Fienberg, and Holland (1975) или Fienberg (1977). В разделе Логлинейный анализ эта статистика обсуждается подробнее.

Поправка Йетса. Аппроксимация статистики хи-квадрат для таблиц 2x2 с малыми числом наблюдений в ячейках может быть улучшена уменьшением абсолютного значения разностей между ожидаемыми и наблюдаемыми частотами на величину 0.5 перед возведением в квадрат (так называемая поправка Йетса ). Поправка Йетса, делающая оценку более умеренной, обычно применяется в тех случаях, когда таблицы содержат только малые частоты, например, когда некоторые ожидаемые частоты становятся меньше 10 (дальнейшее обсуждение см. в Conover, 1974; Everitt, 1977; Hays, 1988; Kendall and Stuart, 1979 и Mantel, 1974).

Точный критерий Фишера. Этот критерий применим только для таблиц 2x2. Критерий основан на следующем рассуждении. Даны маргинальные частоты в таблице, предположим, что обе табулированные переменные независимы. Зададимся вопросом: какова вероятность получения наблюдаемых в таблице частот, исходя из заданных маргинальных? Оказывается, эта вероятность вычисляется точно подсчетом всех таблиц, которые можно построить, исходя из маргинальных. Таким образом, критерий Фишера вычисляет точную вероятность появления наблюдаемых частот при нулевой гипотезе (отсутствие связи между табулированными переменными). В таблице результатов приводятся как односторонние, так и двусторонние уровни.

Хи-квадрат Макнемара. Этот критерий применяется, когда частоты в таблице 2x2 представляют зависимые выборки. Например, наблюдения одних и тех же индивидуумов до и после эксперимента. В частности, вы можете подсчитывать число студентов, имеющих минимальные успехи по математике в начале и в конце семестра или предпочтение одних и тех же респондентов до и после рекламы. Вычисляются два значения хи-квадрат : A/D и B/C . A/D хи-квадрат проверяет гипотезу о том, что частоты в ячейках A и D (верхняя левая, нижняя правая) одинаковы. B/C хи-квадрат проверяет гипотезу о равенстве частот в ячейках B и C (верхняя правая, нижняя левая).

Коэффициент Фи. Фи-квадрат представляет собой меру связи между двумя переменными в таблице 2x2. Его значения изменяются от 0 (нет зависимости между переменными; хи-квадрат = 0.0 ) до 1 (абсолютная зависимость между двумя факторами в таблице). Подробности см. в Castellan and Siegel (1988, стр. 232).

Тетрахорическая корреляция. Эта статистика вычисляется (и применяется) только для таблиц сопряженности 2x2. Если таблица 2x2 может рассматриваться как результат (искусственного) разбиения значений двух непрерывных переменных на два класса, то коэффициент тетрахорической корреляции позволяет оценить зависимость между двумя этими переменными.

Коэффициент сопряженности. Коэффициент сопряженности представляет собой основанную на статистике хи-квадрат меру связи признаков в таблице сопряженности (предложенную Пирсоном). Преимущество этого коэффициента перед обычной статистикой хи-квадрат в том, что он легче интерпретируется, т.к. диапазон его изменения находится в интервале от 0 до 1 (где 0 соответствует случаю независимости признаков в таблице, а увеличение коэффициента показывает увеличение степени связи). Недостаток коэффициента сопряженности в том, что его максимальное значение "зависит" от размера таблицы. Этот коэффициент может достигать значения 1 только, если число классов не ограничено (см. Siegel, 1956, стр. 201).

Интерпретация мер связи. Существенный недостаток мер связи (рассмотренных выше) связан с трудностью их интерпретации в обычных терминах вероятности или "доли объясненной вариации", как в случае коэффициента корреляции r Пирсона (см. Корреляции). Поэтому не существует одной общепринятой меры или коэффициента связи.

Статистики, основанные на рангах. Во многих задачах, возникающих на практике, мы имеем измерения лишь в порядковой шкале (см. Элементарные понятия статистики ). Особенно это относится к измерениям в области психологии, социологии и других дисциплинах, связанных с изучением человека. Предположим, вы опросили некоторое множество респондентов с целью выяснения их отношение к некоторым видам спорта. Вы представляете измерения в шкале со следующими позициями: (1) всегда , (2) обычно , (3) иногда и (4) никогда . Очевидно, что ответ иногда интересуюсь показывает меньший интерес респондента, чем ответ обычно интересуюсь и т.д. Таким образом, можно упорядочить (ранжировать) степень интереса респондентов. Это типичный пример порядковой шкалы. Для переменных, измеренных в порядковой шкале, имеются свои типы корреляции, позволяющие оценить зависимости.

R Спирмена. Статистику R Спирмена можно интерпретировать так же, как и корреляцию Пирсона (r Пирсона) в терминах объясненной доли дисперсии (имея, однако, в виду, что статистика Спирмена вычислена по рангам). Предполагается, что переменные измерены как минимум в порядковой шкале. Всестороннее обсуждение ранговой корреляции Спирмена, ее мощности и эффективности можно найти, например, в книгах Gibbons (1985), Hays (1981), McNemar (1969), Siegel (1956), Siegel and Castellan (1988), Kendall (1948), Olds (1949) и Hotelling and Pabst (1936).

Тау Кендалла. Статистика тау Кендалла эквивалентна R Спирмена при выполнении некоторых основных предположений. Также эквивалентны их мощности. Однако обычно значения R Спирмена и тау Кендалла различны, потому что они отличаются как своей внутренней логикой, так и способом вычисления. В работе Siegel and Castellan (1988) авторы выразили соотношение между этими двумя статистиками следующим неравенством:

1 < = 3 * Тау Кендалла - 2 * R Спирмена < = 1

Более важно то, что статистики Кендалла тау и Спирмена R имеют различную интерпретацию: в то время как статистика R Спирмена может рассматриваться как прямой аналог статистики r Пирсона, вычисленный по рангам, статистика Кендалла тау скорее основана на вероятности . Более точно, проверяется, что имеется различие между вероятностью того, что наблюдаемые данные расположены в том же самом порядке для двух величин и вероятностью того, что они расположены в другом порядке. Kendall (1948, 1975), Everitt (1977), и Siegel and Castellan (1988) очень подробно обсуждают тау Кендалла. Обычно вычисляется два варианта статистики тау Кендалла: tau b и tau c . Эти меры различаются только способом обработки совпадающих рангов. В большинстве случаев их значения довольно похожи. Если возникают различия, то, по-видимому, самый безопасный способ - рассматривать наименьшее из двух значений.

Коэффициент d Соммера: d(X|Y), d(Y|X). Статистика d Соммера представляет собой несимметричную меру связи между двумя переменными. Эта статистика близка к tau b (см. Siegel and Castellan, 1988, стр. 303-310).

Гамма-статистика. Если в данных имеется много совпадающих значений, статистика гамма предпочтительнее R Спирмена или тау Кендалла. С точки зрения основных предположений, статистика гамма эквивалентна статистике R Спирмена или тау Кендалла. Ее интерпретация и вычисления более похожи на статистику тау Кендалла, чем на статистику R Спирмена. Говоря кратко, гамма представляет собой также вероятность ; точнее, разность между вероятностью того, что ранговый порядок двух переменных совпадает, минус вероятность того, что он не совпадает, деленную на единицу минус вероятность совпадений. Таким образом, статистика гамма в основном эквивалентна тау Кендалла, за исключением того, что совпадения явно учитываются в нормировке. Подробное обсуждение статистики гамма можно найти у Goodman and Kruskal (1954, 1959, 1963, 1972), Siegel (1956) и Siegel and Castellan (1988).

Коэффициенты неопределенности. Эти коэффициенты измеряют информационную связь между факторами (строками и столбцами таблицы). Понятие информационной зависимости берет начало в теоретико-информационном подходе к анализу таблиц частот, можно обратиться к соответствующим руководствам для разъяснения этого вопроса (см. Kullback, 1959; Ku and Kullback, 1968; Ku, Varner, and Kullback, 1971; см. также Bishop, Fienberg, and Holland, 1975, стр. 344-348). Статистика S (Y,X ) является симметричной и измеряет количество информации в переменной Y относительно переменной X или в переменной X относительно переменной Y . Статистики S(X|Y) и S(Y|X) выражают направленную зависимость.

Многомерные отклики и дихотомии. Переменные типа многомерных откликов и многомерных дихотомий возникают в ситуациях, когда исследователя интересуют не только "простые" частоты событий, но также некоторые (часто неструктурированные) качественные свойства этих событий. Природу многомерных переменных (факторов) лучше всего понять на примерах.

  • · Многомерные отклики
  • · Многомерные дихотомии
  • · Кросстабуляция многомерных откликов и дихотомий
  • · Парная кросстабуляция переменных с многомерными откликами
  • · Заключительный комментарий

Многомерные отклики. Представьте, что в процессе большого маркетингового исследования, вы попросили покупателей назвать 3 лучших, с их точки зрения, безалкогольных напитка. Обычный вопрос может выглядеть следующим образом.

  • Математика
  • В этой статье речь будет идти о исследовании зависимости между признаками, или как больше нравится - случайными величинами, переменными. В частности, мы разберем как ввести меру зависимости между признаками, используя критерий Хи-квадрат и сравним её с коэффициентом корреляции.

    Для чего это может понадобиться? К примеру, для того, чтобы понять какие признаки сильнее зависимы от целевой переменной при построении кредитного скоринга - определении вероятности дефолта клиента. Или, как в моем случае, понять какие показатели нобходимо использовать для программирования торгового робота.

    Отдельно отмечу, что для анализа данных я использую язык c#. Возможно это все уже реализовано на R или Python, но использование c# для меня позволяет детально разобраться в теме, более того это мой любимый язык программирования.

    Начнем с совсем простого примера, создадим в экселе четыре колонки, используя генератор случайных чисел:
    X =СЛУЧМЕЖДУ(-100;100)
    Y =X *10+20
    Z =X *X
    T =СЛУЧМЕЖДУ(-100;100)

    Как видно, переменная Y линейно зависима от X ; переменная Z квадратично зависима от X ; переменные X и Т независимы. Такой выбор я сделал специально, потому что нашу меру зависимости мы будем сравнивать с коэффициентом корреляции . Как известно, между двумя случайными величинами он равен по модулю 1 если между ними самый «жесткий» вид зависимости - линейный. Между двумя независимыми случайными величинами корреляция нулевая, но из равенства коэффициента корреляции нулю не следует независимость . Далее мы это увидим на примере переменных X и Z .

    Сохраняем файл как data.csv и начинаем первые прикиди. Для начала рассчитаем коэффициент корреляции между величинами. Код в статью я вставлять не стал, он есть на моем github . Получаем корреляцию по всевозможным парам:

    Видно, что у линейно зависимых X и Y коэффициент корреляции равен 1. А вот у X и Z он равен 0.01, хотя зависимость мы задали явную Z =X *X . Ясно, что нам нужна мера, которая «чувствует» зависимость лучше. Но прежде, чем переходить к критерию Хи-квадрат, давайте рассмотрим что такое матрица сопряженности.

    Чтобы построить матрицу сопряженности мы разобьём диапазон значений переменных на интервалы (или категорируем). Есть много способов такого разбиения, при этом какого-то универсального не существует. Некоторые из них разбивают на интервалы так, чтобы в них попадало одинаковое количество переменных, другие разбивают на равные по длине интервалы. Мне лично по духу комбинировать эти подходы. Я решил воспользоваться таким способом: из переменной я вычитаю оценку мат. ожидания, потом полученное делю на оценку стандартного отклонения. Иными словами я центрирую и нормирую случайную величину. Полученное значение умножается на коэффициент (в этом примере он равен 1), после чего все округляется до целого. На выходе получается переменная типа int, являющаяся идентификатором класса.

    Итак, возьмем наши признаки X и Z , категорируем описанным выше способом, после чего посчитаем количество и вероятности появления каждого класса и вероятности появления пар признаков:

    Это матрица по количеству. Здесь в строках - количества появлений классов переменной X , в столбцах - количества появлений классов переменной Z , в клетках - количества появлений пар классов одновременно. К примеру, класс 0 встретился 865 раз для переменной X , 823 раза для переменной Z и ни разу не было пары (0,0). Перейдем к вероятностям, поделив все значения на 3000 (общее число наблюдений):

    Получили матрицу сопряженности, полученную после категорирования признаков. Теперь пора задуматься над критерием. По определению, случайные величины независимы, если независимы сигма-алгебры , порожденные этими случайными величинами. Независимость сигма-алгебр подразумевает попарную независимость событий из них. Два события называются независимыми, если вероятность их совместного появления равна произведению вероятностей этих событий: Pij = Pi*Pj . Именно этой формулой мы будем пользоваться для построения критерия.

    Нулевая гипотеза : категорированные признаки X и Z независимы. Эквивалентная ей: распределение матрицы сопряженности задается исключительно вероятностями появления классов переменных (вероятности строк и столбцов). Или так: ячейки матрицы находятся произведением соответствующих вероятностей строк и столбцов. Эту формулировку нулевой гипотезы мы будем использовать для построения решающего правила: существенное расхождение между Pij и Pi*Pj будет являться основанием для отклонения нулевой гипотезы.

    Пусть - вероятность появления класса 0 у переменной X . Всего у нас n классов у X и m классов у Z . Получается, чтобы задать распределение матрицы нам нужно знать эти n и m вероятностей. Но на самом деле если мы знаем n-1 вероятность для X , то последняя находится вычитанием из 1 суммы других. Таким образом для нахождения распределения матрицы сопряженности нам надо знать l=(n-1)+(m-1) значений. Или мы имеем l -мерное параметрическое пространство, вектор из которого задает нам наше искомое распределение. Статистика Хи-квадрат будет иметь следующий вид:

    и, согласно теореме Фишера, иметь распределение Хи-квадрат с n*m-l-1=(n-1)(m-1) степенями свободы.

    Зададимся уровнем значимости 0.95 (или вероятность ошибки первого рода равна 0.05). Найдем квантиль распределения Хи квадрат для данного уровня значимости и степеней свободы из примера (n-1)(m-1)=4*3=12 : 21.02606982. Сама статистика Хи-квадрат для переменных X и Z равна 4088.006631. Видно, что гипотеза о независимости не принимается. Удобно рассматривать отношение статистики Хи-квадрат к пороговому значению - в данном случае оно равно Chi2Coeff=194.4256186 . Если это отношение меньше 1, то гипотеза о независимости принимается, если больше, то нет. Найдем это отношение для всех пар признаков:

    Здесь Factor1 и Factor2 - имена признаков
    src_cnt1 и src_cnt2 - количество уникальных значений исходных признаков
    mod_cnt1 и mod_cnt2 - количество уникальных значений признаков после категорирования
    chi2 - статистика Хи-квадрат
    chi2max - пороговое значение статистики Хи-квадрат для уровня значимости 0.95
    chi2Coeff - отношение статистики Хи-квадрат к пороговому значению
    corr - коэффициент корреляции

    Видно, что независимы (chi2coeff<1) получились следующие пары признаков - (X,T ), (Y,T ) и (Z,T ), что логично, так как переменная T генерируется случайно. Переменные X и Z зависимы, но менее, чем линейно зависимые X и Y , что тоже логично.

    Код утилиты, рассчитывающей данные показатели я выложил на github, там же файл data.csv. Утилита принимает на вход csv-файл и высчитывает зависимости между всеми парами колонок: PtProject.Dependency.exe data.csv

    ​ Критерий χ 2 Пирсона – это непараметрический метод, который позволяет оценить значимость различий между фактическим (выявленным в результате исследования) количеством исходов или качественных характеристик выборки, попадающих в каждую категорию, и теоретическим количеством, которое можно ожидать в изучаемых группах при справедливости нулевой гипотезы. Выражаясь проще, метод позволяет оценить статистическую значимость различий двух или нескольких относительных показателей (частот, долей).

    1. История разработки критерия χ 2

    Критерий хи-квадрат для анализа таблиц сопряженности был разработан и предложен в 1900 году английским математиком, статистиком, биологом и философом, основателем математической статистики и одним из основоположников биометрики Карлом Пирсоном (1857-1936).

    2. Для чего используется критерий χ 2 Пирсона?

    Критерий хи-квадрат может применяться при анализе таблиц сопряженности , содержащих сведения о частоте исходов в зависимости от наличия фактора риска. Например, четырехпольная таблица сопряженности выглядит следующим образом:

    Исход есть (1) Исхода нет (0) Всего
    Фактор риска есть (1) A B A + B
    Фактор риска отсутствует (0) C D C + D
    Всего A + C B + D A + B + C + D

    Как заполнить такую таблицу сопряженности? Рассмотрим небольшой пример.

    Проводится исследование влияния курения на риск развития артериальной гипертонии. Для этого были отобраны две группы исследуемых - в первую вошли 70 человек, ежедневно выкуривающих не менее 1 пачки сигарет, во вторую - 80 некурящих такого же возраста. В первой группе у 40 человек отмечалось повышенное артериальное давление. Во второй - артериальная гипертония наблюдалась у 32 человек. Соответственно, нормальное артериальное давление в группе курильщиков было у 30 человек (70 - 40 = 30) а в группе некурящих - у 48 (80 - 32 = 48).

    Заполняем исходными данными четырехпольную таблицу сопряженности:

    В полученной таблице сопряженности каждая строчка соответствует определенной группе исследуемых. Столбцы - показывают число лиц с артериальной гипертонией или с нормальным артериальным давлением.

    Задача, которая ставится перед исследователем: имеются ли статистически значимые различия между частотой лиц с артериальным давлением среди курящих и некурящих? Ответить на этот вопрос можно, рассчитав критерий хи-квадрат Пирсона и сравнив получившееся значение с критическим.

    3. Условия и ограничения применения критерия хи-квадрат Пирсона

    1. Сопоставляемые показатели должны быть измерены в номинальной шкале (например, пол пациента - мужской или женский) или в порядковой (например, степень артериальной гипертензии, принимающая значения от 0 до 3).
    2. Данный метод позволяет проводить анализ не только четырехпольных таблиц, когда и фактор, и исход являются бинарными переменными, то есть имеют только два возможных значения (например, мужской или женский пол, наличие или отсутствие определенного заболевания в анамнезе...). Критерий хи-квадрат Пирсона может применяться и в случае анализа многопольных таблиц, когда фактор и (или) исход принимают три и более значений.
    3. Сопоставляемые группы должны быть независимыми, то есть критерий хи-квадрат не должен применяться при сравнении наблюдений "до-"после". В этих случаях проводится тест Мак-Немара (при сравнении двух связанных совокупностей) или рассчитывается Q-критерий Кохрена (в случае сравнения трех и более групп).
    4. При анализе четырехпольных таблиц ожидаемые значения в каждой из ячеек должны быть не менее 10. В том случае, если хотя бы в одной ячейке ожидаемое явление принимает значение от 5 до 9, критерий хи-квадрат должен рассчитываться с поправкой Йейтса . Если хотя бы в одной ячейке ожидаемое явление меньше 5, то для анализа должен использоваться точный критерий Фишера .
    5. В случае анализа многопольных таблиц ожидаемое число наблюдений не должно принимать значения менее 5 более чем в 20% ячеек.

    4. Как рассчитать критерий хи-квадрат Пирсона?

    Для расчета критерия хи-квадрат необходимо:

    Данный алгоритм применим как для четырехпольных, так и для многопольных таблиц.

    5. Как интерпретировать значение критерия хи-квадрат Пирсона?

    В том случае, если полученное значение критерия χ 2 больше критического, делаем вывод о наличии статистической взаимосвязи между изучаемым фактором риска и исходом при соответствующем уровне значимости.

    6. Пример расчета критерия хи-квадрат Пирсона

    Определим статистическую значимость влияния фактора курения на частоту случаев артериальной гипертонии по рассмотренной выше таблице:

    1. Рассчитываем ожидаемые значения для каждой ячейки:
    2. Находим значение критерия хи-квадрат Пирсона:

      χ 2 = (40-33.6) 2 /33.6 + (30-36.4) 2 /36.4 + (32-38.4) 2 /38.4 + (48-41.6) 2 /41.6 = 4.396.

    3. Число степеней свободы f = (2-1)*(2-1) = 1. Находим по таблице критическое значение критерия хи-квадрат Пирсона, которое при уровне значимости p=0.05 и числе степеней свободы 1 составляет 3.841.
    4. Сравниваем полученное значение критерия хи-квадрат с критическим: 4.396 > 3.841, следовательно зависимость частоты случаев артериальной гипертонии от наличия курения - статистически значима. Уровень значимости данной взаимосвязи соответствует p<0.05.

      Распределение. Распределение Пирсона Плотность вероятности … Википедия

      распределение «хи-квадрат» - распределение «хи квадрат» — Тематики защита информации EN chi square distribution … Справочник технического переводчика

      распределение хи-квадрат - Распределение вероятностей непрерывной случайной величины с значениями от 0 до, плотность которого задается формулой, где 0 при параметре =1,2,...; – гамма функция. Примеры. 1) Сумма квадратов независимых нормированных нормальных случайных… … Словарь социологической статистики

      РАСПРЕДЕЛЕНИЕ ХИ-КВАДРАТ (хи2) - Распределение случайной переменной хи2., если случайные выборки размера 1 взяты из нормального распределения со средним (и вариансой q2, то хи2 = (X1 u)2/q2, где X отобранное значение. Если объем выборки увеличивается произвольно до N, то хи2 =… …

      Плотность вероятности … Википедия

      - (Распределение Снедекора) Плотность вероятности … Википедия

      Распределение Фишера Плотность вероятности Функция распределения Параметры числа с … Википедия

      Одно из основных понятий вероятностей теории и математической статистики. При современном подходе в качестве математич. модели изучаемого случайного явления берется соответствующее вероятностное пространство{W, S, Р}, где W множество элементарных … Математическая энциклопедия

      Гамма распределение Плотность вероятности Функция распределения Параметры … Википедия

      РАСПРЕДЕЛЕНИЕ F - Теоретическое вероятностное распределение случайной переменной F. Если случайные выборки размера N отобраны независимо из нормальной популяции, каждая из них генерирует распределение хи квадрат со степенью свободы = N. Отношение двух таких… … Толковый словарь по психологии

    Книги

    • Теория вероятностей и математическая статистика в задачах: Более 360 задач и упражнений , Борзых Д.. В предлагаемом пособии содержатся задачи различного уровня сложности. Однако основной акцент сделан на задачах средней сложности. Это сделано намеренно с тем, чтобы побудить студентов к…
    • Теория вероятностей и математическая статистика в задачах. Более 360 задач и упражнений , Борзых Д.А.. В предлагаемом пособии содержатся задачи различного уровня сложности. Однако основной акцент сделан на задачах средней сложности. Это сделано намеренно с тем, чтобы побудить студентов к…