Влияние объема на химическое равновесие. Задания на химическое равновесие

>> Химия: Химическое равновесие и способы его смещения В обратимых процессах скорость прямой реакции вначале максимальна, а затем уменьшается иа-за того, что уменьшаются концентрации исходных веществ, расходуемых ив образование продуктов реакции. Наоборот, скорость обратной реакции, минимальная вначале, увеличивается но мере увеличения концентрации продуктов реакции. Наконец, наступает такой момент, когда скорости прямой и обратной реакции становятся равными.

Состояние химического обратимого процесса называется химическим равновесием, если при этом скорость прямой реакции равна скорости обратной реакции.

Химическое равновесие является динамичным (подвижным), так как при его наступлении реакция не прекращается, неизменными остаются лишь концентрации компонентов, то есть ля единицу временя образуется такоеже количество продуктов реакции, какое превращается в исходные вещества. При постоянных температуре и давлении равновесие обратимое реакции может сохраняться неопределенно долгое время.

Нa производстве же чаще всего заинтересованы в преимущественном протекании прямой реакции. Например, в получении аммиаки, оксида серы (VI). оксида азота (II). Как же вывести систему иэ состояния равновесия? Как влияет на него изменение внешних условии, при которых протекает тот или иной обратимый химический процесс?

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Химическое равновесие и принципы его смещения (принцип Ле Шателье)

В обратимых реакциях при определенных условиях может наступить состояние химического равновесия. Это состояние, при котором скорость обратной реакции становится равной скорости прямой реакции. Но для того, чтобы сдвинуть равновесие в ту или иную сторону, нужно поменять условия протекания реакции. Принцип смещения равновесия - принцип Ле Шателье.

Основные положения:

1. Внешнее воздействие на систему, находящуюся в состоянии равновесия, приводит к смещению этого равновесия в направлении, при котором эффект произведенного воздействия ослабляется.

2. При увеличении концентрации одного из реагирующих веществ равновесие смещается в сторону расхода этого вещества, при уменьшении концентрации равновесие смещается в сторону образования этого вещества.

3. При увеличении давления равновесие смещается в сторону уменьшения количества газообразных веществ, то есть в сторону понижения давления; при уменьшении давления равновесие смещается в сторону возрастания количеств газообразных веществ, то есть в сторону увеличения давления. Если реакция протекает без изменения числа молекул газообразных веществ, то давление не влияет на положение равновесия в этой системе.

4. При повышении температуры равновесие смещается в сторону эндотермической реакции, при понижении температуры - в сторону экзотермической реакции.

За принципы благодарим пособие "Начала химии" Кузьменко Н.Е., Еремин В.В., Попков В.А.

Задания ЕГЭ на химическое равновесие (ранее А21)

Задание №1.

H2S(г) ↔ H2(г) + S(г) - Q

1. Повышении давления

2. Повышении температуры

3. Понижении давления

Объяснение: для начала рассмотрим реакцию: все вещества являются газами и в правой части две молекулы продуктов, а в левой только одна, так же реакция является эндотермической (-Q). Поэтому рассмотрим изменение давления и температуры. Нам нужно, чтобы равновесие сместилось в сторону продуктов реакции. Если мы повысим давление, то равновесие сместится в сторону уменьшения объема, то есть в сторону реагентов - нам это не подходит. Если мы повысим температуру, то равновесие сместится в сторону эндотермической реакции, в нашем случае в сторону продуктов, что и требовалось.Правильный ответ - 2.

Задание №2.

Химическое равновесие в системе

SO3(г) + NO(г) ↔ SO2(г) + NO2(г) - Q

сместится в сторону образования реагентов при:

1. Увеличении концентрации NO

2. Увеличении концентрации SO2

3. Повышении температуры

4. Увеличении давления

Объяснение: все вещества газы, но объемы в правой и левой частях уравнения одинаковы, поэтому давление на равновесие в системе влиять не будет. Рассмотрим изменение температуры: при повышении температуры равновесие смещается в сторону эндотермической реакции, как раз в сторону реагентов. Правильный ответ - 3.

Задание №3.

В системе

2NO2(г) ↔ N2O4(г) + Q

смещению равновесия влево будет способствовать

1. Увеличение давления

2. Увеличение концентрации N2O4

3. Понижение температуры

4. Введение катализатора

Объяснение: обратим внимание на то, что объемы газообразных веществ в правой и левой частях уравнения не равны, поэтому изменение давления будет влиять на равновесие в данной системе. А именно, при увеличении давления равновесие смещается в сторону уменьшения количества газообразных веществ, то есть вправо. Нам это не подходит. Реакция экзотермическая, поэтому и изменение температуры будет влиять на равновесие системы. При понижении температуры равновесие будет смещаться в сторону экзотермической реакции, то есть тоже вправо. При увеличении концентрации N2O4, равновесие смещается в сторону расхода этого вещества, то есть влево. Правильный ответ - 2.

Задание № 4.

В реакции

2Fe(т) + 3H2O(г) ↔ 2Fe2O3(т) + 3Н2(г) - Q

равновесие сместится в сторону продуктов реакции при

1. Повышении давления

2. Добавлении катализатора

3. Добавлении железа

4. Добавлении воды

Объяснение: количество молекул в правой и левой частях одинаково, так что изменение давления влиять на равновесие в данной системе не будет. Рассмотрим повышение концентрации железа - равновесие должно сместиться в сторону расхода этого вещества, то есть вправо (в сторону продуктов реакции). Правильный ответ - 3.

Задание № 5.

Химическое равновесие

Н2О(ж) + С(т) ↔ Н2(г) + СО(г) - Q

сместится в сторону образования продуктов в случае

1. Повышения давления

2. Повышения температуры

3. Увеличения времени протекания процесса

4. Применения катализатора

Объяснение: изменение давления не будет влиять на равновесие в данной системе, так как не все вещества газообразны. При повышении температуры равновесие смещается в сторону эндотермической реакции, то есть вправо (в сторону образования продуктов).Правильный ответ - 2.

Задание № 6.

При повышении давления химическое равновесие сместится в сторону продуктов в системе:

1. CH4(г) + 3S(т) ↔ CS2(г) + 2H2S(г) - Q

2. C(т) + CO2(г) ↔ 2CO(г) - Q

3. N2(г) + 3H2(г) ↔ 2NH3(г) + Q

4. Ca(HCO3)2(т) ↔ CaCO3(т) + CO2(г) + H2O(г) - Q

Объяснение: на реакции 1 и 4 изменение давления не влияет, потому не все участвующие вещества газообразны, в уравнении 2 в правой и левой частях количества молекул одинаково, так что давление влиять не будет. Остается уравнение 3. Проверим: при повышении давления равновесие должно сместиться в сторону уменьшения количеств газообразных веществ (справа 4 молекулы, слева 2 молекулы), то есть в сторону продуктов реакции. Правильный ответ - 3.

Задание № 7.

Не влияет на смещение равновесия

H2(г) + I2(г) ↔ 2HI(г) - Q

1. Повышение давления и добавление катализатора

2. Повышение температуры и добавление водорода

3. Понижение температуры и добавление йодоводорода

4. Добавление йода и добавление водорода

Объяснение: в правой и левой частях количества газообразных веществ одинаковы, поэтому изменение давления влиять на равновесие в системе не будет, также не будет влиять и добавление катализатора, потому что как только мы добавим катализатор ускориться прямая реакция, а потом сразу же обратная и равновесие в системе восстановится. Правильный ответ - 1.

Задание № 8.

Для смещения вправо равновесия в реакции

2NO(г) + O2(г) ↔ 2NO2(г); ΔH°<0

требуется

1. Введение катализатора

2. Понижение температуры

3. Понижение давления

4. Понижение концентрации кислорода

Объяснение: понижение концентрации кислорода приведет к смещению равновесия в сторону реагентов (влево). Понижение давления сдвинет равновесие в сторону уменьшения количества газообразных вещества, то есть вправо. Правильный ответ - 3.

Задание № 9.

Выход продукта в экзотермической реакции

2NO(г) + O2(г) ↔ 2NO2(г)

при одновременном повышении температуры и понижении давления

1. Увеличится

2. Уменьшится

3. Не изменится

4. Сначала увеличится, потом уменьшится

Объяснение: при повышении температуры равновесие смещается в сторону эндотермической реакции, то есть в сторону продуктов, а при понижении давления равновесие смещается в сторону увеличения количеств газообразных веществ, то есть тоже влево. Поэтому выход продукта уменьшится. Правильный ответ - 2.

Задание № 10.

Увеличению выхода метанола в реакции

СО + 2Н2 ↔ СН3ОН + Q

способствует

1. Повышение температуры

2. Введение катализатора

3. Введение ингибитора

4. Повышение давления

Объяснение: при повышении давления равновесие смещается в сторону эндотермической реакции, то есть в сторону реагентов. Повышение давления смещает равновесие в сторону уменьшения количеств газообразных веществ, то есть в сторону образования метанола.Правильный ответ - 4.

Задания для самостоятельного решения (ответы внизу)

1. В системе

СО(г) + Н2О(г) ↔ СО2(г) + Н2(г) + Q

смещению химического равновесия в сторону продуктов реакции будет способствовать

1. Уменьшение давления

2. Увеличение температуры

3. Увеличение концентрации монооксида углерода

4. Увеличение концентрации водорода

2. В какой системе при повышении давления равновесие смещается в сторону продуктов реакции

1. 2СО2(г) ↔ 2СО(г) + О2(г)

2. С2Н4(г) ↔ С2Н2(г) + Н2(г)

3. PCl3(г) + Cl2(г) ↔ PCl5(г)

4. H2(г) + Cl2(г) ↔ 2HCl(г)

3. Химическое равновесие в системе

2HBr(г) ↔ H2(г) + Br2(г) - Q

сместится в сторону продуктов реакции при

1. Повышении давления

2. Повышении температуры

3. Понижении давления

4. Использовании катализатора

4. Химическое равновесие в системе

С2Н5ОН + СН3СООН ↔ СН3СООС2Н5 + Н2О + Q

смещается в сторону продуктов реакции при

1. Добавлении воды

2. Уменьшении концентрации уксусной кислоты

3. Увеличении концентрации эфира

4. При удалении сложного эфира

5. Химическое равновесие в системе

2NO(г) + O2(г) ↔ 2NO2(г) + Q

смещается в сторону образования продукта реакции при

1. Повышении давления

2. Повышении температуры

3. Понижении давления

4. Применении катализатора

6. Химическое равновесие в системе

СО2(г) + С(тв) ↔ 2СО(г) - Q

сместится в сторону продуктов реакции при

1. Повышении давления

2. Понижении температуры

3. Повышении концентрации СО

4. Повышении температуры

7. Изменение давления не повлияет на состояние химического равновесия в системе

1. 2NO(г) + O2(г) ↔ 2NO2(г)

2. N2(г) + 3H2(г) ↔ 2NH3(г)

3. 2CO(г) + O2(г) ↔ 2CO2(г)

4. N2(г) + O2(г) ↔ 2NO(г)

8. В какой системе при повышении давления химическое равновесие сместится в сторону исходных веществ?

1. N2(г) + 3H2(г) ↔ 2NH3(г) + Q

2. N2O4(г) ↔ 2NO2(г) - Q

3. CO2(г) + H2(г) ↔ CO(г) + H2O(г) - Q

4. 4HCl(г) + O2(г) ↔ 2H2O(г) + 2Cl2(г) + Q

9. Химическое равновесие в системе

С4Н10(г) ↔ С4Н6(г) + 2Н2(г) - Q

сместится в сторону продуктов реакции при

1. Повышении температуры

2. Понижении температуры

3. Использовании катализатора

4. Уменьшении концентрации бутана

10. На состояние химического равновесия в системе

H2(г) + I2(г) ↔ 2HI(г) -Q

не влияет

1. Увеличение давления

2. Увеличение концентрации йода

3. Увеличение температуры

4. Уменьшение температуры

Задания 2016 года

1. Установите соответствие между уравнением химической реакции и смещением химического равновесия при увеличении давления в системе.

Уравнение реакции Смещение химического равновесия

А) N2(г) + O2(г) ↔ 2NO(г) - Q 1. Смещается в сторону прямой реакции

Б) N2O4(г) ↔ 2NO2(г) - Q 2. Смещается в сторону обратной реакции

В) CaCO3(тв) ↔ CaO(тв) +CO2(г) - Q 3. Не происходит смещения равновесия

Г) Fe3O4(тв) + 4CO(г) ↔ 3Fe(тв) + 4CO2(г) + Q

2. Установите соответствие между внешним воздействием на систему:

СО2(г) + С(тв) ↔ 2СО(г) - Q

и смещение химического равновесия.

А. Увеличение концентрации СО 1. Смещается в сторону прямой реакции

В. Понижение давления 3. Не происходит смещения равновесия

3. Установите соответствие между внешним воздействием на систему

НСООН(ж) + С5Н5ОН(ж) ↔ НСООС2Н5(ж) + Н2О(ж) + Q

Внешнее воздействие Смещение химического равновесия

А. Добавление НСООН 1. Смещается в сторону прямой реакции

В. Разбавление водой 3. Не происходит смещения равновесия

Г. Повышение температуры

4. Установите соответствие между внешним воздействием на систему

2NO(г) + O2(г) ↔ 2NO2(г) + Q

и смещением химического равновесия.

Внешнее воздействие Смещение химического равновесия

А. Уменьшение давления 1. Смещается в сторону прямой реакции

Б. Увеличение температуры 2. Смещается в сторону обратной реакции

В. Увеличение температуры NO2 3. Не происходит смещения равновесия

Г. Добавление О2

5. Установите соответствие между внешним воздействием на систему

4NH3(г) + 3O2(г) ↔ 2N2(г) + 6H2O(г) + Q

и смещением химического равновесия.

Внешнее воздействие Смещение химического равновесия

А. Понижение температуры 1. Смещение в сторону прямой реакции

Б. Повышение давления 2. Смещается в сторону обратной реакции

В. Повышение концентрации в аммиаке 3. Не происходит смещения равновесия

Г. Удаление паров воды

6. Установите соответствие между внешним воздействием на систему

WO3(тв) + 3H2(г) ↔ W(тв) + 3H2O(г) +Q

и смещением химического равновесия.

Внешнее воздействие Смещение химического равновесия

А. Повышение температуры 1. Смещается в сторону прямой реакции

Б. Повышение давления 2. Смещается в сторону обратной реакции

В. Использование катализатора 3. Не происходит смещения равновесия

Г. Удаление паров воды

7. Установите соответствие между внешним воздействием на систему

С4Н8(г) + Н2(г) ↔ С4Н10(г) + Q

и смещением химического равновесия.

Внешнее воздействие Смещение химического равновесия

А. Увеличение концентрации водорода 1. Смещается в сторону прямой реакции

Б. Повышение температуры 2. Смещается в сторону обратной реакции

В. Повышение давления 3. Не происходит смещения равновесия

Г. Использование катализатора

8. Установите соответствие между уравнением химической реакции и одновременным изменением параметров системы, приводящим к смещению химического равновесия в сторону прямой реакции.

Уравнение реакции Изменение параметров системы

А. H2(г) + F2(г) ↔ 2HF(г) + Q 1. Увеличение температуры и концентрации водорода

Б. H2(г) + I2(тв) ↔ 2HI(г) -Q 2. Уменьшение температуры и концентрации водорода

В. CO(г) + H2O(г) ↔ CО2(г) +H2(г) + Q 3. Увеличение температуры и уменьшение концентрации водорода

Г. C4H10(г) ↔ C4H6(г) + 2H2(г) -Q 4. Уменьшение температуры и увеличение концентрации водорода

9. Установите соответствие между уравнением химической реакции и смещением химического равновесия при увеличении давления в системе.

Уравнение реакции Направление смещения химического равновесия

А. 2HI(г) ↔ H2(г) + I2(тв) 1. Смещается в сторону прямой реакции

Б. C(г) + 2S(г) ↔ CS2(г) 2. Смещается в сторону обратной реакции

В. C3H6(г) + H2(г) ↔ C3H8(г) 3. Не происходит смещения равновесия

Г. H2(г) + F2(г) ↔ 2HF(г)

10. Установите соответствие между уравнением химической реакции и одновременным изменением условий ее проведения, приводящим к смещению химического равновесия в сторону прямой реакции.

Уравнение реакции Изменение условий

А. N2(г) + H2(г) ↔ 2NH3(г) + Q 1. Увеличение температуры и давления

Б. N2O4(ж) ↔ 2NO2(г) -Q 2. Уменьшение температуры и давления

В. CO2(г) + C(тв) ↔ 2CO(г) + Q 3. Увеличение температуры и уменьшение давления

Г. 4HCl(г) + O2(г) ↔ 2H2O(г) + 2Cl2(г) + Q 4. Уменьшение температуры и увеличение давления

Ответы: 1 - 3, 2 - 3, 3 - 2, 4 - 4, 5 - 1, 6 - 4, 7 - 4, 8 - 2, 9 - 1, 10 - 1

1. 3223

2. 2111

3. 1322

4. 2221

5. 1211

6. 2312

7. 1211

8. 4133

9. 1113

10. 4322

За задания благодарим сборники упражнений за 2016, 2015, 2014, 2013 г. авторов:

Кавернину А.А., Добротина Д.Ю., Снастину М.Г., Савинкину Е.В., Живейнова О.Г.

Химическое равновесие присуще обратимым реакциям и не характерно для необратимых химических реакций.

Часто, при осуществлении химического процесса, исходные реагирующие вещества полностью переходят в продукты реакции. Например:

Cu + 4HNO 3 = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

Невозможно получить металлическую медь, проводя реакцию в обратном направлении, т.к. данная реакция необратима . В таких процессах реагенты полностью переходят в продукты, т.е. реакция протекает до конца.

Но основная часть химических реакций обратима , т.е. вероятно параллельное протекание реакции в прямом и обратном направлениях. Иначе говоря, реагенты лишь частично переходят в продукты и реакционная система будет состоять как из реагентов, так и из продуктов. Система в данном случае находится в состоянии химического равновесия.

При обратимых процессах, вначале прямая реакция имеет максимальную скорость, которая постепенно снижается, в связи с уменьшением количества реагентов. Обратная реакция, наоборот, вначале имеет минимальную скорость, которая увеличивается по мере накапливания продуктов. В конце концов, наступает момент, когда скорости обоих реакций становятся равными – система приходит в состояние равновесия. При наступлении состояния равновесия, концентрации компонентов остаются неизменными, но химическая реакция при этом не прекращается. Т.о. – это динамичное (подвижное) состояние. Для наглядности, приведем следующий рисунок:

Допустим, протекает некая обратимая химическая реакция :

а А + b В = с С + d D

тогда, исходя из закона действующих масс, запишем выражения для прямой υ 1 и обратной υ 2 реакций:

υ1 = k 1 ·[A] a ·[B] b

υ2 = k 2 ·[C] c ·[D] d

В состоянии химического равновесия , скорости прямой и обратной реакции равны, т.е.:

k 1 ·[A] a ·[B] b = k 2 ·[C] c ·[D] d

получаем

К = k 1 / k 2 = [C] c ·[D] d ̸ [A] a ·[B] b

Где К = k 1 / k 2 константа равновесия.

Для любого обратимого процесса, при заданных условиях k является величиной постоянной. Она не зависит от концентраций веществ, т.к. при изменении количества одного из веществ, количества других компонентов также меняются.

При изменении условий протекания химического процесса, возможно смещение равновесия.

Факторы, влияющие на смещение равновесия:

  • изменение концентраций реагентов или продуктов,
  • изменение давления,
  • изменение температуры,
  • внесение катализатора в реакционную среду.

Принцип Ле-Шателье

Все вышеперечисленные факторы влияют на смещение химического равновесия, которое подчиняется принципу Ле-Шателье : если изменить одно из условий, при котором система находится в состоянии равновесия – концентрацию, давление или температуру, — то равновесие сместится в направлении той реакции, которая противодействует этому изменению. Т.е. равновесие стремится к смещению в направлении, приводящему к уменьшению влияния воздействия, которое привело к нарушению состояния равновесия.

Итак, рассмотрим отдельно влияние каждого их факторов на состояние равновесия.

Влияние изменения концентраций реагентов или продуктов покажем на примере процесса Габера :

N 2(г) + 3H 2(г) = 2NH 3(г)

Если в равновесную систему, состоящую из N 2(г) , H 2(г) и NH 3(г) , добавить, например, азот, то равновесие должно сместиться в направлении, которое способствовало бы уменьшению количества водорода в сторону его исходного значения, т.е. в направлении образования дополнительного количества аммиака (вправо). При этом одновременно произойдет и уменьшение количества водорода. При добавлении в систему водорода, также произойдет смещение равновесия в сторону образования нового количества аммиака (вправо). Тогда как внесение в равновесную систему аммиака, согласно принципу Ле-Шателье , вызовет смещение равновесия в сторону того процесса, который благоприятен для образования исходных веществ (влево), т.е. концентрация аммиака должна уменьшится посредством разложения некоторого его количества на азот и водород.

Уменьшение концентрации одного из компонентов, сместит равновесное состояние системы в сторону образования этого компонента.

Влияние изменения давления имеет смысл, если в исследуемом процессе принимают участие газообразные компоненты и при этом имеет место изменение общего числа молекул. Если общее число молекул в системе остается постоянным , то изменение давления не влияет на ее равновесие, например:

I 2(г) + H 2(г) = 2HI (г)

Если полное давление равновесной системы увеличивать посредством уменьшения ее объема, то равновесие сместится в сторону уменьшения объема. Т.е. в сторону уменьшения числа газа в системе. В реакции:

N 2(г) + 3H 2(г) = 2NH 3(г)

из 4 молеул газа (1 N 2(г) и 3 H 2(г)) образуется 2 молекулы газа (2 NH 3(г)), т.е. давление в системе уменьшается. Вследствие чего, рост давления будет способствовать образованию дополнительного количества аммиака, т.е. равновесие сместится в сторону его образования (вправо).

Если температура системы постоянна, то изменение полного давления системы не приведет к изменению константы равновесия К.

Изменение температуры системы влияет не только на смещение ее равновесия, но также и на константу равновесия К. Если равновесной системе, при постоянном давлении, сообщать дополнительную теплоту, то равновесие сместится в сторону поглощения теплоты. Рассмотрим :

N 2(г) + 3H 2(г) = 2NH 3(г) + 22 ккал

Итак, как видно, прямая реакция протекает с выделением теплоты, а обратная – с поглощением. При увеличении температуры, равновесие этой реакции смещается в сторону реакции разложения аммиака (влево), т.к. она является и ослабляет внешнее воздействие – повышение температуры. Напротив, охлаждение приводит к смещению равновесия в направлении синтеза аммиака (вправо), т.к. реакция является экзотермической и противодействует охлаждению.

Таким образом, рост температуры благоприятствует смещению химического равновесия в сторону эндотермической реакции, а падение температуры – в направлении экзотермического процесса. Константы равновесия всех экзотермических процессов при росте температуры уменьшаются, а эндотермических процессов – увеличиваются.

Если внешние условия химического процесса не изменяются, то состояние химического равновесия может сохраняться сколь угодно долго. Изменением условий проведения реакции (температуры, давления, концентрации) можно добиться смещения или сдвига химического равновесия в требуемом направлении.

Смещение равновесия вправо приводит к увеличению концентрации веществ, формулы которых находятся в правой части уравнения. Смещение равновесия влево будет приводить к увеличению концентрации веществ, формулы которых находятся слева. При этом система перейдет в новое состояние равновесия, характеризующееся другими значениями равновесных концентраций участников реакции .

Смещение химического равновесия, вызванное изменением условий, подчиняется правилу, сформулированному в 1884 году французским физиком А. Ле Шателье (принцип Ле Шателье).

Принцип Ле Шателье: если на систему, находящуюся в состоянии химического равновесия, оказать какое-либо воздействие, например, изменить температуру, давление или концентрации реагентов, то равновесие сместится в направлении той реакции, которая ослабляет оказываемое воздействие.

Влияние изменения концентрации на смещение химического равновесия.

Согласно принципу Ле Шателье увеличение концентрации любого из участников реакции вызывает смещение равновесия в сторону той реакции, которая приводит к уменьшению концентрации этого вещества.

Влияние концентрации на состояние равновесия подчиняется следующим правилам:

При повышении концентрации одного из исходных веществ возрастает скорость прямой реакции и равновесие сдвигается в направлении образования продуктов реакции и наоборот;

При повышении концентрации одного из продуктов реакции возрастает скорость обратной реакции, что приводит к смещению равновесия в направлении образования исходных веществ и наоборот.

Например, если в равновесной системе:

SO 2(г) + NO 2(г) SO 3(г) + NO (г)

увеличить концентрации SO 2 или NO 2 , то, в соответствии с законом действующих масс, возрастет скорость прямой реакции. Это приведет к смещению равновесия вправо, что обусловит расходование исходных веществ и увеличение концентрации продуктов реакции. Установится новое состояние равновесия с новыми равновесными концентрациями исходных веществ и продуктов реакции. При уменьшении концентрации, например, одного из продуктов реакции, система отреагирует таким образом, чтобы концентрацию продукта увеличить. Преимущество получит прямая реакция, приводящая к увеличению концентрации продуктов реакции.

Влияние изменения давления на смещение химического равновесия.

Согласно принципу Ле Шателье повышение давления приводит к смещению равновесия в сторону образования меньшего количества газообразных частиц, т.е. в сторону меньшего объема.


Например, в обратимой реакции:

2NO 2(г) 2NO (г) + O 2(г)

из 2 моль NO 2 образуется 2 моль NO и 1 моль O 2 . Стехиометрические коэффициенты перед формулами газообразных веществ указывают, что протекание прямой реакции приводит к увеличению числа моль газов, а протекание обратной реакции, наоборот, уменьшает число моль газообразного вещества. Если на такую систему оказать внешнее воздействие путем, например, путем увеличения давления, то система отреагирует таким образом, чтобы это воздействие ослабить. Давление может снизиться, если равновесие данной реакции сместится в сторону меньшего числа молей газообразного вещества, а значит, и меньшего объема.

Наоборот, повышение давления в этой системе связано со смещением равновесия вправо - в сторону разложения NO 2 , что увеличивает количество газообразного вещества.

Если число моль газообразных веществ до и после реакции остаетсяпостоянным, т.е. объем системы в ходе реакции не меняется, то изменение давления одинаково изменяет скорости прямой и обратной реакций и не оказывает влияния на состояние химического равновесия.

Например, в реакции:

H 2(г) + Cl 2(г) 2HCl (г) ,

общее количество моль газообразных веществ до и после реакции остается постоянным и давление в системе не меняется. Равновесие в данной системе при изменении давления не смещается.

Влияние изменения температуры на смещение химического равновесия.

В каждой обратимой реакции одно из направлений отвечает экзотермическому процессу, а другое - эндотермическому. Так в реакции синтеза аммиака прямая реакция - экзотермическая, а обратная реакция - эндотермическая.

N 2(г) + 3H 2(г) 2NH 3(г) + Q (-ΔH).

При изменении температуры изменяются скорости как прямой, так и обратной реакций, однако, изменение скоростей происходит не в одинаковой степени. В соответствии с уравнением Аррениуса в большей степени на изменение температуры реагирует эндотермическая реакция, характеризующаяся большим значением энергии активации.

Следовательно, для оценки влияния температуры на направление смещения химического равновесия необходимо знать тепловой эффект процесса. Его можно определить экспериментально, например, с помощью калориметра, или рассчитать на основе закона Г. Гесса . Следует отметить, что изменение температуры приводит к изменению величины константы химического равновесия (K p).

Согласно принципу Ле Шателье повышение температуры смещает равновесие в сторону эндотермической реакции. При понижении температуры равновесие смещается в направлении экзотермической реакции.

Таким образом, повышение температуры в реакции синтеза аммиака приведет к смещению равновесия в сторону эндотермической реакции, т.е. влево. Преимущество получает обратная реакция, протекающая с поглощением тепла.

    Понятие химического равновесия

Равновесным считается состояние системы, которое остается неизменным, причем это состояние не обусловлено действием каких-либо внешних сил. Состояние системы реагирующих веществ, при котором скорость прямой реакции становится равной скорости обратной реакции, называется химическим равновесием . Такое равновесие называется еще подвижны м или динамическим равновесием.

Признаки химического равновесия

1. Состояние системы остается неизменным во времени при сохранении внешних условий.

2. Равновесие является динамическим, то есть обусловлено протеканием прямой и обратной реакции с одинаковыми скоростями.

3. Любое внешнее воздействие вызывает изменение в равновесии системы; если внешнее воздействие снимается, то система снова возвращается в исходное состояние.

4. К состоянию равновесия можно подойти с двух сторон – как со стороны исходных веществ, так и со стороны продуктов реакции.

5. В состоянии равновесия энергия Гиббса достигает своего минимального значения.

Принцип Ле Шателье

Влияние изменения внешних условий на положение равновесия определяется принципом Ле Шателье (принципом подвижного равновесия): если на систему, находящуюся в состоянии равновесия, производить какое–либо внешнее воздействие, то в системе усилится то из направлений процесса, которое ослабляет эффект этого воздействия, и положение равновесия сместится в том же направлении.

Принцип Ле Шателье применим не только к химическим процессам, но и к физическим, таким как кипение, кристаллизация, растворение и т. д.

Рассмотрим влияние различных факторов на химическое равновесие на примере реакции окисления NO:

2 NO (г) + O 2(г) 2 NO 2(г) ; H о 298 = - 113,4 кДж/моль.

Влияние температуры на химическое равновесие

При повышении температуры равновесие сдвигается в сторону эндотермической реакции, при понижении температуры – в сторону экзотермической реакции.

Степень смещения равновесия определяется абсолютной величиной теплового эффекта: чем больше по абсолютной величине энтальпия реакции H, тем значительнее влияние температуры на состояние равновесия.

В рассматриваемой реакции синтеза оксида азота (IV) повышение температуры сместит равновесие в сторону исходных веществ.

Влияние давления на химическое равновесие

Сжатие смещает равновесие в направлении процесса, который сопровождается уменьшением объема газообразных веществ, а понижение давления сдвигает равновесие в противоположную сторону. В рассматриваемом примере в левой части уравнения находится три объема, а в правой – два. Так как увеличение давления благоприятствует процессу, протекающему с уменьшением объема, то при повышении давления равновесие сместится вправо, т.е. в сторону продукта реакции – NO 2 . Уменьшение давления сместит равновесие в обратную сторону. Следует обратить внимание на то, что, если в уравнении обратимой реакции число молекул газообразных веществ в правой и левой частях равны, то изменение давления не оказывает влияния на положение равновесия.

Влияние концентрации на химическое равновесие

Для рассматриваемой реакции введение в равновесную систему дополнительных количеств NO или O 2 вызывает смещение равновесия в том направлении, при котором концентрация этих веществ уменьшается, следовательно, происходит сдвиг равновесия в сторону образования NO 2 . Увеличение концентрации NO 2 смещает равновесие в сторону исходных веществ.

Катализатор одинаково ускоряет как прямую, так и обратную реакции и поэтому не влияет на смещение химического равновесия.

При введении в равновесную систему (при Р = const) инертного газа концентрации реагентов (парциальные давления) уменьшаются. Поскольку рассматриваемый процесс окисления NO идет с уменьшением объема, то при добавлении ин

Константа химического равновесия

Для химической реакции:

2 NO (г) + O 2(г) 2 NO 2(г)

константа химической реакции К с есть отношение:

(12.1)

В этом уравнении в квадратных скобках – концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, т.е. равновесные концентрации веществ.

Константа химического равновесия связана с изменением энергии Гиббса уравнением:

G T о = – RTlnK . (12.2).

Примеры решения задач

При некоторой температуре равновесные концентрации в системе 2CO (г) + O 2 (г) 2CO 2 (г) составляли: = 0,2 моль/л, = 0,32 моль/л, = 0,16 моль/л. Определить константу равновесия при этой температуре и исходные концентрации CO и O 2 , если исходная смесь не содержала СО 2 .

.

2CO (г) + O 2(г) 2CO 2(г).

Во второй строке под с прореагир понимается концентрация прореагировавших исходных веществ и концентрация образующегося CO 2 , причем, с исходн = с прореагир + с равн .

Используя справочные данные, рассчитать константу равновесия процесса

3 H 2 (Г) + N 2 (Г) 2 NH 3 (Г) при 298 К.

G 298 о = 2·(- 16,71) кДж = -33,42·10 3 Дж.

G T о = - RTlnK.

lnK = 33,42·10 3 /(8,314× 298) = 13,489. K = 7,21× 10 5 .

Определить равновесную концентрацию HI в системе

H 2(г) + I 2(г) 2HI (г) ,

если при некоторой температуре константа равновесия равна 4, а исходные концентрации H 2 , I 2 и HI равны, соответственно, 1, 2 и 0 моль/л.

Решение. Пусть к некоторому моменту времени прореагировало x моль/л H 2.

.

Решая это уравнение, получаем x = 0,67.

Значит, равновесная концентрация HI равна 2× 0,67 = 1,34 моль/л.

Используя справочные данные, определить температуру, при которой константа равновесия процесса: H 2(г) + HCOH (г) CH 3 OH (г) становится равной 1. Принять, что Н о Т » Н о 298 , а S о T » S о 298 .

Если К = 1, то G о T = - RTlnK = 0;

G о T » Н о 298 - ТD S о 298 . Тогда ;

Н о 298 = -202 – (- 115,9) = -86,1 кДж = - 86,1× 10 3 Дж;

S о 298 = 239,7 – 218,7 – 130,52 = -109,52 Дж/К;

К.

Для реакции SO 2(Г) + Cl 2(Г) SO 2 Cl 2(Г) при некоторой температуре константа равновесия равна 4. Определить равновесную концентрацию SO 2 Cl 2 , если исходные концентрации SO 2 , Cl 2 и SO 2 Cl 2 равны 2, 2 и 1 моль/л соответственно.

Решение. Пусть к некоторому моменту времени прореагировало x моль/л SO 2.

SO 2(Г) + Cl 2(Г) SO 2 Cl 2(Г)

Тогда получаем:

.

Решая это уравнение, находим: x 1 = 3 и x 2 = 1,25. Но x 1 = 3 не удовлетворяет условию задачи.
Следовательно, = 1,25 + 1 = 2,25 моль/л.

Задачи для самостоятельного решения

12.1. В какой из приведенных реакций повышение давления сместит равновесие вправо? Ответ обосновать.

1) 2 NH 3 (г) 3 H 2 (г) + N 2 (г)

2) ZnCO 3 (к) ZnO (к) + CO 2 (г)

3) 2HBr (г) H 2 (г) + Br 2 (ж)

4) CO 2 (г) + C (графит) 2CO (г)


12.2. При некоторой температуре равновесные концентрации в системе

2HBr (г) H 2 (г) + Br 2 (г)

составляли: = 0,3 моль/л, = 0,6 моль/л, = 0,6 моль/л. Определить константу равновесия и исходную концентрацию HBr.


12.3. Для реакции H 2(г) + S (г) H 2 S (г) при некоторой температуре константа равновесия равна 2. Определить равновесные концентрации H 2 и S, если исходные концентрации H 2 , S и H 2 S равны, соответственно, 2, 3 и 0 моль/л.