Сложение гармонических колебаний. Метод векторных диаграмм. Вынужденные колебания. Резонанс. Резонансные кривые. Векторные диаграммы. Уравнение движения

Векторная диаграмма. Сложение колебаний.

Решение ряда задач теории колебаний значительно облегчается и становится более наглядным, если изображать колебания графически, используя метод векторных диаграмм. Выберем некоторую ось х . Из точки 0 на оси отложим вектор длины , образующий вначале с осью угол (рис.2.14.1). Если привести этот вектор во вращение с угловой скоростью , то проекция конца вектора на ось х будет изменяться с течением времени по закону

.

Следовательно, проекция конца вектора на ось будет совершать гармоническое колебание с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, который образует вектор с осью в начальный момент времени. Угол, образованный вектором с осью в данный момент времени определяет фазу колебания в этот момент - .

Из сказанного следует, что гармоническое колебание можно представить с помощью вектора, длина которого равна амплитуде колебания, а направление его образует с некоторой осью угол, равный фазе колебания. В этом и состоит суть метода векторных диаграмм.

Сложение колебаний одинакового направления.

Рассмотрим сложение двух гармонических колебаний, направления которых параллельны:

. (2.14.1)

Результирующее смещение х будет суммой и . Это будет колебание с амплитудой .

Воспользуемся методом векторных диаграмм (рис.2.14.2). На рисунке , и - фазы результирующего и складываемых колебаний соответственно. Легко видеть, что можно найти сложением векторов и . Однако, если частоты складываемых колебаний различны, то результирующая амплитуда меняется с течением времени по величине и вектор вращается с непостоянной скоростью, т.е. колебание не будет гармоническим, а будет представлять некоторый сложный колебательный процесс. Чтобы результирующее колебание было гармоническим, частоты складываемых колебаний должны быть одинаковы

и результирующее колебание происходит с той же частотой

.

Из построения видно, что

Проанализируем выражение (2.14.2) для амплитуды результирующего колебания. Если разность фаз складываемых колебаний равна нулю (колебания синфазны), амплитуда равна сумме амплитуд складываемых колебаний , т.е. имеет максимальное из возможных значение . Если разность фаз составляет (колебания находятся в противофазе), то результирующая амплитуда равна разности амплитуд , т.е. имеет минимальное из всех возможных значение .

Сложение взаимно перпендикулярных колебаний.

Пусть частица совершает два гармонических колебания с одной и той же частотой: одно вдоль направления, которое обозначим х , другое – в перпендикулярном направлении y . В этом случае частица будет двигаться по некоторой, в общем случае, криволинейной траектории, форма которой зависит от разности фаз колебаний.

Выберем начало отсчета времени так, чтобы начальная фаза одного колебания была равна нулю:

. (2.14.3)

Чтобы получить уравнение траектории частицы, нужно из (2.14.3) исключить t . Из первого уравнения , а. значит, . Второе уравнение перепишем

или

.

Перенеся первое слагаемое из правой части уравнения в левую, возведя полученное уравнение в квадрат и проведя преобразования, получим

. (2.14.4)

Это уравнение представляет собой уравнение эллипса, оси которого повернуты относительно осей х и y на некоторый угол. Но в некоторых частных случаях получают более простые результаты.

1. Разность фаз равна нулю. Тогда из (2.14.4) получим

или . (2.14.5)

Это уравнение прямой (рис.2.14.3). Таким образом, частица совершает колебания вдоль этой прямой с частотой и амплитудой, равной .



Вынужденные колебания. Резонанс.

До сих пор мы рассматривали собственные колебания, колебания, происходящие в отсутствие внешних воздействий. Внешнее воздействие было нужно лишь для того, чтобы вывести систему из состояния равновесия, после чего она предоставлялась самой себе. Дифференциальное уравнение собственных колебаний вообще не содержит следов внешнего воздействия на систему: это воздействие отражается лишь в начальных условиях.



Установление колебаний.

Но очень часто приходится сталкиваться с колебаниями, которые происходят при постоянно присутствующем внешнем воздействии. Особенно важен и в то же время достаточно прост для изучения случай, когда внешняя сила имеет периодический характер. Общей чертой вынужденных колебаний, происходящих под действием периодической внешней силы, является то, что спустя некоторое время после начала действия внешней силы система полностью «забывает» свое начальное состояние, колебания приобретают стационарный характер и не зависят от начальных условий. Начальные условия проявляются только в период установления колебаний, который обычно называют переходным процессом.


Синусоидальное воздействие.

Рассмотрим вначале наиболее простой случай вынужденных колебаний осциллятора под действием внешней силы, изменяющейся по синусоидальному закону.

Такое внешнее воздействие на систему можно осуществить различными способами. Например, можно взять маятник в виде шарика на длинном стержне и длинную пружину с малой жесткостью и прикрепить ее к стержню маятника недалеко от точки подвеса, как показано на рис. 178. Другой конец горизонтально расположенной пружины следует заставить двигаться по закону В с помошью кривошипно-шатунного механизма, приводимого в движение электромотором. Действующая на маятник со стороны пружины вынуждающая сила будет практически синусоидальна, если размах движения левого конца пружины В будет много больше амплитуды колебаний стержня маятника в точке закрепления пружины.



Уравнение движения.

У равнение движения для этой и других подобных систем, в которых наряду с возвращающей силой и силой сопротивления на осциллятор действует вынуждающая внешняя сила, синусоидально изменяющаяся со временем, можно записать в видеЗдесь левая часть в соответствии со вторым законом Ньютона, является произведением массы на ускорение. Первый член в правой части представляет собой возвращающую силу, пропорциональную смещению из положения равновесия. Для подвешенного на пружине груза это упругая сила, а во всех других случаях, когда ее физическая природа иная, эту силу называют квазиупругой. Второе слагаемое есть сила трения, пропорциональная скорости, например сила сопротивления воздуха или сила трения в оси. Амплитуду и частоту со раскачивающей систему вынуждающей силы будем считать постоянными.Разделим обе части уравнения на массу и введем обозначенияВ отсутствие вынуждающей силы правая часть уравнения обращается в нуль и оно, как и следовало ожидать, сводится к уравнению собственных затухающих колебаний.Опыт показывает, что во всех системах под действием синусоидальной внешней силы в конце концов устанавливаются колебания, которые также происходят по синусоидальному закону с частотой вынуждающей силы со и с постоянной амплитудой а, но с некоторым сдвигом по фазе относительно вынуждающей силы. Такие колебания называются установившимися вынужденными колебаниями.Установившиеся колебания. Рассмотрим вначале именно установившиеся вынужденные колебания, причем для простоты пренебрежем трением. В этом случае в уравнении не будет члена, содержащего скорость.Попробуем искать решение, соответствующее установившимся вынужденным колебаниям, в видеВычислим вторую производную и подставим ее вместе в уравнениеЧтобы это равенство было справедливо в любой момент времени, коэффициенты при слева и справа должны быть одинаковы. Из этого условия находим амплитуду колебаний. Исследуем зависимость амплитуды а от частоты со вынуждающей силы. График этой зависимости показан на рис. 179. Подставив сюда значения, видим, что постоянная во времени сила просто смещает осциллятор в новое положение равновесия, сдвинутое от старого. Из следует, что при смещениеФазовые соотношения. По мере роста частоты со вынуждающей силы от установившиеся коле- рис. 179. график зависимости происходят в фазе с вынуждающей силой, а их амплитуда постоянно увеличивается, сначала медленно, а по мере приближения к все быстрее и быстрее при амплитуда колебаний неограниченно возрастает.При значениях, превосходящих частоту собственных колебаний, формула дает для а отрицательное значение (рис. 179). Из формулы ясно, что при колебания происходят в противофазе с вынуждающей силой: когда сила действует в одну сторону, осциллятор смещен в противоположную. При неограниченном увеличении частоты вынуждающей силы амплитуда колебаний стремится к нулю.

Амплитуду колебаний во всех случаях удобно считать положительной, чего легко добиться, вводя сдвиг фаз между вынуждающей Здесь а по-прежнему дается формулой, а сдвиг фазы равен нулю при. Графики зависимости от частоты вынуждающей силы показаны на рис. 180.



Резонанс.

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы имеет немонотонный характер. Резкое увеличение амплитуды вынужденных колебаний при приближении частоты со вынуждающей силы к собственной частоте со0 осциллятора называется резонансом.Формула дает выражение для амплитуды вынужденных колебаний в пренебрежении трением. Именно с этим пренебрежением связано обращение амплитуды колебаний в бесконечность при точном совпадении частот. Реально амплитуда колебаний в бесконечность, конечно же, обращаться не может.Это означает, что при описании вынужденных колебаний вблизи резонанса учет трения принципиально необходим. При учете трения амплитуда вынужденных колебаний при резонансе получается конечной. Она будет тем меньше, чем больше трение в системе. Вдали от резонанса формулой можно пользоваться для нахождения амплитуды колебаний и при наличии трения, если оно не слишком сильное. Более того, эта формула, полученная без учета трения, имеет физический смысл только тогда, когда трение все же есть. Дело в том, что само понятие установившихся вынужденных колебаний применимо только к системам, в которых есть трение.

Если бы трения совсем не было, то процесс установления колебаний продолжался бы бесконечно долго. Реально это означает, что полученное без учета трения выражение для амплитуды вынужденных колебаний будет правильно описывать колебания в системе только спустя достаточно большой промежуток времени после начала действия вынуждающей силы. Слова «достаточно большой промежуток времени» означают здесь, что уже закончился переходный процесс, длительность которого совпадает с характерным временем затухания собственных колебаний в системе. При малом трении установившиеся вынужденные колебания происходят в фазе с вынуждающей силой при со и в противофазе при, как и в отсутствие трения. Однако вблизи резонанса фаза меняется не скачком, а непрерывно, причем при точном совпадении частот смещение отстает по фазе от вынуждающей силы на (на четверть периода). Скорость изменяется при этом в фазе с вынуждающей силой, что обеспечивает наиболее благоприятные условия для передачи энергии от источника внешней вынуждающей силы к осциллятору.

Какой физический смысл имеет каждый из членов в уравнении, описывающем вынужденные колебания осциллятора?

Что такое установившиеся вынужденные колебания?

При каких условиях можно использовать формулу для амплитуды установившихся вынужденных колебаний, полученную без учета трения?

Что такое резонанс? Приведите известные вам примеры проявления и использования явления резонанса.

Опишите сдвиг по фазе между вынуждающей силой и смешением при разных соотношениях между частотой в вынуждающей силы и собственной частотой осциллятора.

Чем определяется длительность процесса установления вынужденных колебаний? Дайте обоснование ответа.



Векторные диаграммы.

Убедиться в справедливости приведенных выше утверждений можно, если получить решение уравнения, описывающее установившиеся вынужденные колебания при наличии трения. Поскольку установившиеся колебания происходят с частотой вынуждающей силы со и некоторым сдвигом по фазе, то решение уравнения, соответствующее таким колебаниям, следует искать в видеПри этом скорость и ускорение, очевидно, тоже будут изменяться со временем по гармоническому закону.Амплитуду а установившихся вынужденных колебаний и сдвиг фазы удобно определять с помощью векторных диаграмм. Воспользуемся тем обстоятельством, что мгновенное значение любой изменяющейся по гармоническому закону величины можно представить как проекцию вектора на некоторое заранее выбранное направление, причем сам вектор равномерно вращается в плоскости с частотой со, а его неизменная длина равна амплитудному значению этой осциллирующей величины. В соответствии с этим сопоставим каждому члену уравнения вращающийся с угловой скоростью вектор, длина которого равна амплитудному значению этого члена.Поскольку проекция суммы нескольких векторов равна сумме проекций этих векторов, то уравнение означает, что сумма векторов, сопоставляемых членам, стоящим в левой части, равна вектору, сопоставляемому величине, стоящей в правой части. Чтобы построить эти векторы, выпишем мгновенные значения всех членов левой части уравнения, учитывая соотношения.Из формул видно, что вектор длины, сопоставляемый величине, опережает на угол вектор, сопоставляемый величине. Вектор длины, сопоставляемый члену, опережает на вектор длины. эти векторы направлены в противоположные стороны.


Взаимное расположение этих векторов для произвольного момента времени показано на рис. 181. Вся система векторов вращается как целое с угловой скоростью со против часовой стрелки вокруг точки. Мгновенные значения всех величинполучаются проецированием соответствующих векторов на заранее выбранное направление. Вектор, сопоставляемый правой части уравнения, равен сумме векторов, изображенных на рис. 181. Это сложение показано на рис. 182. Применяя теорему Пифагора, получаем откуда находим амплитуду установившихся вынужденных колебаний.Сдвиг фазы между вынуждающей силой и смещением, как видно из векторной диаграммы на рис. 182, отрицателен, так как вектор длины отстает от вектора. ПоэтомуИтак, установившиеся вынужденные колебания происходят по гармоническому закону, где определяются формулами.



Резонансные кривые.

Амплитуда установившихся вынужденных колебаний пропорциональна амплитуде вынуждающей силы. Исследуем зависимость амплитуды колебаний от частоты со вынуждающей силы. При малом затухании у эта зависимость имеет очень резкий характер. Если, то при стремлении со к частоте свободных колебаний амплитуда вынужденных колебаний а стремится к бесконечности, что совпадает с полученным ранее результатом. При наличии затухания амплитуда колебаний в резонансе уже не обращается в бесконечность, хотя и значительно превышает амплитуду колебаний под действием внешней силы той же величины, но имеющей частоту, далекую от резонансной. Резонансные кривые при разных значениях постоянной затухания у приведены на рис. 183.

Для нахождения частоты резонанса сорез, нужно найти, при каком со подкоренное выражение в формуле имеет минимум. Приравнивая производную этого выражения по со нулю или дополняя его до полного квадрата, убеждаемся, что максимум амплитуды вынужденных колебаний имеет место при Резонансная частота оказывается меньше частоты свободных колебаний системы. При малых у резонансная частота практически совпадает. При стремлении частоты вынуждающей силы к бесконечности при, амплитуда а, как видно, стремится к нулю при действии постоянной внешней силы. Это есть статическое смещение осциллятора из положения равновесия под действием постоянной силы.Максимальная амплитуда. Амплитуду вынужденных колебаний в резонансе находим, подставляя частоту из в выражение.Амплитуда колебаний в резонансе тем больше, чем меньше постоянная затухания. При изучении вынужденных колебаний вблизи резонанса трением пренебрегать нельзя, как бы мало оно ни было: только при учете затухания амплитуда в резонансе яре, получается конечной.Интересно сравнить значение со статическим смещением под действием силы. Составляя отношение, получаем при малом затуханииПодставляя сюда и учитывая, что есть время жизни собственных затухающих колебаний для той же системы в отсутствие внешних сил, находимНо есть число колебаний, совершаемых затухающим осциллятором за время жизни колебаний. Таким образом, резонансные свойства системы характеризуются тем же параметром, что и собственные затухающие колебания.Фазовые соотношения. Формула дает возможность проанализировать изменение сдвига фазы между внешней силой и смещением, при вынужденных колебаниях. При значение д близко к нулю. Это означает, что при низких частотах смещение осциллятора происходит в фазе с внешней силой. При медленном вращении кривошипа на рис. 178 маятник движется в такт с правым концом шатуна.Если стремится к нулю со стороны отрицательных значений,сдвиг фазы равен и смещение осциллятора происходит в противофазе с вынуждающей силой. В резонансе, как видно из, смещение отстает по фазе от внешней силы. Вторая из формул показывает, что при этом внешняя сила изменяется в фазе со скоростью все время действует в направлении движения. Что именно так и должно быть, ясно из интуитивных соображений.Резонанс скорости. Из формулы видно, что амплитуда колебаний скорости при установившихся вынужденных колебаниях равна. С помощью получаемЗависимость амплитуды скорости от частоты внешней силы показана на рис. 184. Резонансная кривая для скорости хотя и похожа на резонансную кривую для смещения, но отличается от нее в некоторых отношениях. Так, при при действии постоянной силы, осциллятор испытывает статическое смещение из положенияравновесия и скорость его после того, как закончится переходный процесс, равна нулю. Из формулы видно, что амплитуда скорости при обращается в нуль. Резонанс скорости имеет место при точном совпадении частоты внешней силы с частотой свободных колебаний.

Решение ряда вопросов, в частности сложение нескольких колебаний одинакового направления (или, что то же самое, сложение нескольких гармонических функций), значительно облегчается и становится наглядным, если изображать колебания графически в виде векторов на плоскости. Полученная таким способом схема называется векторной диаграммой.

Возьмем ось, которую обозначим буквой х (рис. 55.1). Из точки О, взятой на оси, отложим вектор длины а, образующий с осью угол а.

Если привести этот вектор во вращение с угловой скоростью , то проекция конца вектора будет перемещаться по оси х в пределах от -а до +а, причем координата этой проекции будет изменяться со временем по закону

Следовательно, проекция конца вектора на ось будет совершать гармоническое колебание с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, образуемому вектором с осью в начальный момент времени.

Из сказанного следует, что гармоническое колебание может быть задано с помощью вектора, длина которого равна амплитуде колебания, а направление вектора образует с осью х угол, равный начальной фазе колебания.

Рассмотрим сложение двух гармонических колебаний одинакового направления и одинаковой частоты. Смещение х колеблющегося тела будет суммой смещений , которые запишутся следующим образом:

Представим оба колебания с помощью векторов (рис. 55.2). Построим по правилам сложения векторов результирующий вектор а.

Легко видеть, что проекция этого вектора на ось х равна сумме проекций слагаемых векторов:

Следовательно, вектор а представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью как и векторы так что результирующее движение будет гармоническим колебанием с частотой амплитудой а и начальной фазой а. Из построения видно, что

Итак, представление гармонических колебаний посредством векторов дает возможность свести сложение нескольких колебаний к операции сложения векторов. Этот прием бывает особенно полезен, например, в оптике, где световые колебания в некоторой точке определяются как результат наложения многих колебаний, приходящих в данную точку от различных участков волнового фронта.

Формулы (55.2) и (55.3) можно, конечно, получить, сложив выражения (55.1) и произведя соответствующие тригонометрические преобразования. Но примененный нами способ получения этих формул отличается большей простотой и наглядностью.

Проанализируем выражение (55.2) для амплитуда. Если разность фаз обоих колебаний равна нулю, амплитуда результирующего колебания равна сумме а и . Если разность фаз равна или , т. е. оба колебания находятся в противофазе, то амплитуда результирующего колебания равна

Если частоты колебаний неодинаковы, векторы а и будут вращаться с различной скоростью. В этом случае результирующий вектор а пульсирует по величине и вращается с непостоянной скоростью. Следовательно, результирующим движением будет в этом случае не гармоническое колебание, а некоторый сложный колебательный процесс.

Метод комплексных амплитуд

Положение точки на плоскости можно однозначно задать комплексным числом:

Если точка ($А$) вращается, то координаты этой точки изменяются в соответствии с законом:

запишем $z$ в виде:

где $Re(z)=x$, то есть физическая величина x равна вещественной части комплексного выражения (4). При этом модуль комплексного выражения равен амплитуде колебаний -- $a$, его аргумент равен фазе (${\omega }_0t+\delta $). Иногда при взятии реальной части от $z$ знак операции Re опускают и получают символическое выражение:

Выражение (5) не следует принимать буквально. Часто формально упрощают (5):

где $A=ae^{i \delta}$ -- комплексная амплитуда колебания. Комплексный характер амплитуды $А$ обозначает, что колебание имеет начальную фазу неравную нулю.

Для того чтобы раскрыть физический смысл выражения типа (6), предположим, что частота колебаний (${\omega }_0$) имеет вещественную и мнимую части, и ее можно представить как:

Тогда выражение (6) можно записать как:

В том случае, если ${\omega }2>0,$ то выражение (8) описывает затухающие гармонические колебания с круговой частотой $\omega1$ и показателем затухания ${\omega }_2$. Если ${\omega }_2

Замечание

Над комплексными величинами можно проводить многие математические операции так, как будто величины являются вещественными. Операции возможны, если они сами линейны и вещественны (такими являются сложение, умножение, дифференцирование по вещественной переменной и другие, но не все). Надо помнить, что комплексные величины сами по себе не соответствуют никаким физическим величинам.

Метод векторных диаграмм

Пусть точка $A$ равномерно вращается по окружности радиуса $r$ (рис.1), скорость ее вращения ${\omega }_0$.

Рисунок 1.

Положение точки $А$ на окружности можно задать с помощью угла $\varphi $. Этот угол равен:

где $\delta =\varphi (t=0)$ величина угла поворота радиус-вектора $\overrightarrow{r}$ в начальный момент времени. Если точка $М$ вращается, то ее проекция на $ось X$ движется по диаметру окружности, совершая гармонические колебания между точками $М$ $N$. Абсциссу точки $А$ можно записать как:

Подобным способом можно представлять колебания любых величин.

Необходимо только принять изображение величины, которая совершает колебания абсциссой точки $А$, которая равномерно вращается по окружности. Можно, конечно использовать и ординату:

Замечание 1

Для того чтобы представлять затухающие колебания, надо брать не окружность, а логарифмическую спираль, которая приближается к фокусу. Если скорость приближения движущейся по спирали точки постоянна и очка движется к фокусу, то проекция этой точки на $ось X$ даст формулы затухающих колебаний.

Замечание 2

Вместо точки можно использовать радиус-вектор, который будет равномерно вращаться вокруг начала координат. Тогда величина, которая совершает гармонические колебания, будет изображаться как проекция этого вектора на $ось X$. При этом математические операции над величиной $x$ заменяют операциями над вектором.

Так операцию суммирования двух величин:

удобнее заменить суммированием двух векторов (используя правило параллелограмма). Векторы выбрать так, что их проекции на избранную $ось X$ являются выражениями $x_1\ и\ x_2$. Тогда результат операции суммирования векторов в проекции на ось абсцисс будет равен $x_1+\ x_2$.

Пример 1

Продемонстрируем применение метода векторных диаграмм.

Итак, представим комплексные числа векторами на комплексной плоскости. Величина, изменяющаяся по гармоническому закону, изображена вектором, который вращается с частотой ${\omega }0$ вокруг своего начала против часовой стрелки. Длина вектора равна амплитуде колебаний.

Графический метод решения, например, уравнения:

где $Z=R+i(\omega L-\frac{1}{\omega C})$ -- импеданс, представим с помощью рис.2. На этом рисунке изображена векторная диаграмма напряжений в цепи переменного тока.

Рисунок 2.

Учтем, что умножение комплексной величины на комплексную единицу означает ее поворот на угол $90^0$ против часовой стрелки, а умножение на ($-i$) на тот же угол по часовой стрелке. Из рис.2 ледует, что:

где $-\frac{\pi }{2}\le \varphi \le \frac{\pi }{2}.$ Изменение угла $\varphi $ зависит от соотношения между импедансами элементов цепи и частотами. Внешнее напряжение может изменяться по фазе, от совпадающего с напряжением на индуктивности, до совпадающего с напряжением на емкости. Выражается это обычно в виде отношения между фазами напряжений на элементах цепи и фазой внешнего напряжения:

    Фаза напряжения на индуктивности ${(U}L=i\omega LI)$ всегда опережает фазу внешнего напряжения на угол от $0$ до $\pi .$

    Фаза напряжения на емкости ${(U}C=-\frac{iI}{\omega C}$) всегда отстает от фазы внешнего напряжения на угол между $0$ и --$\ \pi .$

    При этом фаза на сопротивлении может как опережать, так и отставать от фазы внешнего напряжения на угол между- $\frac{\pi }{2}$ и $\frac{\pi }{2}$.

Векторная диаграмма (рис.2) позволяет сформулировать следующее:

    Фаза напряжения на индуктивности опережает фазу силы тока на $\frac{\pi }{2}$.

    Фаза напряжения на емкости отстает на $\frac{\eth }{2}\ $от фазы силы тока.

    Фаза напряжения на сопротивлении совпадает с фазой силы тока.

Пример 2

Задание: Продемонстрируйте то, что операцию возведения в квадрат нельзя применять к комплексным величинам как к вещественным числам.

Решение:

Допустим, что надо возвести в квадрат вещественное число $x$. Правильный ответ: $x^2$. Формально применим комплексный метод. Произведем замену:

$x\to x+iy$. Возведем полученное выражение в квадрат, получим:

\[{\left(x+iy\right)}^2=x^2-y^2+2xyi\ \left(2.1\right).\]

Вещественная часть выражения (2.1) равна:

\[{Re\left(x+iy\right)}^2=Re\left(x^2-y^2+2xyi\right)=x^2-y^2\ne x^2.\]

Причина ошибки в том, что операция возведения в квадрат не является линейной.

Сложение нескольких колебаний одинакового направления (или, что то же самое, сложение нескольких гармонических функций) значительно облегчается и становится наглядным, если изображать колебания графически в виде векторов на плоскости.

Возьмем ось, которую обозначим “x”. Из точки О, взятой на оси, под углом a, равным начальной фазе колебаний, отложим вектор длины A (рис. 8.3). Спроектируем вектор A на ось x, получим x 0 =Acos a – начальное смещение колеблющейся точки от положения равновесия. Приведем этот вектор во вращение против часовой стрелки с угловой скоростью w 0 . Положение этого вектора в любые моменты времени будет характеризоваться углами, равными:

w 0 t 1 +a; w 0 t 2 +a; w 0 t 3 +a; и т.д.

А проекция этого вектора будет перемещаться по оси «x» в пределах от –А до +А. Причем координата этой проекции будет изменяться со временем по закону:

.

Следовательно, проекция конца вектора на некоторую произвольную ось будет совершать гармоническое колебание с амплитудой равной длине вектора, круговой частотой равной угловой скорости вращения вектора и начальной фазой равной углу, образованному вектором с осью в начальный момент времени.

Итак, гармоническое колебание может быть задано с помощью вектора, длина которого равна амплитуде колебания, а направление вектора образует с осью “x” угол равный начальной фазе колебания.

Рассмотрим сложение двух гармонических колебаний одинакового направления и одинаковой частоты. Смещение колеблющегося тела “x” будет суммой смещений x 1 и x 2 , которые запишутся следующим образом:

Представим оба колебания с помощью векторов и (рис. 8.4) По правилам сложения векторов строим результирующий вектор . Проекция этого вектора на ось X будет равна сумме проекций слагаемых векторов: x=x 1 +x 2 . Следовательно, вектор представляет собой результирующее колебание. Этот вектор вращается с той угловой скоростью w 0 , что и векторы и , так что результирующее движение будет гармоническим колебанием с с частотой w 0 , амплитудой «а» и начальной фазой a. Из построения следует, что

Итак, представление гармонических колебаний посредством векторов дает возможность свести сложение нескольких колебаний к операции сложения векторов. Этот способ отличается большей простотой и наглядностью, чем использование тригонометрических преобразований.

Проанализируем выражение для амплитуды. Если разность фаз обоих колебаний a 2 - a 1 = 0, то амплитуда результирующего колебания равна сумме (а 2 + а 1). Если разность фаз a 2 - a 1 = +p или -p, т.е. колебания находятся в противофазе, то амплитуда результирующего колебания равна .

Если частоты колебаний x 1 и x 2 неодинаковы, векторы и будут вращаться с различной скоростью. В этом случае результирующий вектор пульсирует по величине и вращается с непостоянной скоростью, Следовательно, результирующим движением будет в этом случае не просто гармоническое колебании, а некоторый сложный колебательный процесс.