Понимание гравитации. Гравитация – это совсем не «Закон всемирного тяготения. Гравитационные силы - это ускорение

Дон Деянг

Сила тяжести (или гравитация) прочно держит нас на земле и позволяет земле вращаться вокруг солнца. Благодаря этой невидимой силе дождь падает на землю, а уровень воды в океане каждый день то повышается, то снижается. Гравитация удерживает землю в сферической форме, а также не дает нашей атмосфере улетучиться в космическое пространство. Казалось бы, эта наблюдаемая каждый день сила притяжения должна быть хорошо изучена учеными. Но, нет! Во многом гравитация остается глубочайшей тайной для науки. Эта таинственная сила является замечательным примером того, насколько ограничены современные научные знания.

Что такое гравитация?

Исаак Ньютон интересовался этим вопросом еще в 1686 году и пришел к выводу, что гравитация - это сила притяжения, существующая между всеми предметами. Он понял, что та же самая сила, которая заставляет яблоко падать на землю, на своей орбите. На самом деле сила притяжения Земли служит причиной того, что во время вращения вокруг Земли Луна отклоняется каждую секунду от своего прямого пути примерно на один миллиметр (Рисунок 1). Универсальный Закон Гравитации Ньютона является одним из наибольших научных открытий всех времен.

Гравитация – «веревка», которая удерживает объекты на орбите

Рисунок 1. Иллюстрация орбиты луны, сделанная не в соответствии с масштабом. За каждую секунду луна проходит примерно 1 км. За это расстояние она отклоняется от прямого пути примерно на 1 мм – это происходит вследствие гравитационной тяги Земли (пунктирная линия). Луна постоянно как бы падает за (или вокруг) землей, как падают и планеты вокруг солнца.

Сила тяжести – одна из четырех фундаментальных сил природы (Таблица 1). Обратите внимание на то, что из четырех сил эта сила самая слабая, и все же она является доминирующей относительно крупных космических объектов. Как показал Ньютон, притягательная гравитационная сила между двумя любыми массами становится все меньше и меньше по мере того, как расстояние между ними становится все больше и больше, но она никогда полностью не достигает нуля (смотрите «Замысел гравитации»).

Поэтому каждая частица во всей вселенной фактически притягивает любую другую частицу. В отличие от сил слабого и сильного ядерного взаимодействия, сила притяжения является дальнодействующей (Таблица 1). Магнитная сила и сила электрического взаимодействия также являются дальнодействующими силами, но гравитация уникальна тем, что она и дальнодействующая и всегда притягательная, а значит, она никогда не может иссякнуть (в отличие от электромагнетизма, в котором силы могут либо притягивать, либо отталкивать).

Начиная с великого ученого-креациониста Майкла Фарадея в 1849 году, физики постоянно искали скрытую связь между силой притяжения и силой электромагнитного взаимодействия. В настоящее время ученые пытаются соединить все четыре фундаментальные силы в одно уравнение или так называемую «Теорию всего», но, безуспешно! Гравитация остается самой загадочной и наименее изученной силой.

Гравитацию невозможно каким-либо образом оградить. Каким бы ни был состав преграждающей перегородки, она не имеют никакого влияния на притяжение между двумя разделенными объектами. Это означает, что в лабораторных условиях невозможно создать антигравитационную камеру. Сила тяжести не зависит от химического состава объектов, но зависит от их массы, известной нам как вес (сила тяжести на объект равна весу этого объекта - чем больше масса, тем больше сила или вес.) Блоки, состоящие из стекла, свинца, льда или даже стирофома, и имеющие одинаковую массу, будут испытывать (и оказывать) одинаковую гравитационную силу. Эти данные были получены в ходе экспериментов, и ученые до сих пор не знают, как их можно теоретически объяснить.

Замысел в гравитации

Сила F между двумя массами m 1 и m 2 , находящимися на расстоянии r, может быть записана в виде формулы F = (G m 1 m 2)/r 2

Где G - это гравитационная постоянная, впервые измеренная Генри Кавендишем в 1798 году.1

Это уравнение показывает, что гравитация снижается по мере того, как расстояние, r, между двумя объектами становится больше, но полностью никогда не достигает нуля.

Подчиняющаяся закону обратных квадратов природа этого уравнения просто захватывает. В конце концов, нет никакой необходимой причины, почему сила притяжения должна действовать именно так. В беспорядочной, случайной и эволюционирующей вселенной такие произвольные степени, как r 1.97 или r 2.3 казались бы более вероятными. Однако точные измерения показали точную степень, по крайней мере, до пяти десятичных разрядов, 2.00000. Как сказал один исследователь, этот результат кажется «слишком уж точным» .2 Мы можем сделать вывод, что сила притяжения указывает на точный, сотворенный дизайн. На самом деле, если бы степень хоть на чуть-чуть отклонилась от 2, орбиты планет и вся вселенная стали бы нестабильными.

Ссылки и примечания

  1. Говоря техническим языком, G = 6.672 x 10 –11 Nm 2 kg –2
  2. Томпсен, Д., «Очень точно о гравитации», Science News 118(1):13, 1980.

Так что же такое в действительности гравитация? Каким образом эта сила способна действовать в таком огромном, пустом космическом пространстве? И зачем она вообще существует? Науке никогда не удавалось ответить на эти основные вопросы о законах природы. Сила притяжения не может появиться медленно путем мутаций или естественного отбора. Она действует с самого начала существования вселенной. Как и всякий другой физический закон, гравитация, несомненно, является замечательным свидетельством запланированного сотворения.

Одни ученые пытались объяснить гравитацию с помощью невидимых частиц, гравитонов, которые движутся между объектами. Другие говорили о космических струнах и гравитационных волнах. Недавно ученым с помощью специально созданной лаборатории LIGO (англ. Laser Interferometer Gravitational-Wave Observatory) удалось только увидеть эффект гравитационных волн. Но природу этих волн, каким образом физически объекты взаимодействуют друг с другом на огромных расстояниях, изменяя их фору, все же остается для всех большим вопросом. Мы просто не знаем природу возникновения силы гравитации и каким образом она удерживает стабильность всей вселенной.

Сила притяжения и Писание

Два места из Библии могут помочь нам понять природу гравитации и физическую науку в целом. Первое место, Колоссянам 1:17, объясняет, что Христос «есть прежде всего, и все Им стоит» . Греческий глагол стоит (συνισταω sunistao ) означает: сцепляться, сохраняться или удерживаться вместе. Греческое использование этого слова за пределами Библии обозначает сосуд, с содержащейся в нем водой . Слово, которое используется в книге Колоссянам, стоит в совершенном времени, что как правило, указывает на настоящее продолжающееся состояние, которое возникло из завершенного прошедшего действия. Один из используемых физических механизмов, о котором идет речь, явно сила притяжения, установленная Творцом и безошибочно поддерживаемая и сегодня. Только представьте: если бы на мгновение перестала действовать сила притяжения, несомненно, наступил бы хаос. Все небесные тела, включая землю, луну и звезды, не удерживались бы больше вместе. Все тот час разделилось бы на отдельные, маленькие части.

Второе место Писания, Евреям 1:3, заявляет, что Христос «держит все словом силы Своей». Слово держит (φερω pherō ) снова описывает поддерживание или сохранение всего, включая гравитацию. Слово держит , используемое в этом стихе, означает намного больше, чем просто удерживание веса. Оно включает контроль над всеми происходящими движениями и изменениями внутри вселенной. Это бесконечное задание выполняется через всемогущее Слово Господа, посредством которого начала существовать сама вселенная. Гравитация, «таинственная сила», которая и через четыреста лет исследований остается плохо изученной, является одним из проявлений этой потрясающей божественной заботы о вселенной.

Искажения времени и пространства и черные дыры

Общая теория относительности Эйнштейна рассматривает гравитацию не как силу, а как искривление самого пространства вблизи массивного объекта. Согласно предсказаниям, свет, который традиционно следует по прямым линиям, искривляется при прохождении по искривленному пространству. Впервые это было продемонстрировано, когда астроном сэр Артур Эддингтон обнаружил изменение кажущегося положения звезды во время полного затмения в 1919 году, считая, что лучи света изгибаются под действием силы тяжести солнца.

Общая теория относительности также предсказывает, что если тело достаточно плотное, его сила тяжести исказит пространство настолько сильно, что свет вообще не сможет через него проходить. Такое тело поглощает свет и все остальное, что захватила его сильная гравитация, и носит название Черная дыра. Такое тело можно обнаружить только по его гравитационным эффектам на другие объекты, по сильному искривлению света вокруг него и по сильной радиации, излучаемой веществом, которое на него падает.

Все вещество внутри черной дыры сжато в центре, который имеет бесконечную плотность. «Размер» дыры определяется горизонтом событий, т.е. границей, которая окружает центр черной дыры, и ничто (даже свет) не может выйти за ее пределы. Радиус дыры называется радиусом Шварцшильда, в честь немецкого астронома Карла Шварцшильда (1873–1916), и вычисляется по формуле R S = 2GM/c 2 , где c – это скорость света в вакууме. Если бы солнце попало в черную дыру, его радиус Шварцшильда составлял бы всего 3 км.

Существует надежное доказательство, что после того, как ядерное топливо массивной звезды иссякает, она больше не может противостоять коллапсу под своим собственным огромным весом и попадает в черную дыру. Считается, что черные дыры с массой в миллиарды солнц существуют в центрах галактик, включая нашу галактику, Млечный Путь. Многие ученые полагают, что суперяркие и очень отдаленные объекты под названием квазары, используют энергию, которая выделяется, когда вещество падает в черную дыру.

Согласно предсказаниям общей теории относительности, сила тяжести также искажает и время. Это также было подтверждено очень точными атомными часами, которые на уровне моря идут на несколько микросекунд медленнее, чем на территориях выше уровня моря, где сила тяжести Земли немного слабее. Вблизи горизонта событий это явление более заметно. Если наблюдать за часами астронавта, который приближается к горизонту событий, мы увидим, что часы идут медленнее. Находясь в горизонте событий, часы остановятся, но мы никогда не сможем этого увидеть. И наоборот, астронавт не заметит, что его часы идут медленнее, но он увидит, что наши часы идут быстрее и быстрее.

Основной опасностью для астронавта возле черной дыры были бы приливные силы, вызванные тем, что сила тяжести сильнее на тех частях тела, которые находятся ближе к черной дыре, чем на частях дальше от нее. По своей мощи приливные силы возле черной дыры, имеющей массу звезды, сильнее любого урагана и запросто разрывают на мелкие кусочки все, что им попадается. Однако, тогда как гравитационное притяжение уменьшается с квадратом расстояния (1/r 2), приливно-отливное явление уменьшается с кубом расстояния (1/r 3). Поэтому в отличие от принятого мнения, гравитационная сила (включая приливную силу) на горизонтах событий больших черных дыр слабее, чем на маленьких черных дырах. Так что приливные силы на горизонте событий черной дыры в наблюдаемом космосе, были бы менее заметны, чем самый мягкий ветерок.

Растяжение времени под действием силы тяжести вблизи горизонта событий является основой новой космологической модели физика-креациониста, доктора Рассела Хамфриса, о которой он рассказывает в своей книге «Свет звезд и время». Эта модель, возможно, помогает решить проблему того, как мы можем видеть свет отдаленных звезд в молодой вселенной. К тому же на сегодня она является научной альтернативой небиблейской , которая основывается на философских предположениях, выходящих за рамки науки.

Примечание

Гравитация, «таинственная сила», которая и через четыреста лет исследований остается плохо изученной…

Исаак Ньютон (1642–1727)

Фотография: Wikipedia.org

Исаак Ньютон (1642–1727)

Исаак Ньютон опубликовал свои открытия о гравитации и движении небесных тел в 1687 году, в своей известной работе «Математические начала ». Некоторые читатели быстро сделали вывод, что вселенная Ньютона не оставила места для Бога, так как все теперь можно объяснить с помощью уравнений. Но Ньютон совсем так не думал, о чем он и сказал во втором издании этой известной работы:

«Наша наиболее прекрасная солнечная система, планеты и кометы могут быть результатом только плана и господства разумного и сильного существа».

Исаак Ньютон был не только ученым. Помимо науки он почти всю свою жизнь посвятил исследованию Библии. Его любимыми библейскими книгами были: книга Даниила и книга Откровение, в которых описываются Божьи планы на будущее. На самом деле Ньютон написал больше теологических работ, чем научных.

Ньютон уважительно относился к другим ученым, таким как Галилео Галилей. Кстати Ньютон родился в то же год, когда умер Галилей, в 1642 году. Ньютон писал в своем письме: «Если я и видел дальше других, то потому, что стоял на плечах гигантов». Незадолго до смерти, наверное, размышляя о тайне силы тяжести, Ньютон скромно писал: «Не знаю, как меня воспринимает мир, но сам себе я кажусь только мальчиком, играющим на морском берегу, который развлекается тем, что время от времени отыскивает камешек более пестрый, чем другие, или красивую ракушку, в то время как передо мной расстилается огромный океан неисследованной истины».

Ньютон похоронен в Вестминстерском аббатстве. Латинская надпись на его могиле заканчивается словами: «Пусть смертные радуются, что среди них жило такое украшение человеческого рода» .

По какому закону вы собираетесь меня повесить?
- А мы вешаем всех по одному закону - закону Всемирного Тяготения.

Закон всемирного тяготения

Явление гравитации - это закон всемирного тяготения. Два тела действуют друг на друга с силой, которая обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их масс.

Математически мы можем выразить этот великий закон формулой


Тяготение действует на огромных расстояниях во Вселенной . Но Ньютон утверждал, что взаимно притягиваются все предметы. А правда ли, что любые два предмета притягивают друг друга? Только представьте, известно, что Земля притягивает вас, сидящих на стуле. Но задумывались ли о том, что компьютер и мышка притягивают друг друга? Или карандаш и ручка, лежащие на столе? В этом случае в формулу подставляем массу ручки, массу карандаша, делим на квадрат расстояния между ними, с учетом гравитационной постоянной, получаем силу их взаимного притяжения. Но, она выйдет на столько маленькой (из-за маленьких масс ручки и карандаша), что мы не ощущаем ее наличие. Другое дело, когда речь идет о Земле и стуле, или Солнце и Земле. Массы значительные, а значит действие силы мы уже можем оценить.

Вспомним об ускорении свободного падения . Это и есть действие закона притяжения. Под действием силы тело изменяет скорость тем медленнее, чем больше масса. В результате, все тела падают на Землю с одинаковым ускорением.

Чем вызвана эта невидимая уникальная сила? На сегодняшний день известно и доказано существование гравитационного поля. Узнать больше о природе гравитационного поля можно в дополнительном материале темы.

Задумайтесь, что такое тяготение? Откуда оно? Что оно собой представляет? Ведь не может быть так, что планета смотрит на Солнце, видит, насколько оно удалено, подсчитывает обратный квадрат расстояния в соответствии с этим законом?

Направление силы притяжения

Есть два тела, пусть тело А и В. Тело А притягивает тело В. Сила, с которой тело А воздействует, начинается на теле B и направлена в сторону тела А. То есть как бы "берет" тело B и тянет к себе. Тело В "проделывает" то же самое с телом А.



Каждое тело притягивается Землей. Земля "берет" тело и тянет к своему центру. Поэтому эта сила всегда будет направлена вертикально вниз, и приложена она с центра тяжести тела, называют ее силой тяжести.

Главное запомнить

Некоторые методы геологической разведки, предсказание приливов и в последнее время расчет движения искусственных спутников и межпланетных станций. Заблаговременное вычисление положения планет.

Можем ли мы сами поставить такой опыт, а не гадать, притягиваются ли планеты, предметы?

Такой прямой опыт сделал Кавендиш (Генри Кавендиш (1731-1810) - английский физик и химик) при помощи прибора, который показан на рисунке. Идея состояла в том, чтобы подвесить на очень тонкой кварцевой нити стержень с двумя шарами и затем поднести к ним сбоку два больших свинцовых шара. Притяжение шаров слегка перекрутит нить - слегка, потому что силы притяжения между обычными предметами очень слабы. При помощи такого прибора Кавендишу удалось непосредственно измерить силу, расстояние и величину обеих масс и, таким образом, определить постоянную тяготения G .

Уникальное открытие постоянной тяготения G, которая характеризует гравитационное поле в пространстве, позволила определить массу Земли, Солнца и других небесных тел. Поэтому Кавендиш назвал свой опыт "взвешиванием Земли".

Интересно, что у различных законов физики есть некоторые общие черты. Обратимся к законам электричества (сила Кулона) . Электрические силы также обратно пропорциональны квадрату расстояния, но уже между зарядами , и невольно возникает мысль, что в этой закономерности таится глубокий смысл. До сих пор никому не удалось представить тяготение и электричество как два разных проявления одной и той же сущности.

Сила и тут изменяется обратно пропорционально квадрату расстояния, но разница в величине электрических сил и сил тяготения поразительна. Пытаясь установить общую природу тяготения и электричества, мы обнаруживаем такое превосходство электрических сил над силами тяготения, что трудно поверить, будто у тех и у других один и тот же источник. Как можно говорить, что одно действует сильнее другого? Ведь все зависит от того, какова масса и каков заряд. Рассуждая о том, насколько сильно действует тяготение, вы не вправе говорить: "Возьмем массу такой-то величины", потому что вы выбираете ее сами. Но если мы возьмем то, что предлагает нам сама Природа (ее собственные числа и меры, которые не имеют ничего общего с нашими дюймами, годами, с нашими мерами), тогда мы сможем сравнивать. Мы возьмем элементарную заряженную частицу, такую, например, как электрон. Две элементарные частицы, два электрона, за счет электрического заряда отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними, а за счет гравитации притягиваются друг к другу опять-таки с силой, обратно пропорциональной квадрату расстояния.

Вопрос: каково отношение силы тяготения к электрической силе? Тяготение относится к электрическому отталкиванию, как единица к числу с 42 нулями. Это вызывает глубочайшее недоумение. Откуда могло взяться такое огромное число?

Люди ищут этот огромный коэффициент в других явлениях природы. Они перебирают всякие большие числа, а если вам нужно большое число, почему не взять, скажем, отношение диаметра Вселенной к диаметру протона - как ни удивительно, это тоже число с 42 нулями. И вот говорят: может быть, этот коэффициент и равен отношению диаметра протона к диаметру Вселенной? Это интересная мысль, но, поскольку Вселенная постепенно расширяется, должна меняться и постоянная тяготения. Хотя эта гипотеза еще не опровергнута, у нас нет никаких свидетельств в ее пользу. Наоборот, некоторые данные говорят о том, что постоянная тяготения не менялась таким образом. Это громадное число по сей день остается загадкой.

Эйнштейну пришлось видоизменить законы тяготения в соответствии с принципами относительности. Первый из этих принципов гласит, что расстояние х нельзя преодолеть мгновенно, тогда как по теории Ньютона силы действуют мгновенно. Эйнштейну пришлось изменить законы Ньютона. Эти изменения, уточнения очень малы. Одно из них состоит вот в чем: поскольку свет имеет энергию, энергия эквивалентна массе, а все массы притягиваются, - свет тоже притягивается и, значит, проходя мимо Солнца, должен отклоняться. Так оно и происходит на самом деле. Сила тяготения тоже слегка изменена в теории Эйнштейна. Но этого очень незначительного изменения в законе тяготения как раз достаточно, чтобы объяснить некоторые кажущиеся неправильности в движении Меркурия.

Физические явления в микромире подчиняются иным законам, нежели явления в мире больших масштабов. Встает вопрос: как проявляется тяготение в мире малых масштабов? На него ответит квантовая теория гравитации. Но квантовой теории гравитации еще нет. Люди пока не очень преуспели в создании теории тяготения, полностью согласованной с квантовомеханическими принципами и с принципом неопределенности.

Человечество издревле задумывалось о том, как устроен окружающий мир. Почему растет трава, почему светит Солнце, почему мы не можем летать… Последнее, кстати, всегда особенно интересовало людей. Сейчас мы знаем, что причина всему - гравитация. Что это такое, и почему данное явление настолько важно в масштабах Вселенной, мы сегодня и рассмотрим.

Вводная часть

Ученые выяснили, что все массивные тела испытывают взаимное притяжение друг к другу. Впоследствии оказалось, что эта таинственная сила обуславливает и движение небесных тел по их постоянным орбитам. Саму же теорию гравитации сформулировал гениальный чьи гипотезы предопределили развитие физики на много веков вперед. Развил и продолжил (хотя и в совершенно другом направлении) это учение Альберт Эйнштейн - один из величайших умов минувшего века.

На протяжении столетий ученые наблюдали за притяжением, пытались понять и измерить его. Наконец, в последние несколько десятилетий поставлено на службу человечеству (в определенном смысле, конечно же) даже такое явление, как гравитация. Что это такое, каково определение рассматриваемого термина в современной науке?

Научное определение

Если изучить труды древних мыслителей, то можно выяснить, что латинское слово «gravitas» означает «тяжесть», «притяжение». Сегодня ученые так называют универсальное и постоянное взаимодействие между материальными телами. Если эта сила сравнительно слабая и действует только на объекты, которые движутся значительно медленнее то к ним применима теория Ньютона. Если же дело обстоит наоборот, следует пользоваться эйнштейновскими выводами.

Сразу оговоримся: в настоящее время сама природа гравитации до конца не изучена в принципе. Что это такое, мы все еще полностью не представляем.

Теории Ньютона и Эйнштейна

Согласно классическому учению Исаака Ньютона, все тела притягиваются друг к другу с силой, прямо пропорциональной их массе, обратно пропорциональной квадрату того расстояния, которое пролегает между ними. Эйнштейн же утверждал, что тяготение между объектами проявляется в случае искривления пространства и времени (а кривизна пространства возможна только в том случае, если в нем имеется материя).

Мысль эта была очень глубокой, но современные исследования доказывают ее некоторую неточность. Сегодня считается, что гравитация в космосе искривляет только лишь пространство: время можно затормозить и даже остановить, но реальность изменения формы временной материи теоретически не подтверждена. А потому классическое уравнение Эйнштейна не предусматривает даже шанса на то, что пространство будет продолжать влиять на материю и на возникающее магнитное поле.

В большей степени известен закон гравитации (всемирного тяготения), математическое выражение которого принадлежит как раз-таки Ньютону:

\[ F = γ \frac[-1.2]{m_1 m_2}{r^2} \]

Под γ понимается гравитационная постоянная (иногда используется символ G), значение которой равно 6,67545×10−11 м³/(кг·с²).

Взаимодействие между элементарными частицами

Невероятная сложность окружающего нас пространства во многом связана с бесконечным множеством элементарных частиц. Между ними также существуют различные взаимодействия на тех уровнях, о которых мы можем только догадываться. Впрочем, все виды взаимодействия элементарных частиц между собой значительно различаются по своей силе.

Самые мощные из всех известных нам сил связывают между собой компоненты атомного ядра. Чтобы разъединить их, нужно потратить поистине колоссальное количество энергии. Что же касается электронов, то они «привязаны» к ядру только лишь обыкновенным Чтобы его прекратить, порой достаточно той энергии, которая появляется в результате самой обычной химической реакции. Гравитация (что это такое, вы уже знаете) в варианте атомов и субатомных частиц является наиболее легкой разновидностью взаимодействия.

Гравитационное поле в этом случае настолько слабо, что его трудно себе представить. Как ни странно, но за движением небесных тел, чью массу порой невозможно себе вообразить, «следят» именно они. Все это возможно благодаря двум особенностям тяготения, которые особенно ярко проявляются в случае больших физических тел:

  • В отличие от атомных более ощутимо на удалении от объекта. Так, гравитация Земли удерживает в своем поле даже Луну, а аналогичная сила Юпитера с легкостью поддерживает орбиты сразу нескольких спутников, масса каждого из которых вполне сопоставима с земной!
  • Кроме того, оно всегда обеспечивает притяжение между объектами, причем с расстоянием эта сила ослабевает с небольшой скоростью.

Формирование более-менее стройной теории гравитации произошло сравнительно недавно, и именно по результатам многовековых наблюдений за движением планет и прочими небесными телами. Задача существенно облегчалась тем, что все они движутся в вакууме, где просто нет других вероятных взаимодействий. Галилей и Кеплер - два выдающихся астронома того времени, своими ценнейшими наблюдениями помогли подготовить почву для новых открытий.

Но только великий Исаак Ньютон смог создать первую теорию гравитации и выразить ее в математическом отображении. Это был первый закон гравитации, математическое отображение которого представлено выше.

Выводы Ньютона и некоторых его предшественников

В отличие от прочих физических явлений, которые существуют в окружающем нас мире, гравитация проявляется всегда и везде. Нужно понимать, что термин «нулевая гравитация», который нередко встречается в околонаучных кругах, крайне некорректен: даже невесомость в космосе не означает, что на человека или космический корабль не действует притяжение какого-то массивного объекта.

Кроме того, все материальные тела обладают некой массой, выражающейся в виде силы, которая к ним была приложена, и ускорения, полученного за счет этого воздействия.

Таким образом, силы гравитации пропорциональны массе объектов. В числовом отношении их можно выразить, получив произведение масс обоих рассматриваемых тел. Данная сила строго подчиняется обратной зависимости от квадрата расстояния между объектами. Все прочие взаимодействия совершенно иначе зависят от расстояний между двумя телами.

Масса как краеугольный камень теории

Масса объектов стала особым спорным пунктом, вокруг которого выстроена вся современная теория гравитации и относительности Эйнштейна. Если вы помните Второй то наверняка знаете о том, что масса является обязательной характеристикой любого физического материального тела. Она показывает, как будет вести себя объект в случае применения к нему силы вне зависимости от ее происхождения.

Так как все тела (согласно Ньютону) при воздействии на них внешней силы ускоряются, именно масса определяет, насколько большим будет это ускорение. Рассмотрим более понятный пример. Представьте себе самокат и автобус: если прикладывать к ним совершенно одинаковую силу, то они достигнут разной скорости за неодинаковое время. Все это объясняет именно теория гравитации.

Каково взаимоотношение массы и притяжения?

Если говорить о тяготении, то масса в этом явлении играет роль совершенно противоположную той, которую она играет в отношении силы и ускорения объекта. Именно она является первоисточником самого притяжения. Если вы возьмете два тела и посмотрите, с какой силой они притягивают третий объект, который расположен на равных расстояниях от первых двух, то отношение всех сил будет равно отношению масс первых двух объектов. Таким образом, сила притяжения прямо пропорциональна массе тела.

Если рассмотреть Третий закон Ньютона, то можно убедиться, что он говорит точно о том же. Сила гравитации, которая действует на два тела, расположенных на равном расстоянии от источника притяжения, прямо зависит от массы данных объектов. В повседневной жизни мы говорим о силе, с которой тело притягивается к поверхности планеты, как о его весе.

Подведем некоторые итоги. Итак, масса тесно связана и ускорением. В то же время именно она определяет ту силу, с которой будет действовать на тело притяжение.

Особенности ускорения тел в гравитационном поле

Эта удивительная двойственность является причиной того, что в одинаковом гравитационном поле ускорение совершенно различных объектов будет равным. Предположим, что у нас есть два тела. Присвоим одному из них массу z, а другому - Z. Оба объекта сброшены на землю, куда свободно падают.

Как определяется отношение сил притяжения? Его показывает простейшая математическая формула - z/Z. Вот только ускорение, получаемое ими в результате действия силы притяжения, будет абсолютно одинаковым. Проще говоря, ускорение, которое тело имеет в гравитационном поле, никак не зависит от его свойств.

От чего зависит ускорение в описанном случае?

Оно зависит только (!) от массы объектов, которые и создают это поле, а также от их пространственного положения. Двойственная роль массы и равное ускорение различных тел в гравитационном поле открыты уже относительно давно. Эти явления получили следующее название: «Принцип эквивалентности». Указанный термин еще раз подчеркивает, что ускорение и инерция зачастую эквивалентны (в известной мере, конечно же).

О важности величины G

Из школьного курса физики мы помним, что ускорение свободного падения на поверхности нашей планеты (гравитация Земли) равно 10 м/сек.² (9,8 разумеется, но для простоты расчетов используется это значение). Таким образом, если не принимать в расчет сопротивление воздуха (на существенной высоте при небольшом расстоянии падения), то получится эффект, когда тело приобретает приращение ускорения в 10 м/сек. ежесекундно. Так, книга, которая упала со второго этажа дома, к концу своего полета будет двигаться со скоростью 30-40 м/сек. Проще говоря, 10 м/с - это «скорость» гравитации в пределах Земли.

Ускорение свободного падения в физической литературе обозначается буквой «g». Так как форма Земли в известной степени больше напоминает мандарин, чем шар, значение этой величины далеко не во всех ее областях оказывается одинаковым. Так, у полюсов ускорение выше, а на вершинах высоких гор оно становится меньше.

Даже в добывающей промышленности не последнюю роль играет именно гравитация. Физика этого явления порой позволяет сэкономить много времени. Так, геологи особенно заинтересованы в идеально точном определении g, поскольку это позволяет с исключительной точностью производить разведку и нахождение залежей полезных ископаемых. Кстати, а как выглядит формула гравитации, в которой рассмотренная нами величина играет не последнюю роль? Вот она:

Обратите внимание! В этом случае формула гравитации подразумевает под G «гравитационную постоянную», значение которой мы уже приводили выше.

В свое время Ньютон сформулировал вышеизложенные принципы. Он прекрасно понимал и единство, и всеобщность но все аспекты этого явления он описать не мог. Эта честь выпала на долю Альберта Эйнштейна, который смог объяснить также принцип эквивалентности. Именно ему человечество обязано современным пониманием самой природы пространственно-временного континуума.

Теория относительности, работы Альберта Эйнштейна

Во времена Исаака Ньютона считалось, что точки отсчета можно представить в виде каких-то жестких «стержней», при помощи которых устанавливается положение тела в пространственной системе координат. Одновременно предполагалось, что все наблюдатели, которые отмечают эти координаты, будут находиться в едином временном пространстве. В те годы это положение считалось настолько очевидным, что не делалось никаких попыток его оспорить или дополнить. И это понятно, ведь в пределах нашей планеты никаких отклонений в данном правиле нет.

Эйнштейн доказал, что точность измерения окажется действительно значимой, если гипотетические часы движутся значительно медленнее скорости света. Проще говоря, если один наблюдатель, движущийся медленнее скорости света, будет следить за двумя событиями, то они произойдут для него единовременно. Соответственно, для второго наблюдателя? скорость которого такая же или больше, события могут происходить в различное время.

Но как сила гравитации связана с теорией относительности? Раскроем этот вопрос подробно.

Связь между теорией относительности и гравитационными силами

В последние годы сделано огромное количество открытий в области субатомных частиц. Крепнет убеждение, что мы вот-вот найдем окончательную частицу, дальше которой наш мир дробиться не может. Тем настойчивее становится потребность узнать, как именно влияют на мельчайшие «кирпичики» нашего мироздания те фундаментальные силы, которые были открыты еще в прошлом веке, а то и раньше. Особенно обидно, что сама природа гравитации до сих пор не объяснена.

Именно поэтому после Эйнштейна, который установил «недееспособность» классической механики Ньютона в рассматриваемой области, исследователи сосредоточились на полном переосмыслении полученных ранее данных. Во многом пересмотру подверглась и сама гравитация. Что это такое на уровне субатомных частиц? Имеет ли она хоть какое-то значение в этом удивительном многомерном мире?

Простое решение?

Сперва многие предполагали, что несоответствие тяготения Ньютона и теории относительности можно объяснить довольно просто, проведя аналогии из области электродинамики. Можно бы было предположить, что гравитационное поле распространяется наподобие магнитного, после чего его можно объявить «посредником» при взаимодействиях небесных тел, объяснив многие несоответствия старой и новой теории. Дело в том, что тогда бы относительные скорости распространения рассматриваемых сил оказались значительно ниже световой. Так как связаны гравитация и время?

В принципе, у самого Эйнштейна почти получилось построить релятивистскую теорию на основе именно таких взглядов, вот только одно обстоятельство помешало его намерению. Никто из ученых того времени не располагал вообще никакими сведениями, которые бы могли бы помочь определить «скорость» гравитации. Зато имелось немало информации, связанной с перемещениями больших масс. Как известно, они как раз-таки являлись общепризнанным источником возникновения мощных гравитационных полей.

Большие скорости сильно влияют на массы тел, и это ничуть не похоже на взаимодействие скорости и заряда. Чем скорость выше, тем больше масса тела. Проблема в том, что последнее значение автоматически бы стало бесконечным в случае движения со скоростью света или выше. А потому Эйнштейн заключил, что существует не гравитационное, а тензорное поле, для описания которого следует использовать намного больше переменных.

Его последователи пришли к выводу, что гравитация и время практически не связаны. Дело в том, что само это тензорное поле может действовать на пространство, но на время повлиять не в состоянии. Впрочем, у гениального физика современности Стивена Хокинга есть другая точка зрения. Но это уже совсем другая история...

ОПРЕДЕЛЕНИЕ

Закон всемирного тяготения открыл И. Ньютоном:

Два тела притягиваются друг к другу с , прямо пропорциональной произведению их и обратно пропорциональной квадрату расстояния между ними:

Описание закона всемирного тяготения

Коэффициент — это гравитационная постоянная. В системе СИ гравитационная постоянная имеет значение:

Эта постоянная, как видно, очень мала, поэтому силы тяготения между телами, имеющими небольшие массы, тоже малы и практически не ощущаются. Однако движение космических тел полностью определяется гравитацией. Наличие всемирного тяготения или, другими словами, гравитационного взаимодействия объясняет, на чем «держатся» Земля и планеты, и почему они двигаются вокруг Солнца по определенным траекториям, а не улетают от него прочь. Закон всемирного тяготения позволяет определить многие характеристики небесных тел – массы планет, звезд, галактик и даже черных дыр. Этот закон позволяет с большой точностью рассчитать орбиты планет и создать математическую модель Вселенной.

С помощью закона всемирного тяготения также можно рассчитать космические скорости. Например, минимальная скорость, при которой тело, движущееся горизонтально над поверхностью Земли, не упадёт на неё, а будет двигаться по круговой орбите – 7,9 км/с (первая космическая скорость). Для того, чтобы покинуть Землю, т.е. преодолеть ее гравитационное притяжение, тело должно иметь скорость 11,2 км/с, (вторая космическая скорость).

Гравитация является одним из самых удивительных феноменов природы. В отсутствии сил гравитации существование Вселенной было бы невозможно, Вселенная не могла бы даже возникнуть. Гравитация ответственна за многие процессы во Вселенной – ее рождение, существование порядка вместо хаоса. Природа гравитации до сих пор до конца неразгаданна. До настоящего времени никто не смог разработать достойный механизм и модель гравитационного взаимодействия.

Сила тяжести

Частным случаем проявления гравитационных сил является сила тяжести.

Сила тяжести всегда направлена вертикально вниз (по направлению к центру Земли).

Если на тело действует сила тяжести, то тело совершает . Вид движения зависит от направления и модуля начальной скорости.

С действием силы тяжести мы сталкиваемся каждый день. , через некоторое время оказывается на земле. Книга, выпущенная из рук, падает вниз. Подпрыгнув, человек не улетает в открытый космос, а опускается вниз, на землю.

Рассматривая свободное падение тела вблизи поверхности Земли как результат гравитационного взаимодействия этого тела с Землей, можно записать:

откуда ускорение свободного падения:

Ускорение свободного падения не зависит от массы тела, а зависит от высоты тела над Землей. Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся около полюсов, расположены немного ближе к центру Земли. В связи с этим ускорение свободного падения зависит от широты местности: на полюсе оно немного больше, чем на экваторе и других широтах (на экваторе м/с , на Северном полюсе экваторе м/с .

Эта же формула позволяет найти ускорение свободного падения на поверхности любой планеты массой и радиусом .

Примеры решения задач

ПРИМЕР 1 (задача о «взвешивании» Земли)

Задание Радиус Земли км, ускорение свободного падения на поверхности планеты м/с . Используя эти данные, оценить приближенно массу Земли.
Решение Ускорение свободного падения у поверхности Земли:

откуда масса Земли:

В системе Си радиус Земли м.

Подставив в формулу численные значения физических величин, оценим массу Земли:

Ответ Масса Земли кг.

ПРИМЕР 2

Задание Спутник Земли движется по круговой орбите на высоте 1000 км от поверхности Земли. С какой скоростью движется спутник? За какое время спутник совершит один полный оборот вокруг Земли?
Решение По , сила, действующая на спутник со стороны Земли, равна произведению массы спутника на ускорение, с которым он движется:

Со стороны земли на спутник действует сила гравитационного притяжения, которая по закону всемирного тяготения равна:

где и массы спутника и Земли соответственно.

Так как спутник находится на некоторой высоте над поверхностью Земли, расстояние от него до центра Земли:

где радиус Земли.

Оби-Ван Кеноби сказал, что сила скрепляет галактику. То же самое можно сказать и о гравитации. Факт – гравитация позволяет нам ходить по Земле, Земле вращаться вокруг Солнца, а Солнцу двигаться вокруг сверхмассивной черной дыры в центре нашей галактики. Как понять гравитацию? Об этом - в нашей статье.

Сразу скажем, что вы не найдете здесь однозначно верного ответа на вопрос «Что такое гравитация». Потому что его просто нет! Гравитация – одно из самых таинственных явлений, над которым ученые ломают голову и до сих пор полностью не могут объяснить его природу.

Есть множество гипотез и мнений. Насчитывается более десятка теорий гравитации, альтернативных и классических. Мы рассмотрим самые интересные, актуальные и современные.

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм .

Гравитация – физическое фундаментальное взаимодействие

Всего в физике 4 фундаментальных взаимодействия. Благодаря им мир является именно таким, какой он есть. Гравитация – одно из этих взаимодействий.

Фундаментальные взаимодействия:

  • гравитация;
  • электромагнетизм;
  • сильное взаимодействие;
  • слабое взаимодействие.
Гравитация – самое слабое из четырех фундаментальных взаимодействий.

На текущий момент действующей теорией, описывающей гравитацию, является ОТО (общая теория относительности). Она была предложена Альбертом Эйнштейном в 1915-1916 годах.

Однако мы знаем, что об истине в последней инстанции говорить рано. Ведь несколько веков до появления ОТО в физике для описания гравитации главенствовала Ньютоновская теория, которая была существенно расширена.

В рамках ОТО на данный момент нельзя объяснить и описать все вопросы, связанные с гравитацией.

До Ньютона было широко распространено мнение, что гравитация на земле и небесная гравитация – разные вещи. Считалось, что планеты движутся по своим, отличным от земных, идеальным законам.

Ньютон открыл закон всемирного тяготения в 1667 году. Конечно, этот закон существовал еще при динозаврах и намного раньше.

Античные философы задумывались над существованием силы тяготения. Галилей экспериментально рассчитал ускорение свободного падения на Земле, открыв, что оно одинаково для тел любой массы. Кеплер изучал законы движения небесных тел.

Ньютону удалось сформулировать и обобщить результаты наблюдений. Вот что у него получилось:

Два тела притягиваются друг к другу с силой, называемой гравитационной силой или силой тяготения.

Формула силы притяжения между телами:

G – гравитационная постоянная, m – массы тел, r – расстояние между центрами масс тел.

Каков физический смысл гравитационной постоянной? Она равна силе, с которой действуют друг на друга тела с массами в 1 килограмм каждое, находясь на расстоянии в 1 метр друг от друга.


По теории Ньютона, каждый объект создает гравитационное поле. Точность закона Ньютона была проверена на расстояниях менее одного сантиметра. Конечно, для малых масс эти силы незначительны, и ими можно пренебречь.

Формула Ньютона применима как для расчету силы притяжения планет к солнцу, так и для маленьких объектов. Мы просто не замечаем, с какой силой притягиваются, скажем, шары на бильярдном столе. Тем не менее эта сила есть и ее можно рассчитать.

Сила притяжения действует между любыми телами во Вселенной. Ее действие распространяется на любые расстояния.

Закон всемирного тяготения Ньютона не объясняет природы силы притяжения, но устанавливает количественные закономерности. Теория Ньютона не противоречит ОТО. Ее вполне достаточно для решения практических задач в масштабах Земли и для расчета движения небесных тел.

Гравитация в ОТО

Несмотря на то, что теория Ньютона вполне применима на практике, она имеет ряд недостатков. Закон всемирного тяготения является математическим описанием, но не дает представления о фундаментальной физической природе вещей.

Согласно Ньютону, сила притяжения действует на любых расстояниях. Причем действует мгновенно. Учитывая, что самая большая скорость в мире – скорость света, выходит несоответствие. Как гравитация может мгновенно действовать на любые расстояниях, когда для их преодоления свету нужно не мгновение, а несколько секунд или даже лет?

В рамках ОТО гравитация рассматривается не как сила, которая действует на тела, но как искривление пространства и времени под действием массы. Таким образом гравитация – не силовое взаимодействие.


Каково действие гравитации? Попробуем описать его с использованием аналогии.

Представим пространство в виде упругого листа. Если положить на него легкий теннисный мячик, поверхность останется ровной. Но если рядом с мячиком положить тяжелую гирю, она продавит на поверхности ямку, и мячик начнет скатываться к большой и тяжелой гире. Это и есть «гравитация».

Кстати! Для наших читателей сейчас действует скидка 10% на

Открытие гравитационных волн

Гравитационные волны были предсказаны Альбертом Эйнштейном еще в 1916 году, но открыли их только через сто лет, в 2015.

Что такое гравитационные волны? Снова проведем аналогию. Если бросить камень в спокойную воду, от места его падения по поверхности воды пойдут круги. Гравитационные волны – такая же рябь, возмущение. Только не на воде, а в мировом пространстве-времени.

Вместо воды – пространство-время, а вместо камня, скажем, черная дыра. Любое ускоренное передвижение массы порождает гравитационную волну. Если тела находятся в состоянии свободного падения, при прохождении гравитационной волны расстояние между ними изменится.


Так как гравитация – очень слабое взаимодействие, обнаружение гравитационных волн было связано с большими техническими трудностями. Современные технологии позволили обнаружить всплеск гравитационных волн только от сверхмассивных источников.

Подходящее событие для регистрации гравитационной волны - слияние черных дыр. К сожалению или к счастью, это происходит достаточно редко. Тем не менее ученым удалось зарегистрировать волну, которая буквально раскатилась по пространству Вселенной.

Для регистрации гравитационных волн был построен детектор диаметром 4 километра. При прохождении волны регистрировались колебания зеркал на подвесах в вакууме и интерференция света, отраженного от них.

Гравитационные волны подтвердили справедливость ОТО.

Гравитация и элементарные частицы

В стандартной модели за каждое взаимодействие отвечают определенные элементарные частицы. Можно сказать, что частицы являются переносчиками взаимодействий.

За гравитацию отвечает гравитон – гипотетическая безмассовая частица, обладающая энергией. Кстати, в нашем отдельном материале читайте подробнее о наделавшем много шума бозоне Хиггса и других элементарных частицах.

Напоследок приведем несколько любопытных фактов о гравитации.

10 фактов о гравитации

  1. Чтобы преодолеть силу гравитации Земли, тело должно иметь скорость, равную 7,91 км/с. Это первая космическая скорость. Ее достаточно, чтобы тело (например, космический зонд) двигалось по орбите вокруг планеты.
  2. Чтобы вырваться из гравитационного поля Земли, космический корабль должен иметь скорость не менее 11,2 км/с. Это вторая космическая скорость.
  3. Объекты с наиболее сильной гравитацией – черные дыры. Их гравитация настолько велика, что они притягивают даже свет (фотоны).
  4. Ни в одном уравнении квантовой механики вы не найдете силы гравитации. Дело в том, что при попытке включения гравитации в уравнения, они теряют свою актуальность. Это одна из самых важных проблем современной физики.
  5. Слово гравитация происходит от латинского “gravis”, что означает “тяжелый”.
  6. Чем массивнее объект, тем сильнее гравитация. Если человек, который на Земле весит 60 килограмм, взвесится на Юпитере, весы покажут 142 килограмма.
  7. Ученые NASA пытаются разработать гравитационный луч, который позволит перемещать предметы бесконтактно, преодолевая силу притяжения.
  8. Астронавты на орбите также испытывают гравитацию. Точнее, микрогравитацию. Они как бы бесконечно падают вместе с кораблем, в котором находятся.
  9. Гравитация всегда притягивает и никогда не отталкивает.
  10. Черная дыра, размером с теннисный мяч, притягивает объекты с той же силой, что и наша планета.

Теперь вы знаете определение гравитации и можете сказать, по какой формуле рассчитывается сила притяжения. Если гранит науки придавливает вас к земле сильнее, чем гравитация, обращайтесь в наш студенческий сервис . Мы поможем учиться легко при самых больших нагрузках!