Пластичность мозга. Компенсаторные возможности мозга. Компенсаторные способности мозга

В тех случаях, когда имеется “поломка” какого-либо механизма мозга, процесс развития и обучения нарушается. “Поломка” может произойти на разном уровне: могут быть нарушены ввод информации, ее прием, переработка и т.д. Например, поражение внутреннего уха с развитием тугоухости обусловливает снижение потока звуковой информации. Это приводит, с одной стороны, к функциональному, а затем и к структурному недоразвитию центрального (коркового) отдела слухового анализатора, с другой - к недоразвитию связей между слуховой зоной коры и двигательной зоной речевой мускулатуры, между слуховым и другими анализаторами. В этих условиях оказываются нарушенными фонематический слух и фонетическое оформление речи. Нарушается не только речевое, но и интеллектуальное развитие ребенка. В результате значительно затрудняется процесс его обучения и воспитания.

Таким образом, недоразвитие или нарушение одной из функций ведет к недоразвитию другой или даже нескольких функций. Однако мозг располагает значительными компенсаторными возможностями. Мы уже отмечали, что неограниченные возможности ассоциативных связей в нервной системе, отсутствие узкой специализации нейронов коры головного мозга, формирование сложных “ансамблей нейронов” составляют основу больших компенсаторных возможностей коры головного мозга.

Резервы компенсаторных возможностей мозга поистине грандиозны. По современным расчетам, человеческий мозг может вместить примерно 10 20 единиц информации; это означает, что каждый из нас в состоянии запомнить всю информацию, содержащуюся в миллионах томов библиотеки. Из имеющихся в мозге 15 млрд клеток человек использует лишь 4 %. О потенциальных возможностях мозга можно судить по необычайному развитию какой-либо функции у талантливых людей и возможностям компенсации нарушенной функции за счет других функциональных систем. В истории различных времен и народов известно большое число людей, обладавших феноменальной памятью. Великий полководец Александр Македонский знал по имени всех своих солдат, которых в его армии насчитывалось несколько десятков тысяч. Такой же памятью на лица обладал А. В. Суворов. Поражал феноменальной памятью главный хранитель библиотеки в Ватикане Джузеппе Меццофанти. Он знал в совершенстве 57 языков. Моцарт обладал уникальной музыкальной памятью. В возрасте 14 лет в соборе св. Петра он услышал церковную музыку. Ноты этого произведения составляли тайну папского двора и хранились в строжайшем секрете. Молодой Моцарт весьма простым способом “похитил” этот секрет: придя домой, он по памяти записал партитуру. Когда много лет спустя удалось сопоставить записи Моцарта с подлинником, то в них не оказалось ни одной ошибки. Исключительную зрительную память имели художники Левитан и Айвазовский.

Известно большое число людей, обладающих оригинальной способностью к запоминанию и воспроизведению длинного ряда цифр, слов и т.д.

Приведенные примеры наглядно демонстрируют неограниченные возможности мозга человека. В книге “От мечты к открытию” Г.Селье отмечает, что в коре мозга человека заключено столько мыслительной энергии, сколько физической энергии содержится в атомном ядре.

Большие резервные возможности нервной системы используются в процессе реабилитации лиц с теми или иными отклонениями в развитии. При помощи специальных приемов дефектолог может компенсировать нарушенные функции за счет сохранных. Так, в случае врожденной глухоты или тугоухости ребенка можно обучить зрительному восприятию устной речи, т. е. считыванию с губ. В качестве временного заместителя устной речи может быть использована дактильная речь. При повреждении левой височной области человек теряет способность понимать обращенную к нему речь. Эта способность может быть постепенно восстановлена за счет использования зрительного, тактильного и других видов восприятия компонентов речи.

Таким образом, дефектология строит свои методы работы по абилитации и реабилитации больных с поражениями нервной системы на использовании огромных резервных возможностей мозга.

Обзор нейропсихологических данных позволяет сделать общий вывод относительно роли биологических факторов в формировании психических функций. Любое повреждение мозга приводит к нарушениям в работе нейрофизиологических функциональных систем, следствием этого, в свою очередь, становится измененное функционирование психических систем. Эти изменения в каждом конкретном случае проявляются специфическим образом в последующем развитии психических функций.
В ряде исследований было показано, что существует функциональная неравнозначность различных отделов мозга в обеспечении психических функций в детском возрасте. Поражение разных отделов мозга ребенка приводит, так же, как и у взрослых, к разным по характеру нарушениям психических функций. Эти различия наблюдаются и при локализации поражения в разных полушариях и в разных отделах внутри каждого полушария, а также при поражениях срединных структур.
Мозговая организация психических процессов не остается одинаковой в ходе онтогенеза. Меняется качество работы механизмов, связанных с определенным участком мозга, меняется характер внутри– и межполушарных связей между ними. Симптомы, выявляемые при поражении разных участков мозга, у детей при общем сходстве с теми же симптомами у взрослых имеют различия, которые по-разному выступают в разные возрастные периоды.
Развитие функциональной организации мозга идет по пути расширения межполушарных и внутриполушарных связей. В хорошо развитой системе возбуждение определенного участка мозга приводит к его распространению не только на близлежащие, но и далеко расположенные участки мозга. Это означает, что тормозящее влияние одного участка при нарушении его работы имеет широкое распространение. У взрослых, в связи с наличием обширной системы сформированных связей, это проявляется в большом наборе специфических расстройств и в низкой динамике обратного развития дефекта. У детей наблюдается обратная картина – эффект очагового поражения более ограничен, меньше специфических расстройств, больше возможностей для восстановления. Тормозящее влияние поврежденного участка мозга на другие структуры, в связи с недостаточной сформированностью системы связей, распространяется незначительно, и эти структуры могут быть вовлечены в работу компенсировать возникающие нарушения.
Анализ нарушения психических функций у детей позволяет ответить на методологические вопросы, связанные с возможностью топической диагностики в детском возрасте.
Проявляется ли поражение той или иной зоны мозга у детей в тех же симптомах, что и у взрослых?
Можно ли на основе выявленных у детей симптомов проводить синдромный анализ, указывающий на топику нарушения так же, как и у взрослых?
Первый вопрос связан с характером проявления нарушений психических функций при поражениях мозга у детей. На него можно ответить, что хотя наблюдаемые у детей симптомы нарушения психических функций могут проявляться иначе по сравнению со взрослыми, но возникают они при той же локализации мозгового поражения, что и у взрослых.
Это означает, что общая морфологическая архитектура нейрофизиологических функциональных систем мозга при нормальном физиологическом созревании ребенка складывается уже к моменту рождения ребенка. На первых этапах функциональные системы работают по генерализованному типу, а дальнейшее их развитие идет по пути все большей дифференциации в работе отдельных компонентов и смены иерархического взаимодействия между компонентами систем.
Это определяет специфику нарушений, возникающих при поломке какого-либо звена системы. Несформированность системы не дает тех четких локальных симптомов, которые характерны для взрослого человека, где каждое звено, с одной стороны, выполняет конкретную, специализированную задачу, «полученную» в ходе формирования системы, и, с другой стороны, включено в сложившуюся систему соподчиненности с другими центрами.
Поэтому у ребенка с локальными поражениями мозга, в холодном периоде, после быстрой адаптации мозга к новым условиям, соответствующие симптомы выявляются только в специализированном обследовании и носят генерализованный характер, не проявляются в виде обширных симптомокомплексов, которые наблюдаются у взрослого человека. В первую очередь это относится к наиболее поздно формирующимся функциональным системам.
Второй вопрос относится к возможности сопоставления работы мозговых структур ребенка и взрослого на основе выявленных в обследовании симптомов. Здесь можно ответить положительно, поскольку симптомы, выявляемые в остром периоде болезни, совпадают с симптомами повреждения тех же зон мозга у взрослых.
Сведения о роли разных мозговых зон в обеспечении психических функций на разных этапах онтогенеза дают возможность более адекватной оценки формирующейся структуры психических функций и компенсаторных возможностей.
Важнейшей задачей в клинике органических повреждений мозга является анализ материальной основы тех новообразований, которые возникают в результате выпадения из нейрофизиологических функциональных систем отдельных высокоспециализированных мозговых отделов. Действие компенсаторных механизмов приводит к перестройке функциональных систем, в их состав включаются менее специализированные отделы мозга, и это приводит к качественным изменениям в протекании психических функций.
Характеристики нейрофизиологических процессов формируются под решающим воздействием среды и, в свою очередь, становятся основой психологических процессов, которые консолидируются в психологические функциональные системы.
С этой точки зрения можно, используя идею «градуального» (Э. Голдберг, 2003) принципа работы мозга, попытаться объяснить, за счет каких механизмов осуществляется компенсация работы поврежденных участков мозга.
«Градуальный» принцип работы нейронных ансамблей предполагает, что каждая нейронная группа (мозговой центр) в онтогенезе специализируется и начинает максимально реагировать на определенные характеристики внешней стимуляции, становится ведущей для конкретных видов стимула. Рядом расположенные, смежные группы также активируются при наличии тех же стимулов, но их реакция меньше, и по мере удаления от ведущей нейронной группы активация на одни стимулы снижается, но в то же время возрастает активация на другие стимулы, которые являются ведущими уже для этой группы нейронов.
Компенсация возможна, если при повреждении ведущей группы остаются сохранными смежные нейронные группы, которые могут быть активированы тем же видом стимулов. По градуальному принципу работают, вероятно, не только нейронные группы в каждом полушарии, но и симметричные, викарирующие центры, противоположного полушария. В ходе онтогенеза возрастает как внутриполушарная, так и межполушарная специализация нейронных центров, и это резко ограничивает возможности компенсации. В детском возрасте возможности компенсации поздно формирующихся функций (например, речевой), в отличие от рано формирующихся (например, перцептивной), высоки. Это связано с разными сроками специализации мозговых зон, обеспечивающих эти функции.
Можно предположить, что большие возможности компенсации речевых расстройств в детском возрасте обусловлены двумя факторами.
Первый из них – невысокая степень дифференциации мозговых зон, когда специализация рядом расположенных отделов невелика, и они выполняют сходные функции. Это позволяет им взять на себя роль поврежденного участка.
Второй – участие симметричных, правополушарных мозговых зон в речевой системе, которые могут взять на себя при определенных условиях несвойственную им функцию.
По данным нейропсихологических исследований становится очевидным, что роль этих двух факторов в компенсации речевых и перцептивных расстройств неодинакова и по-разному проявляется на разных этапах онтогенеза. Решение вопроса о том, когда и при каких условиях эти факторы могут оказывать влияние на процессы компенсации нарушенных функций, является одной из задач нейропсихологии детского возраста. Так, например, известно, что длительная активность эпилептического очага при резистентных (устойчивых) формах эпилепсии может приводить у детей к компенсаторной перестройке функциональных связей между речевыми зонами.
Ранее отмечалось, что специалисты (М. Куртен с соавторами) показали наличие межполушарной разобщенности моторного и сенсорного компонентов речевой системы (размещены в разных полушариях) у пациентов с длительно существующими сложными парциальными припадками. По данным амобарбиталового теста выявлено, что у части больных имеется двусторонняя речевая доминантность. Было выявлено несколько пациентов с четкой диссоциацией моторной и сенсорной речевых функций. При расположении очага в височной области сенсорные функции были представлены в контрлатеральном полушарии. То же происходило при поражении лобных отделов в отношении моторных функций речи.
Таким образом, при ограниченном мозговом повреждении может происходить перемещение речевых функций, анатомически связанных с этим очагом, в противоположное полушарие, а не в соседние зоны. Это подтверждает предположение о том, что в особых случаях передняя (моторная) речевая зона может быть расположена в одном полушарии, а задняя (сенсорная) – в другом.
Предполагается, что пластичность мозга, обеспечивающая такие перестройки, возможна только до определенного времени (примерно до 7 лет) (Kurthen M., et al., 1992).

Или неактивная участок, задействована в речевой сети, может быть компенсирована активностью другого участка мозга, зависит от того, насколько глубинным является поврежденный процесс. Если он относится к простым и основным, то вероятность того, что поврежденный участок подменит здоровая, незначительна. Такие результаты благодаря транскраніальній магнитной стимуляции получили исследователи из Института имени Макса Планка в Лейпциге.

Изображение: MAX PLANCK INSTITUTE FOR HUMAN COGNITIVE AND BRAIN SCIENCES.

Разговаривать друг с другом – сложная задача, ведь в процессе общения мы должны распознавать отдельные слова и формулировки из сложного потока звуков. В то же время мы должны обдумать ответ и спланировать движения губ и языка, чтобы ее воспроизвести. Каждый отдельный шаг – от анализа слов к продуцированию речи – требует активности ряда мозговых участков, которые работают совместно. До сих пор было мало известно, какова их сотрудничество или что происходит, когда повреждается центральная участок.

Ученые из Института когнитивных и неврологических наук имени Макса Планка в Лейпциге недавно выяснили, что происходит, если отключить два участка мозга, которые отвечают за понимание речи: ученые наблюдали, что при отсутствии определенных участков мозг может компенсировать языковые инструменты, при отсутствии других – мозг на это не способен.

«Если поврежденный участок, в которой мы прорабатываем значение слов, так называемая gyrus angularis, наш мозг может наверстать ее отсутствие. В таком случае ее заменяет соседняя зона – gyrus supramarginalis, усиливает свою активность. Это странно, ведь извилина gyrus supramarginalis отвечает за обработку ритмических словесных структур», – объясняет руководитель исследования Ґеза Гартвіґсен (Gesa Hartwigsen). Благодаря этой области можно распознавать значение слов почти так же быстро, как будто она была бы специально предназначена для этого.

«Однако если участок, который отвечает за распознавание ритмических структур слов, повреждена, ее недостаток компенсировать невозможно, поскольку ни одна другая часть речевой сети не перенимает ее функций», – сообщили ученые. То есть в таком случае нам было бы значительно сложнее обрабатывать ритмические структуры слова и анализировать его склады.

Ученые предполагают, что способность компенсировать поврежденный процесс за счет другого участка мозга зависит от того, на каком уровне иерархии повреждена речевая функция: если речь идет о основополагающие процессы, в частности проработка ритмических структур слова, их не могут просто перенять другие участки. Более сложные шаги обработки, например анализ значения, могут поддерживать более простые процессы, ведь они составляют основу первых. То есть общие процессы способны подтянуться, чтобы поддерживать обработку речи.

На основании полученных показаний Гартвіґсен и ее команда пришли к двояким выводам: «С одной стороны, мы можем определить, какие повреждения после инсульта можно компенсировать вероятнее всего и стоит ли в будущем ориентироваться на усиление терапии, например, сетей, которые подменяют поврежденный участок», – объясняет руководитель группы модуляции вещательных сетей.

С другой стороны, ученые получили возможность подтвердить гипотезу иерархической структуры речи. Согласно с ней, во время обработки речи сложные шаги базируются на более простых. То есть до того, как мы поймем слово, мы прорабатываем его звучание.

Эксперты исследовали взаимосвязь между разными участками мозга с помощью так называемой транскраниальной магнитной стимуляции (сокращенно ТМС). Благодаря этому методу можно на короткое время повредить активность отдельных участков мозга и так исследовать его реакцию на эти изменения. ТМС использует магнитное поле, чтобы с помощью электрической стимуляции через череп целево притормозить или стимулировать отдельные участки.

Команда во главе с Гартвіґсен на короткое время притормозила речевые центры у 17 здоровых испытуемых, в частности речь идет о зонах, предназначенные для анализа значения слова и ритмических структур. Затем ученые сравнивали успехи участников исследования при выполнении речевых задач.

Erste hilfe im gehirn: wenn die sprache plötzlich ausfällt

Max Planck Institute For Human Cognitive And Brain Sciences, 12/07/2017

Зреферувала Соломия Кривенко

Ученым из Carnegie Mellon University’s Center for Cognitive Brain Imaging впервые удалось показать, как мозг адаптируется к повреждениям. Исследование (Mason, Prat, & Just, 2013) показало, как в случае снижения функциональности одного региона, мозг немедленно подключает резервные регионы, выполняя работу не только выведенных из строя, но и поддерживающих их структур.

Ученые применяли транскраниальную магнитную стимуляцию (repetitive Transcranial Magnetic Stimulation (rTMS)) для временного выключения зоны Вернике (региона, ответственного за понимание языка) у участников эксперимента, используя функциональный магнитный томограф (fMRI). Людей просили выполнять задачи по пониманию смысла предложений до, во время воздействия и после воздействия rTMS.

Снижение функций и перекрывающее восстановление в ответ на стимуляцию rTMS . Применение транскраниальной магнитной стимуляции на зону Вернике (семантическая обработка, показана синим кружком) приводит к снижению функциональности в регионах, обрабатывающих речь (например, left temporal , left inferior frontal , left inferior parietal ), в также правополушарных регионах (right inferior frontal ), и главных визуальных регионах (bilateral occipital ).

Воздействие rTMS, как и предполагалось, существенно угнетало работу зоны, но сканирование показало, что другие зоны мозга мгновенно начали подключаться к выполнению этой, не свойственной им, функции. Причем выполняли это так успешно, что не приводило к значимому ухудшению понимания предложений.

Компенсирующую роль на себя принимали следующие зоны:

  • Контралатеральные, зеркально расположенные в другом полушарии;
  • Соседние зоны в непосредственном окружении поврежденной;
  • Фронтальный исполнительный регион.

Предположительно, именно фронтальный регион принимает на себя главную управляющую и вычислительную роль в распределении задач по выполнению функций вышедшего из сторя региона.

Выведение из строя одного региона приводит к нарушению других функций, поскольку для мышления и понимания мы используем сеть регионов, и, соответственно, это нарушает весь процесс. Если бы не компенсация от других зон, мы видели бы катастрофические последствия даже самых банальных сотрясений мозга. После окончания воздействия TMS, активность зоны Вернике вернулась в исходное, но некоторое время запасные регионы продолжали работать. Это приводило даже к улучшению работы мозга по выполнению задач – ведь он использовал больше регионов для того, с чем обычно справлялся ранее.

Эта автономная (независимая от нашего сознания) способность мозга самоорганизовываться в ответ на изменяющиеся обстоятельства, является, по-видимому, основой для гибкого интеллекта.

Исследование дает более глубокое понимание нейропластичности мозга и уверенность в том, что когнитивные тренировки мозга могут сыграть неоценимую роль в случае травмы головы или инсульта. Секрет заключается в развитии альтернативных методов мышления. Предыдущие исследования (Prat & Just, 2011) показали большую адаптивность у людей с хорошими навыками чтения и высокой емкостью рабочей памяти. В условиях снижения работоспособности региона мозга, их мозг способен лучше адаптироваться к изменениям, рекрутируя компенсирующие регионы, в сравнении с людьми с низкоемкой рабочей памятью. На мой взгляд, еще один повод начать заниматься брейнфитнесом.

До недавнего времени ученые не могли увидеть мозг и измерить его составляющие. Природа мозга, аккуратно упакованного в черепную коробку, была скрыта. Ученые, не имевшие возможности наблюдать за тем, как функционирует мозг, на протяжении многих столетий пытались создать модели и теории, объясняющие его огромный потенциал.

Старая концепция

Мозг сравнивали с комодом со множеством отделений, с картотекой с папками, которые можно отрывать и закрывать, а также с суперкомпьютером, непрерывно выполняющим операции в своих электрических схемах. Все эти аналогии связаны с неорганическими, механическими объектами. Они неживые - и не растут и не меняются.

Большинство ученых считали таким объектом и мозг, за исключением детства, рассматривавшегося как единственный период в жизни человека, когда мозг способен развиваться и адаптироваться. Ребенок впитывает сигналы, поступающие из внутренней и внешней среды; при этом его мозг, хорошо это или плохо, адаптируется к ней.

В случае, о котором рассказывает Антонио Баттро в своей книге Half a Brain Is Enough: The Story of Nico («Половины мозга достаточно: история Нико»), врачи удалили правую долю коры головного мозга мальчика, чтобы вылечить его от эпилепсии. Несмотря на то что Нико потерял важную часть мозговой ткани, он развивался практически без нарушений.

У него сформировались не только функции, связанные с левым полушарием мозга, но и музыкальные и математические способности, за которые обычно отвечает правое полушарие мозга. По мнению Баттро, единственное объяснение того, как мозг мальчика смог компенсировать недостающие функции после удаления половины мозговой ткани, состоит в том, что мозг продолжает развиваться и во взрослой жизни.

Раньше принято было считать, что столь глубокая компенсация нарушений или травм мозга возможна (хотя и бывает крайне редко) лишь тогда, когда ребенок еще растет, а когда он достигает возраста половой зрелости, мозг становится неизменным и никакое внешнее воздействие не может на это повлиять. Больше никакого развития, никакой адаптации. Если на этом этапе мозг получает повреждение, последнее практически неустранимо.

Вот пример из области психологии: если ребенка воспитывают равнодушные взрослые, не понимающие его потребностей, у него формируется мозг, генерирующий модель поведения, отражающую чувство безысходности.

Согласно старой концепции развития мозга, единственный шанс на спасение такого ребенка - заботливое вмешательство в процесс формирования его мозга на раннем этапе. Без этого эмоциональная судьба ребенка предрешена. Другие физические и эмоциональные травмы также могут оставить свой след на молодом мозге.

В соответствии с метафорой «мозг как аппаратное обеспечение» считалось, что мозгу суждено разрушаться. В результате преодоления тех ударов, которые выпадают на долю мозга в повседневной жизни, его составные части постепенно выходят из строя. Или же может произойти серьезная катастрофа, когда крупные компоненты мозга отключаются из-за аварии, инфекции или удара. Согласно этой точке зрения, клетки центральной нервной системы подобны фрагментам антикварного фарфорового сервиза; если вы разобьете один предмет, вам не останется ничего другого, как смести осколки и довольствоваться тем, что осталось.

Никто не верил в то, что клетки головного мозга способны восстанавливаться или формировать между собой новые связи. Этот неутешительный неврологический «факт» имел серьезные последствия для людей, которые получили травмы или перенесли болезни, затронувшие головной мозг.

Еще около пятнадцати лет назад в реабилитационных центрах стандартной практикой было активное лечение пациентов на протяжении первых нескольких недель или месяцев после получения травмы, но как только отек головного мозга спадал, а процесс улучшений прекращался, считалось, что больше ничего сделать нельзя. После этого реабилитация сводилась к поиску вариантов компенсировать возникшие нарушения.

    Если вы повредили зрительную кору (зона головного мозга, связанная со зрением), у вас наступала корковая слепота, и точка.

    Если у вас перестала функционировать левая рука, вы должны были смириться с мыслью, что она навсегда останется бездействующей. Специалисты по реабилитации научат вас, как передвигаться, ничего не видя, или как занести покупки в дом при помощи только правой руки.

    А если у вас было трудное детство, предполагалось, что это оставит неизгладимый отпечаток на вашей способности устанавливать и поддерживать связи с другими людьми.

Новая концепция

К счастью, данную концепцию относительно развития мозга можно отправить в архив истории медицины вместе с другими устаревшими идеями, такими как кровопускание или черная желчь (жидкость, которая, как считал Гиппократ, вызывает рак и другие заболевания). Клетки мозга действительно нуждаются в защите, поэтому я не советую подвергать мозг физическому воздействию.

Тем не менее мозг - это совсем не тот неизменный хрупкий объект, каким мы его считали раньше. Существуют определенные правила изменения мозга , которые можно использовать для решения проблем, восстановления нейронных путей C.A.R.E . и укрепления отношений с другими людьми.